• Helmut Schenkel-Brunner


The phenomenon of polyagglutination is characterised by the agglutinability of erythrocytes and some other blood cells by almost all sera from normal human adults, independent of standard blood groups [15,63]. This unusual reactivity is due to the recognition of secondarily altered erythrocyte membrane antigens by agglutinins normally present in human sera. The receptors are essential constituents of oligosaccharide chains found in membrane glycoconjugates. They are normally hidden on human erythrocytes but become exposed in polyagglutinable cells. The following types of polyagglutination will be discussed in this chapter(1):
  • forms of acquired polyagglutination (T, Tk, Tx, and Th) which develop as a result of bacterial infections; the transformation is usually transient and disappears after recovery of the patient. In these cases the antigens are uncovered by various enzymes released in the blood stream by viruses or microorganisms. Because some bacteria strains produce several enzymes, the simultaneous appearance of two or three of these characteristics may be observed

  • Tn, another form of polyagglutination which is caused by somatic mutations in the haematopoietic stem cells; these mutations involve genes responsible for the biosynthesis of glycoconjugates. The resulting disorder in glycosylation of the membrane constituents leads to a changed antigen pattern of the erythrocyte membrane

  • the characters VA and NOR, which have not yet been classified.


Blood Group Erythrocyte Membrane Human Erythrocyte Neuraminic Acid Specific Lectin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreu, G., Doinel, C., Cartron, J.P., & Mativet, S. (1979): Induction of Tk polyagglutination by Bacteroides fragilis culture supernatants. Blood Trans! lmmunohaemato% 22, 551–561.Google Scholar
  2. 2.
    Anstee, D.J. & Lisowska, E. (1990): Monoclonal antibodies against glycophorins and other glycoproteins. J. Immunogenet. 17, 301–308.PubMedCrossRefGoogle Scholar
  3. 3.
    Baldwin, M.L., Barrasso, C. & Ridotfi, R.L. (1979): Tn polyagglutinability associated with acute myelomonocytic leukemia. Amer. J. Clin. Pathol. 72, 1024–1027.Google Scholar
  4. 4.
    Beck, M.L., Hicklin, B.L., Pierce, S.R. & Edwards, R.L. (1977): Observations on leucocytes and platelets in six cases of Tn polyagglutination. Med. Lab. Sci. 34, 325–332.PubMedGoogle Scholar
  5. 5.
    Berger, E.G. & Kozdrowski, I. (1978): Permanent mixed-field polyagglutinable erythrocytes lack galactosyl-transferase activity. FEBS Lett. 93, 105–108.PubMedCrossRefGoogle Scholar
  6. 6.
    Bird, G.W.G. (1964): Anti-T in peanuts. Vox Sang. 9, 748–749.PubMedCrossRefGoogle Scholar
  7. 7.
    Bird, G.W.G., Shinton, N.K. & Wingham, J. (1971): Persistent mixed-field polyagglutination. Brit. J. Haematol. 21, 443–453.CrossRefGoogle Scholar
  8. 8.
    Bird, G.W.G. & Wingham, J. (1972): Tk: A new form of red cell polyagglutination. Brit. J. Haematol. 23, 759–763.CrossRefGoogle Scholar
  9. 9.
    Bird, G.W.G. & Wingham, J. (1974): Haemagglutinins from Salvia. Vox Sang. 26, 163–166.PubMedCrossRefGoogle Scholar
  10. 10.
    Bird, G.W.G. & Wingham, J. (1974): The M, N and Nvg receptors of Tn-erythrocytes. Vox Sang. 26, 171–175.PubMedCrossRefGoogle Scholar
  11. 11.
    Bird, G.W.G., Wingham, J., Inglis, G. & Mitchell, A.A.B (1975): Tk polyagglutination in Bacteroides fragilis septicaemia. Lancet 1, 286–287.PubMedCrossRefGoogle Scholar
  12. 12.
    Bird, G.W.G., Wingham, J., Pippard, M.J., Houk, J.G. & Melikian, V. (1976): Erythrocyte membrane modification in malignant diseases of myeloid and lymphoreticular tissues. I. Tn-polyagglutination in acute myelocytic leukaemia. Brit. J. Haematol. 33, 289–294.CrossRefGoogle Scholar
  13. 13.
    Bird, G.W.G. & Wingham, J. (1976): More Salvia agglutinins. Vox Sang. 30, 217–219.PubMedCrossRefGoogle Scholar
  14. 14.
    Bird, G.W.G. (1977): Hemagglutination dependent on drugs or other chemical substances. In: CRC Handbook Series in Clinical Laboratory Science. Section D, Blood Banking (D. Seligson, T.J. Greenwalt & E.A. Steane, eds.). CRC Press Inc., Cleveland, Ohio, vol. 1, pp. 431–438.Google Scholar
  15. 15.
    Bird, G.W.G. (1977): Erythrocyte polyagglutination. In: CRC Handbook Series in Clinical Laboratory Science. Section D, Blood Banking (D. Seligson, T.J. Greenwalt & E.A. Steane, eds.). CRC Press Inc., Cleveland, Ohio, vol. 1, pp. 443–445.Google Scholar
  16. 16.
    Bird, G.W.G. (1977): Lectins. In: CRC Handbook Series in Clinical Laboratory Science. Section D, Blood Banking (D. Seligson, T.J. Greenwalt & E.A. Steane, eds). CRC Press Inc., Cleveland, Ohio, vol. 1, pp. 459–473.Google Scholar
  17. 17.
    Bird, G.W.G. (1977): Complexity of polyagglutination. In: Human Blood Groups, 5th International Convocation on Immunology, Buffalo, N.Y. 1976 (J.F. Mohn, R.W. Plunkett, R.K. Cunningham & R.M. Lambert, eds.), S. Karger, Basel, pp. 335–343.Google Scholar
  18. 18.
    Bird, G.W.G. & Wingham, J. (1977): Yet more Salvia agglutinins. Vox Sang. 32, 121–122.PubMedCrossRefGoogle Scholar
  19. 19.
    Bird, G.W., Wingham, J., Beck, M.L., Pierce, S.R., Oates, G.D. & Pollock, A. (1978): Th, a ‘new’ form of erythrocyte polyagglutination. Lancet 1, 1215–1216.PubMedCrossRefGoogle Scholar
  20. 20.
    Bird, G.W.G. & Wingham, J. (1981): Vicia cretica: a powerful lectin for T- and Th-but not Tk or other polyagglutinable erythrocytes. J. Clin. Pathol. 34, 69–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Bird, G.W.G. & Wingham. J. (1981): Tn-specific lectins from Lamium. Clin. Lab. Haematol. 3, 169–171.PubMedGoogle Scholar
  22. 22.
    Bird, G.W.G., Wingham, J., Seger, R. & Kenny, A.B. (1982): Tx, a ‘new’ red cell cryptantigen exposed by pneumococcal enzymes. Blood Transf. lmmunohaemato% 25, 215–216.Google Scholar
  23. 23.
    Bird, G.W.G. (1982): Clinical aspects of red blood cell polyagglutinability of microbial origin. In: Blood Groups and Other Red Cell Surface Markers in Health and Disease. ( C. Salmon, ed.), Masson Publishing USA, Inc., pp. 55–64.Google Scholar
  24. 24.
    Bird, G.W.G., Wingham, J. & Liew, Y.W. (1983): Reaction of peanut lectin with ‘pure’ Tk-cryptantigen. Transfusion 23, 271.PubMedCrossRefGoogle Scholar
  25. 25.
    Blumenfeld, O.O., Lalezari, P., Khorshidi, M., Puglia, K. & Fukuda, M. (1992): 0-linked oligosaccharides of glycophorins A and B in erythrocytes of two individuals with the Tn polyagglutinability syndrome. Blood 80, 2388–2395.Google Scholar
  26. 26.
    Brouet, J.C., Vainchenker, W., Blanchard, D., Testa. U. & Cartron J.P. (1983): The origin of human B and T cells from multipotent stem cells. A study of the Tn syndrome. Eur. J. Immunol. 13, 350–357.PubMedCrossRefGoogle Scholar
  27. 27.
    Byrne, U., Brown, A., Ropars, C. & Moore, B.P.L. (1979): Acquired B antigen, Tk activation and A, destroying enzyme activity in a patient with septicaemia. Vox Sang. 36, 208–212.PubMedCrossRefGoogle Scholar
  28. 28.
    Cartron, J.P., Andreu, G., Cartron, J., Bird, G.W.G., Salmon, C. & Gerbal, A. (1978): Demonstration of T-transferase deficiency in Tn-polyagglutinable blood samples. Eur. J. Biochem. 92, 111–119.PubMedCrossRefGoogle Scholar
  29. 29.
    Cartron, J.P. & Nurden, A.T. (1979): Galactosyltransferase and membrane glycoprotein abnormity in human platelets from Tn-syndrome donors. Nature 282, 621–623.PubMedCrossRefGoogle Scholar
  30. 30.
    Cartron, J.P., Nurden, A.T., Blanchard, D., Lee, H., Dupuis, D. & Salmon, C. (1980): The Tn receptors of human red cells and platelets. Blood Transf. Immunohaematol. 23, 613–628.CrossRefGoogle Scholar
  31. 31.
    Cartron, J.P., Blanchard, D., Nurden, A., Cartron, J., Rahuel, C., Lee, D., Vainchenker, W., Testa, U. & Rochant, H. (1982): Tn syndrome: a disorder affecting red blood cell, platelet, and granulocyte cell surface components. In: Blood Groups and Other Red Cell Surface Markers In Health and Disease. ( C. Salmon, ed.), Masson Publ. USA, Inc., New York, pp. 39–54.Google Scholar
  32. 32.
    Dahr, W., Uhlenbruck, G. & Bird, G.W.G. (1974): Cryptic A-like receptor sites in human erythrocyte glycoproteins: proposed nature of Tn-antigen. Vox Sang. 27, 29–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Dahr, W., Uhlenbruck, G. & Bird, G.W.G. (1975): Further characterization of some heterophilic agglutinins reacting with alkali-labile carbohydrate chains of human erythrocyte glycoproteins. Vox Sang. 28, 133–148.PubMedCrossRefGoogle Scholar
  34. 34.
    & van der Hart, M. (1975): Studies on glycoproteins and glycopeptides from Tn-polyagglutinable erythrocytes. Vox Sang. 28, 249–252.CrossRefGoogle Scholar
  35. 35.
    & van der Hart, M. (1975): Molecular basis of Tn polyagglutinability. Vox Sang. 29, 36–50.CrossRefGoogle Scholar
  36. 36.
    Dahr, W., Gielen, W., Pierce, S. & Schaper, R. (1979): UDP-GaI:GaINAc-13–3-D-galactosyl transferase deficiency in Tn-syndrome. In: Glycoconjugates, Proceedings of the 5th International Symposium, Kiel, (R. Schauer, P. Boer, E. Buddecke, M.F. Kramer, J.F.G. Vliegenthart & H. Wiegandt, eds.). Georg Thieme Publishers, Stuttgart, pp. 272–273.Google Scholar
  37. 37.
    Dausset, J., Moullec, J. & Bernard, J. (1959): Acquired hemolytic anaemia with polagglutinability of red blood cells due to a new factor present in normal human serum (anti-Tn). Blood 14, 1079–1093.PubMedGoogle Scholar
  38. 38.
    Desai, P.R. & Springer, G.F. (1979): Biosynthesis of human blood group T-, N- and M-specific immunodeterminants on human erythrocyte antigens. J. lmunogenet. 6, 403–417.CrossRefGoogle Scholar
  39. 39.
    Doinel, C., Andreu, G., Cartron, J.P., Salmon, C. & Fukuda, M.N. (1980): Tk polyagglutination produced in vitro by an endo-beta-galactosidase. Vox Sang. 38, 94–9B.PubMedCrossRefGoogle Scholar
  40. 40.
    Doinel, C., Rufin, J.M. & Andreu, G. (1981): The Tk antigenic determinant. Studies of Tk activated red blood cells with endoglycosidases. Blood Trani. Immunohaematol 24, 109–116.CrossRefGoogle Scholar
  41. 41.
    Friedenreich, V. (1930): The Thomsen Haemagglutination Phenomenon. Lewis and Munksgaard, Copenhagen.Google Scholar
  42. 42.
    Fukuda, M.N. & Matsumura, G. (1976): Endo-f3-galactosidase of E. freundii. Purification and endo-glycosidic action on keratan sulfates, oligosaccharides and blood group active glycoproteins. J. Biol. Chem. 251, 6218–6225.Google Scholar
  43. 43.
    Gottschalk, A. (1960): The Chemistry and Biology of Sialic Acids and Related Substances. Cambridge University Press.Google Scholar
  44. 44.
    Graninger, W., Rameis, H., Fischer, K., Poschmann, A., Bird, G.W.G., Wingham, J. & Neumann, E. (1977): ‘VA’ a new type of erythrocyte polyagglutination characterized by depressed H receptors and associated with hemolytic anaemia. I. Serological and hematological observations. Vox Sang. 32, 195–200.Google Scholar
  45. 45.
    Graninger, W., Poschmann, A., Fischer, K., Schedi-Giovannoni, I., Hörandner, H. & Klaushofer, K. (1977): ‘VA’ a new type of erythrocyte polyagglutination characterized by depressed H receptors and associated with hemolytic anaemia. II. Observations by immunofluorescence, electron microscopy, cell electrophoresis and biochemistry. Vox Sang. 32, 201–207.Google Scholar
  46. 46.
    Gray, J.M., Beck, M.L. & Oberman, H.A. (1972): Clostridial-induced type I polyagglutinability with associated intravascular haemolysis. Vox Sang. 22, 379–383.PubMedCrossRefGoogle Scholar
  47. 47.
    Gunson, H.H., Stratton, F. & Mullard, G.W. (1970): An example of polyagglutinability due to the Tn antigen. Brit. J. Haematol. 18, 309–314.CrossRefGoogle Scholar
  48. 48.
    Gunson, H.H., Betts, J.J. & Nicholson, J.T. (1971): The electrophoretic mobility of Tn polyagglutinable cells. Vox Sang. 21, 455–461.CrossRefGoogle Scholar
  49. 49.
    Hagen, I., Nurden, A., Bjerrum, O.J., Solum, N.O. & Caen, J. (1980): Immunochemical evidence for protein abnormalities in platelets with Glanzmann’s Thrombasthenia and the Bernard-Soulier syndrome. J. Clin. Invest. 65, 722–731.PubMedCrossRefGoogle Scholar
  50. 50.
    Harris, P.A., Roman, G.K., Moulds, J.J., Bird, G.W.G. & Shah, N.G. (1982): An inherited RBC characteristic, NOR, resulting in erythrocyte polyagglutination. Vox Sang. 42, 134–140.PubMedCrossRefGoogle Scholar
  51. 51.
    Haynes, C.R., Dorner, I., Leonard, G.L., Arrowsmith, W.R. & Chaplin, H. (1970): Persistent polyagglutinability in vivo unrelated to T-antigen activation. Transfusion 10, 43–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Herman, J.H., Whitehead, W., Shirey, R.S., Johnson, R.J., Kickler, T.S. & Ness, P.M. (1987): Red cell Th activation: biochemical studies. Brit. J. Haematol. 65, 205–209.CrossRefGoogle Scholar
  53. 53.
    Herman, J.H., Shirey, R.S., Smith, B., Kickler, T.S. & Ness, P.M. (1987): Th activation in congenital hypoblastic anemia. Transfusion 27, 253–256.PubMedCrossRefGoogle Scholar
  54. 54.
    Hirohashi, S., Clausen, H., Yamada, T., Shimosato, Y. & Hakomori, S.I. (1985): Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and -81 expressed in cancer of blood group O or B individuals: its identification as Tn antigen. Proc. Natl. Acad. Sci. USA 82, 7039–7043.PubMedCrossRefGoogle Scholar
  55. 55.
    HBppner, W., Fischer, K., Poschmann, A. & Paulsen, H. (1985): Study on the carbohydrate specificity of antibodies formed in rabbits to synthetic glycoproteins with the carbohydrate structure of asialo-glycophorin A. Molec. Immunol. 22, 1341–1348.CrossRefGoogle Scholar
  56. 56.
    HBppner, W., Fischer, K. & Poschmann, A. (1985): Use of synthetic antigens with the carbohydrate structure of asialoglycophorin A for the specification of Thomsen-Friedenreich antibodies. Vox Sang. 48, 246–253.CrossRefGoogle Scholar
  57. 57.
    Howard, D.R. (1979): Expression of T-antigen on polyagglutinable erythrocytes and carcinoma cells: preparation of T-activated erythrocytes, anti-T lectin, anti-T absorbed human serum and purified anti-T antibody. Vox Sang. 37, 107–110.PubMedCrossRefGoogle Scholar
  58. 58.
    HObener, G. (1926): Untersuchungen über Iso-Agglutination mit besonderer Berücksichtigung scheinbarer Abweichungen vom Gruppenschema. Z. Immun.-Forsch. 45, 223–248.Google Scholar
  59. 59.
    Hysell, J.K., Hysell, J.W., Nichols, M.E., Leonardi, R.G. & Marsh, W.L. (1976): In vivo and in vitro activation of T-antigen receptors on leucocytes and platelets. Vox Sang. 31, Suppl 1, 9–15.Google Scholar
  60. 60.
    Inglis, G., Bird, G.W.G., Mitchell, A.A.B, Milne, G.R. & Wingham, J. (1975): Erythrocyte polyagglutination showing properties of both T and Tk, probably induced by Bacteroides fragilis infection. Vox Sang. 28, 314–317.PubMedCrossRefGoogle Scholar
  61. 61.
    Inglis, G., Bird, G.W.G., Mitchell, A.A.B., Milne, G.R. & Wingham, J. (1975): The effect of Bacteroides fragilis on the human erythrocyte membrane: pathogenesis of Tk polyagglutination. J. Clin. Pathol. 28, 964–968.PubMedCrossRefGoogle Scholar
  62. 62.
    Inglis, G., Bird, G.W.G., Mitchell, A.A.B. & Wingham, J. (1978): Tk polyagglutination associated with reduced A and H activity. Vox Sang. 35, 370–374.PubMedCrossRefGoogle Scholar
  63. 63.
    Issitt, P.D. & Issitt, C.H. (1985): Polyagglutination. In: Applied Blood Group Serology. Montgomery Scientific Publications, Miami, FL, USA, 3rd edn., pp. 456–476.Google Scholar
  64. 64.
    lyer, P.N.S., Wilkinson, K.D. & Goldstein, I.J. (1976): An N-acetyl-D-glucosamine binding lectin from Bandeiraea simplicifolia seeds. Arch. Biochem. Biophys. 177, 330–333.PubMedCrossRefGoogle Scholar
  65. 65.
    Jokinen, M. (1981): Characterization of glycophorin A and band 3 from Tn polyagglutinable erythrocytes. Scand. J. Haematol. 26, 272–280.PubMedCrossRefGoogle Scholar
  66. 66.
    Judd, W.J., Beck, M.L., Hicklin, B.L., lyer, P.N.S. & Goldstein, I.J. (1977): BS Il Lectin: A second haemagglutinin isolated from Bandeiraea simplicifolia seeds with affinity for type Ill polyagglutinable red cells. Vox Sang. 33, 246–251.PubMedCrossRefGoogle Scholar
  67. 67.
    Judson, P.A., Spring, F.A., Taylor, M.A. & Anstee, D.J. (1983): Evidence for carbohydrate-deficient forms of the major sialoglycoproteins of human platelets, granulocytes and lymphocytes-T in individuals with Tn syndrome. Immunology 50, 415–422.PubMedGoogle Scholar
  68. 68.
    Kim, Y.D. (1980): Immunochemical characteristics of human anti-T antibodies. Vox Sang. 39, 162–168.PubMedCrossRefGoogle Scholar
  69. 69.
    Kjeldsen, T., Clausen, H., Hirohashi, S., Ogawa, T., lijima, H. & Hakomori, S.I. (1988): Preparation and characterization of monoclonal antibodies directed to the tumor-associated 0-linked sialosyl-2–6 a-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res. 48, 2214–2220.PubMedGoogle Scholar
  70. 70.
    Kjeldsen, T., Hakomori, S., Springer, G.F., Desai, P., Harris, T. & Clausen, H. (1989): Coexpression of sialosyl-Tn (NeuAcα2→6Gα2→6GaINAcα1→O-Ser/Thr) and Tn (6Gα2→6GaINAcα1→O-Ser/Thr) blood group antigens on Tn erythrocytes. Vox Sang. 57, 81–87.PubMedCrossRefGoogle Scholar
  71. 71.
    Lalezari, P. & Al-Mondhiri, H. (1973): Sialic acid deficiency of human red blood cells associated with persistent red cell, leucocyte and platelet polyagglutinability. Brit. J. Haematol. 25, 399–408.CrossRefGoogle Scholar
  72. 72.
    Lee, L.T., Frank, S., De Jongh, D.S. & Howe, C. (1981): Immunochemical studies on Tn erythrocyte glycoproteins. Blood 58, 1228–1231.PubMedGoogle Scholar
  73. 73.
    Lisowska, E. (1963): Reaction of erythrocyte mucoproteins with anti-N phytagglutinin from Vicia graminaea seeds. Nature 198, 865–866.PubMedCrossRefGoogle Scholar
  74. 74.
    Lotan, R., Skutelsky, E., Danon, D. & Sharon, N. (1975): The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 8518–8523.PubMedGoogle Scholar
  75. 75.
    Mahanta, S.K., Sastry, M.V.K. & Surolia, A. (1990): Topography of the combining region of a Thomsen-Friedenreich-antigen-specific lectin jacalin (Artocarpus integrifolia) agglutinin. Biochem. J. 265, 831–840.PubMedGoogle Scholar
  76. 76.
    Moreau, R., Dausset, J., Bernard, J. & Moullec, J. (1957): Anémie hémolytique acquisé avec polyagglutinabilité des hématies par un nouveau facteur présent dans le sérum humain normal (anti-Tn). Bulletin de la Societé Médicale des Hôpitaux de Paris 73, 569–587.PubMedGoogle Scholar
  77. 77.
    Mueller, T.J., Li, Y.T. & Morrison, M. (1979): Effect of endo-13-galactosidase on intact human erythrocytes. J. Biol. Chem. 254, 8103–8106.PubMedGoogle Scholar
  78. 78.
    Mullard, G.W., Haworth, C. & Lee, D. (1978): A case of atypical polyagglutinability due to Tk transformation. Brit. J. Haemato% 40, 571–582.CrossRefGoogle Scholar
  79. 79.
    Myllylä, G., Furuhjelm, U., Nordling, S., Pirkola, A., Tippett, P., Gavin, J. & Sanger, R. (1971): Persistent mixed-field polyagglutinability. Electrokinetic and serological aspects. Vox Sang. 20, 7–23.PubMedCrossRefGoogle Scholar
  80. 80.
    Nakada, H., Inoue, M., Numata, Y., Tanaka, N., Funakoshi, I., Fukui, S. & Yamashina, I. (1992): Cancer-associated glycoproteins defined by a monoclonal antibody, MLS 128, recognizing the Tn antigen. Biochem. Biophys. Res. Commun. 187, 217–224.PubMedCrossRefGoogle Scholar
  81. 81.
    Nakada, H., Inoue, M., Numata, Y., Tanaka, N., Funakoshi, I., Fukui, S., Mellors, A. & Yamashina, I. (1992): Epitopic structure of Tn glycophorin A for an anti-Tn antibody (MLS 128). Proc. Natl. Acad. Sci. USA 90, 2495–2499.CrossRefGoogle Scholar
  82. 82.
    Ness, P.M., Garratty G., Morel, P.A. & Perkins, H.A. (1979): Tn polyagglutination preceding acute leukemia. Blood 54, 30–34.PubMedGoogle Scholar
  83. 83.
    Neter, E. (1956): Bacterial hemagglutination and hemolysis. Bacteriol. Rev. 20, 166–188.PubMedGoogle Scholar
  84. 84.
    Numata, Y., Nakada, H., Fukui, S., Kitagawa, H., Ozaki, K., Inoue, M., Kawasaki, H., Funakoshi, I. & Yamashima, I. (1990): A monoclonal antibody directed to Tn antigen. Biochem. Biophys. Res. Commun. 170, 981–985.PubMedCrossRefGoogle Scholar
  85. 85.
    Nurden, A.T., Dupuis, D., Pidard, D., Kieffer, N., Kunicki, T.J. & Cartron, J.P. (1982): Surface modifications in the platelets of a patient with a-N-acetyl-D-galactosamine residues, the Tn syndrome. J. Clin. Invest. 70, 1281–1291.PubMedCrossRefGoogle Scholar
  86. 86.
    Pilfer, V., Piller, F. & Cartron, J.P. (1986): Isolation and characterization of an N-acetylgalactosamine specific lectin from Salvia sclarea seeds. J. Biol. Chem. 261, 14069–14075.Google Scholar
  87. 87.
    Race, R.R. & Sanger, R. (1975): Polyagglutinability. In: Blood Groups in Man. Blackwell Scientific Publications, Oxford, 6th edn., pp. 486–496.Google Scholar
  88. 88.
    Rinderle, S.J., Goldstein, I.J., Matta, K.L. & Ratcliffe, R.M. (1989): Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. J. Biol. Chem. 264, 16123–16131.PubMedGoogle Scholar
  89. 89.
    Romanowska, E. (1964): Reactions of M and N blood-group substances natural and degraded with specific reagents of human and plant origin. Vox Sang. 9, 578–583.Google Scholar
  90. 90.
    Roxby, D.J., Morley, A.A. & Burpee, M. (1987): Detection of the Tn antigen in leukaemia using monoclonal anti-Tn antibody and immunohistochemistry. Brit. J. Haemato% 67, 153–156.CrossRefGoogle Scholar
  91. 91.
    Sastry, M.V.K., Banarjee, P., Patanjali, S.R., Swamy, M.J., Swarnalatha, G.V. & Surolia, A. (1986): Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen 03-D-Gal(1->3)D-GaINAc). J. Biol. Chem. 261, 11726–11733.PubMedGoogle Scholar
  92. 92.
    Seitz, R., Fischer, K. & Poschmann, A. (1983): Differentiation of red cell membrane abnormalities causing T-polyagglutination by use of monoclonal antibodies. Rev. Franc. Trans!. /mmunohemato/. 26, 420.Google Scholar
  93. 93.
    Sondag-Thull, D., Levene, N.A., Levene, C., Manny, N., Liew, Y.W., Bird, G.W.G., Schechter, Y., Francois-Gérard, C., Huet, M. & Blanchard, D. (1989): Characterization of a neuraminidase from Corynebacterium aquaticum responsible for Th polyagglutination. Vox Sang. 57, 193–198.PubMedCrossRefGoogle Scholar
  94. 94.
    Springer, G.F. & Desai, P.R. (1974): Common precursors of human blood group MN specificities. Biochem. Biophys. Res. Commun. 61, 470–475.PubMedCrossRefGoogle Scholar
  95. 95.
    Springer, G.F., Desai, P.R., Schachter, H. & Narasimhan, S. (1976): Enzymatic synthesis of human blood group M-, N- and T-specific structures. Naturwiss. 63, 488–489.PubMedCrossRefGoogle Scholar
  96. 96.
    Springer, G.F. (1984): T and Tn, general carcinoma autoantigens. Science 224, 1198–1206.PubMedCrossRefGoogle Scholar
  97. 97.
    Springer, G.F., Chandrasekaran, E.V., Desai, P.R. & Tegtmeyer, H. (1988): Blood group Tn-active macromolecules from human carcinomas and erythrocytes: characterization of and specific reactivity with mono-and poly-clonal anti-Tn antibodies induced by various immunogens. Carbohydr. Res. 178, 271–292.PubMedCrossRefGoogle Scholar
  98. 98.
    Sturgeon, P., McOuiston, D.T., Taswell, H.F. & Allan, C.J. (1973): Permanent mixed-field polyagglutinability (PMFP): I. Serological observations. Vox Sang. 25, 481–497.PubMedCrossRefGoogle Scholar
  99. 99.
    Sturgeon, P., Luner, S.J. & McQuiston, D.T. (1973): Permanent mixed-field polyagglutinability (PMFP): II. Haematological, biophysical and biochemical observations. Vox Sang. 25, 498–512.PubMedCrossRefGoogle Scholar
  100. 100.
    Takahashi, H.K., Metoki, R. & Hakomori, S.I. (1988): Immunoglobulin G3 monoclonal antibody directed to Tn antigen (tumor-associated a-N-acetylgalactosaminyl epitope) that does not cross-react with blood group A antigen. Cancer Res. 48, 4361–4367.PubMedGoogle Scholar
  101. 101.
    Thomas, B.B. & Winzler, R.J. (1969): Structural studies on human erythrocyte glycoprotein alkali-labile oligosaccharides. J. Biol. Chem. 244, 5943–5949.PubMedGoogle Scholar
  102. 102.
    Thomsen, O. (1927): Ein vermehrungsfähiges Agens als Veränderer des iso-agglutinatorischen Verhaltens der roten Blutkörperchen, ein bisher unbekannter Fall der Fehlbestimmung. Z. Immun.-Forsch. 52, 85–107.Google Scholar
  103. 103.
    Thurnher, M., Rusconi, S. & Berger, E.G. (1993): Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome. J. C/in. Invest. 91, 2103–2110.CrossRefGoogle Scholar
  104. 104.
    Uhlenbruck, G., Pardoe, G.I. & Bird, G.W.G. (1969): On the specificity of lectins with a broad agglutination spectrum. II. Studies of the nature of the T-antigen and the specific receptors for the lectin of Arachis hypogaea (ground-nut). Z. Immun.-Forsch. 138, 423–433.Google Scholar
  105. 105.
    Vainchenker, W. Testa, U., Deschamps, J.F., Henri, A. Titeux, M. Breton-Gorius, J., Rochant, H., Lee, D. & Cartron, J.P. (1982): Clonal expression of Tn antigen in erythroid and granulocyte colonies and its application to determination of the clonality of the human megacaryocyte colony assay. J. Clin. Invest. 69,1081–1091.PubMedCrossRefGoogle Scholar
  106. 106.
    Vainchenker, W. Vinci, G., Testa, U., Henri, A. Tabilio, A. Fache, M.P., Rochant, H. & Cartron, J.P. (1985): Presence of the Tn antigen on hematopoietic progenitors from patients with the Tn syndrome. J. Clin. Invest. 75,541–546.Google Scholar
  107. 107.
    Vaith, P. & Uhlenbruck, G. (1978): The Thompson agglutination phenomenon: a discovery revisited 50 years later. Z. Immun.-Forsch. 154,1–14.Google Scholar
  108. 108.
    Van der Hart, M. Moes, M. van Loghem, J.J., Enneking, J.H.J. & Leeksma, C.H.W. (1961): A second example of red cell polyagglutinability caused by the Tn antigen. Vox Sang. 6, 358–361.PubMedCrossRefGoogle Scholar
  109. 109.
    Veneziano, G., Rasore-Quartino, A. & Sansone, G. (1978): Th erythrocyte polyagglutination. Lancet 2, 483.PubMedCrossRefGoogle Scholar
  110. 110.
    Wahl, C.M. Herman, J.H., Shirey, R.S., Kickler, T.S. & Ness, P.M. (1989): Th activation of maternal and cord blood. Transfusion 29,635–637.PubMedCrossRefGoogle Scholar
  111. 111.
    Weeden, A.R., Datta, N. & Mollison, P.L. (1960): Adsorption of bacteria on to red cells leading to positive antiglobulin reactions. Vox Sang. 5,523–531.PubMedCrossRefGoogle Scholar
  112. 112.
    Yang, E.K.L. Spence, L.R., Harding, R.Y. & Moore, B.P.L. (1982): A ‘new’ lectin for detection of T, Tn and Th polyagglutination. Transfusion 22,338–339.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • Helmut Schenkel-Brunner
    • 1
  1. 1.Institut für BiochemieUniversität WienViennaAustria

Personalised recommendations