Skip to main content

Discretisation of the Stationary Device Problem

  • Chapter
The Stationary Semiconductor Device Equations

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 271 Accesses

Abstract

The numerical solution of boundary value problems for nonlinear systems of elliptic partial differential equations in general and the static simulation of semiconductor devices in particular usually proceeds in the following steps:

  1. (i)

    The ‘continuous’ problem is replaced by a suitable approximating ‘discrete’ nonlinear system of algebraic equations, whose solutions are intrinsically related to point-values of approximate solutions. This procedure is called discretisation of the boundary value problem.

  2. (ii)

    Since, usually, the nonlinear system of equations generated by the discretisation cannot be solved exactly, an iteration scheme based on (quasi-) linearisation is set up in order to obtain an approximate discrete solution.

  3. (iii)

    In each iteration step a usually large and sparse system of linear equations has to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsson, O., Barker, A. V.: Finite Element Solution of Boundary Value Problems, Theory and Computation. Orlando, Florida: Academic Press 1984.

    Google Scholar 

  2. Bank, R. E., Jerome, J. W., Rose, D. J.: Analytical and Numerical Aspects of Semiconductor Modelling. Report 82–11274–2, Bell Laboratories, 1982.

    Google Scholar 

  3. Bramble, J. H., Hubbard, B. E.: On the Formulation of Finite Difference Analogues of the Dirichlet Problem for Poisson’s Equation. Num. Math. 4, 313–327 (1962).

    Article  Google Scholar 

  4. Buturla, E. M., Cottrell, P. E.: Two-Dimensional Finite Element Analysis of Semiconductor Steady State Transport Equations. Proc. International Conference “Computer Methods in Nonlinear Mechanics”, Austin, Texas, pp. 512–530 (1974).

    Google Scholar 

  5. Choo, S. C., Seidmann, T. I.: Iterative Scheme for Computer Simulations of Semiconductor Devices. Solid State Electronics 15, 1229–1235 (1972).

    Article  Google Scholar 

  6. Ciarlet, P.: The Finite Element Method for Elliptic Problems. Amsterdam—New York—Oxford: North-Holland 1978.

    Google Scholar 

  7. Collatz, L.: Numerical Treatment of Differential Equations, 3rd ed. Berlin—HeidelbergNew York: Springer 1960.

    Book  Google Scholar 

  8. Doolan, E. P., Miller, J. J. H., Schilders, W. H. A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Dublin: Boole Press 1980.

    Google Scholar 

  9. Fichtner, W., Rose, D. J.: On the Numerical Solution of Nonlinear Elliptic PDEs Arising from Semiconductor Device Modelling. Report 80–2111–12, Bell Laboratories, 1980.

    Google Scholar 

  10. Forsythe, G. E., Wasow, W. R.: Finite Difference Methods for Partial Differential Equations. New York: Wiley 1960.

    Google Scholar 

  11. Franz, A. F., Franz, G. A., Selberherr, S., Ringhofer, C. A., Markowich, P. A.: Finite Boxes — A Generalisation of the Finite Difference Method Suitable for Semiconductor Device Simulation. IEEE Trans. Electron Devices. ED-30, No. 9, 1070–1082 (1983).

    Article  Google Scholar 

  12. Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, 2nd ed. Berlin—Heidelberg—New York: Springer 1983.

    Book  Google Scholar 

  13. Gummel, H. K.: A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations. IEEE Trans. Electron Devices. ED-11, 455–465 (1964).

    Google Scholar 

  14. Jüngling, W., Pichler, P., Selberherr, S., Guerrero, E., Pötzl, H.: Simulation of Critical IC Fabrication Processes Using Advanced Physical and Numerical Methods. IEEE Trans. Electron Devices ED-32, No. 2, 156–167 (1985).

    Article  Google Scholar 

  15. Keller, H. B.: Approximation Methods for Nonlinear Problems with Application to Two-Point Boundary Value Problems. Math. Comp. 29, 464–474 (1974).

    Article  Google Scholar 

  16. Markowich, P. A., Ringhofer, C. A.: Collocation Methods for Boundary Value Problems on `Long’ Intervals. Math. Comp. 40, 123–150 (1983).

    Google Scholar 

  17. Markowich, P. A., Ringhofer, C. A., Selberherr, S., Lentini, M.: A Singular Perturbation Approach for the Analysis of the Fundamental Semiconductor Equations. IEEE Trans. Electron Devices. ED-30, No. 9, 1165–1180 (1983).

    Article  Google Scholar 

  18. Markowich, P. A., Ringhofer, C. A., Steindl, A.: Arclength Continuation Methods for the Computation of Semiconductor Device Characteristics. IMA J. Num. Anal. 33, 175–187 (1984).

    Google Scholar 

  19. Meis, T., Marcowitz, U.: Numerische Behandlung Partieller Differentialgleichungen. Berlin—Heidelberg—New York: Springer 1978.

    Book  Google Scholar 

  20. Mock, M. S.: On the Convergence of Gummel’s Numerical Algorithm. Solid State Electronics 15, 781–793 (1972).

    Article  Google Scholar 

  21. Mock, M. S.: Analysis of Mathematical Models of Semiconductor Devices. Dublin: Boole Press 1983.

    Google Scholar 

  22. Mock, M. S.: On the Computation of Semiconductor Device Current Characteristics by Finite Difference Methods. J. Engineering Math. 7, No. 3, 193–205 (1973).

    Article  Google Scholar 

  23. Mock, M. S.: Analysis of a Discretisation Algorithm for Stationary Continuity Equations in Semiconductor Device Models I. COMPEL 2, No. 3, 117–139 (1983).

    Article  Google Scholar 

  24. Mock, M. S.: Analysis of a Discretisation Algorithm for Stationary Continuity Equations in Semiconductor Device Models II. COMPEL 3, No. 3, 137–149 (1984).

    Article  Google Scholar 

  25. Oden, J. T.: Finite Elements of Nonlinear Continua. New York: McGraw-Hill 1972.

    Google Scholar 

  26. Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York—London: Academic Press 1970.

    Google Scholar 

  27. den Heijer, C., Rheinboldt, W. C.: On Steplength Algorithms for a Class of Continuation Methods. SIAM J. Num. Anal. 18, Nr. 5, 925–948 (1981).

    Article  Google Scholar 

  28. Scharfetter, D. L., Gummel, H. K.: Large Signal Analysis of a Silicon Read Diode Oscillator. IEEE Trans. Electron Devices. ED-16, 64–77 (1969).

    Google Scholar 

  29. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Wien—New York: Springer 1984.

    Book  Google Scholar 

  30. Strang, G., Fix, G. J.: An Analysis of the Finite Element Method. Englewood Cliffs, N. J.: Prentice-Hall 1973.

    Google Scholar 

  31. Thompson, J. F. (ed.): Numerical Grid Generation. Amsterdam—New York—Oxford: North-Holland 1982.

    Google Scholar 

  32. Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, N. J.: Prentice-Hall 1962.

    Google Scholar 

  33. Watanabe, D. S., Sheikh, Q. M., Slamed, S.: Convergence of Quasi-Newton Methods for Semiconductor Equations. Report, Department of Computer Science, University of Illinois—Urbana, U.S.A., 1984.

    Google Scholar 

  34. Zienkiewicz, O. C.: The Finite Element Method. London: McGraw-Hill 1977.

    Google Scholar 

  35. Zlamal, M.: Finite Element Solution of the Fundamental Equations of Semiconductor Devices I. Report, Department of Math., Technical University Brünn, CSSR, 1984.

    Google Scholar 

  36. Zlamal, M.: A Finite Element Solution of the Nonlinear Heat Equation. RAIRO Anal. Num. 14, 203–216 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Wien

About this chapter

Cite this chapter

Markowich, P.A. (1986). Discretisation of the Stationary Device Problem. In: The Stationary Semiconductor Device Equations. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3678-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3678-2_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99937-0

  • Online ISBN: 978-3-7091-3678-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics