Advertisement

Singular Perturbation Analysis of the Stationary Semiconductor Device Problem

  • Peter A. Markowich
Part of the Computational Microelectronics book series (COMPUTATIONAL)

Abstract

In this chapter we present an approach to the analysis of the qualitative and quantitative structure of solutions of the stationary basic semiconductor device equations. The approach is entirely based on singular perturbation theory.

Keywords

Ohmic Contact Singular Perturbation Schottky Contact Doping Profile Singularly Perturb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [4.1]
    Ascher, U., Christiansen, J., Russell, R. D.: A Collocation Solver for Mixed Order Systems of Boundary Value Problems. Math. Comp. 33, 659–679 (1979).CrossRefGoogle Scholar
  2. [4.2]
    Ascher, U.: Solving Boundary Value Problems with a Spline Collocation Code. J. Comp. Phys. 34, 401–413 (1980).CrossRefGoogle Scholar
  3. [4.3]
    Ashcroft, N. W., Mermin, N. D.: Solid State Physics. Philadelphia: Saunders 1976.Google Scholar
  4. [4.3a]
    Brezzi, F., Capelo, A., Marini, L. D.: Singular Perturbation Problems in Semiconductor Devices. Report 464, Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche, Pavia, Italy, 1985.Google Scholar
  5. [4.3b]
    Caffarelli, L. A., Friedman, A.: A Singular Perturbation Problem for Semiconductors. (To appear, 1986.)Google Scholar
  6. [4.4]
    Cole, J. D.: Perturbation Methods in Applied Mathematics. Blaisdell 1968.Google Scholar
  7. [4.5]
    De Hoog, F. R., Weiss, R.: An Approximation Method for Boundary Value Problems on Infinite Intervals. Computing 24, 227–239 (1980).CrossRefGoogle Scholar
  8. [4.6]
    Eckhaus, W.: Asymptotic Analysis of Singular Perturbations. Amsterdam—New York—Oxford: North-Holland 1979.Google Scholar
  9. [4.7]
    Fife, P. C.: Semilinear Elliptic Boundary Value Problems with Small Parameters. Arch. Rational Mech. 52, 205–232 (1974).Google Scholar
  10. [4.8]
    Franz, A. F., Franz, G. A., Selberherr, S., Ringhofer, C., Markowich, P. A.: Finite Boxes: A Generalisation of the Finite Difference Method Suitable for Semiconductor Device Simulation. IEEE Transactions on Electron Devices. ED-30, No. 9, 1070–1083 (1983).CrossRefGoogle Scholar
  11. [4.8a]
    Golub, G. H., Van Loan, C. F.: Matrix Computations. Baltimore, Johns Hopkins University Press 1983.Google Scholar
  12. [4.9]
    Howes, F. A.: Boundary-Interior Layer Interactions in Nonlinear Singular Perturbation Theory. Memoirs of the AMS 15, No. 203 (1978).Google Scholar
  13. [4.10]
    Howes, F. A.: Robin and Neumann Problems for a Class of Singularly Perturbed Semilinear Elliptic Equations. J. of Differential Equations 34, 55–73 1979.CrossRefGoogle Scholar
  14. [4.11]
    Ladyshenskaja, O. A., Uraltseva, N. N.: Linear and Quasilinear Elliptic Equations. New York: Academic Press 1968.Google Scholar
  15. [4.12]
    Lin, C. C., Segel, L. A.: Mathematics Applied to Deterministic Problems in the Natural Sciences. New York: Macmillan 1974.Google Scholar
  16. [4.13]
    O’Malley, R. E., jr.: Introduction to Singular Perturbations. New York: Academic Press 1974.Google Scholar
  17. [4.14]
    Markowich, P. A.: Analysis of Boundary Value Problems on Infinite Intervals. SIAM J. Math. Anal. 14, 11–37 (1983).Google Scholar
  18. [4.15]
    Markowich, P. A.: A Theory for the Approximation of Solutions of Boundary Value Problems on Infinite Intervals. SIAM J. Math. Anal. 13, No. 3, 484–513 (1982).Google Scholar
  19. [4.16]
    Markowich, P. A., Ringhofer, C. A.: A Singularly Perturbed Boundary Value Problem Modelling a Semiconductor Device. SIAM J. Appl. Math. 44, No. 2, 231–256 (1984).Google Scholar
  20. [4.16a]
    Markowich, P. A., Ringhofer, C. A., Steindl, A.: Computation of Current-Voltage Characteristics in a Semiconductor Device using Arc-Length Continuation. IMA J. Appl. Math. 33, 175–187 (1984).Google Scholar
  21. [4.17]
    Markowich, P. A., Ringhofer, C. A., Selberherr, S., Langer, E.: An Asymptotic Analysis of Single Junction Semiconductor Devices. MRC—TSR 2527, Math. Res. Center, University of Wisconsin—Madison, U.S.A., 1983.Google Scholar
  22. [4.18]
    Markowich, P. A.: A Singular Perturbation Analysis of the Fundamental Semiconductor Device Equations. SIAM J. Appl. Math. 5, No. 44, 896–928 (1984).Google Scholar
  23. [4.19]
    Markowich, P. A.: A Qualitative Analysis of the Fundamental Semiconductor Device Equations. COMPEL 2, No. 3, 97–115 (1983).CrossRefGoogle Scholar
  24. [4.20]
    Markowich, P. A., Ringhofer, C. A., Selberherr, S., Lentini, M.: A Singular Perturbation Approach for the Analysis of the Fundamental Semiconductor Equations. IEEE Transactions on Electron Devices. ED-30, No. 9, 1165–1181 (1983).Google Scholar
  25. [4.21]
    Markowich, P. A., Schmeiser, C.: Asymptotic Representation of Solutions of the Basic Semiconductor Device Equations. MRC—TSR 2772, Math. Res. Center, University of Wisconsin—Madison, U.S.A., 1985.Google Scholar
  26. [4.22]
    Markowich, P. A., Schmeiser, C.: A Singular Perturbation Analysis of One-Dimensional Semiconductor Device Models with Velocity Saturation Effects. Report, Institut für Angewandte and Numerische Mathematik, Technische Universität Wien, Austria, 1985.Google Scholar
  27. [4.23]
    Please, C. P.: An Analysis of Semiconductor P—N Junctions. IMA J. of Appl. Math. 28, 301–318 (1982).Google Scholar
  28. [4.23a]
    Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations. Englewood Cliffs, N. J.: Prentice-Hall 1967.Google Scholar
  29. [4.24]
    Schmeiser, C., Weiss, R.: Asymptotic Analysis of Singular Singularly Perturbed Boundary Value Problems. SIAM J. Math. Anal. (1985).Google Scholar
  30. [4.24a]
    Schmeiser, C., Selberherr, S., Weiss, R.: On Scaling and Norms for Semiconductor Device Simulation. In: Proc. NASECODE IV Conference. Dublin: Boole Press 1985.Google Scholar
  31. [4.25]
    Selberherr, S.: Two Dimensional Modeling of MOS-Transistors. Published by Semicon- ductor Physics, Inc., 639 Meadow Grove Place, Escondido, Cal., U.S.A., 1982.Google Scholar
  32. [4.26]
    Selberherr, S., Ringhofer, C. A.: Implications of Analytical Investigations about the Semiconductor Equations on Device Modeling Programs. IEEE Transactions on Computer Aided Design. CAD-3, No. 1, 52–64 (1984).Google Scholar
  33. [4.27]
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Wien—New York: Springer 1984.CrossRefGoogle Scholar
  34. [4.28]
    Smith, D.: On a Singularly Perturbed Boundary Value Problem Arising in the Physical Theory of Semiconductors. Report, Institut für Mathematik and Informatik, Technische Universität München, München, FRG, 1980.Google Scholar
  35. [4.29]
    Sze, S. M.: Physics of Semiconductor Devices, 2nd ed. Cambridge—New York: WileyInterscience 1981.Google Scholar
  36. [4.30]
    Vasileva, A. B., Butuzov, V. F.: Singularly Perturbed Equations in the Critical Case. MRC—TSR 2039, Math. Res. Center, University of Wisconsin—Madison, U.S.A., 1980.Google Scholar
  37. [4.31]
    Vasileva, A. B., Stelmakh, V. G.: Singularly Disturbed Systems of the Theory of Semiconductor Devices. USSR Comput. Math. Phys. 17, 48–58 (1977).Google Scholar

Copyright information

© Springer-Verlag Wien 1986

Authors and Affiliations

  • Peter A. Markowich
    • 1
  1. 1.Institut für Angewandte und Numerische MathematikTechnische Universität WienViennaAustria

Personalised recommendations