Skip to main content

Analysis of the Basic Stationary Semiconductor Device Equations

  • Chapter

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

In this chapter we present existence, regularity, uniqueness and continuous-dependence-on-data results for the basic semiconductor device equations in the stationary case. The analysis will heavily rely on the modern abstract theory of elliptic differential equations and on functional analysis. The results on elliptic boundary value problems, which we shall use in the sequel, can be found in the references [3.7], [3.10], [3.14], [3.20], [3.32], the concepts from functional analysis in [3.5], [3.6], [3.10], [3.13], [3.21], [3.32] and the theory of Sobolev spaces in [3.1]. A list of notations is compiled in the Appendix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. A.: Sobolev Spaces. New York—San Francisco—London: Academic Press 1975.

    Google Scholar 

  2. Bank, R. E., Rose, D. J., Fichtner, W.: Numerical Methods for Semiconductor Device Simulation. IEEE Transactions on Electron Devices ED-30, No. 9, 1031–1041 (1983).

    Article  Google Scholar 

  3. Bank, R. E., Jerome, J. W., Rose, D. J.: Analytical and Numerical Aspects of Semiconductor Modelling. Report 82–11274–2, Bell Laboratories, 1982.

    Google Scholar 

  4. Bers, L., John, F., Scheckter, M.: Partial Differential Equations, American Mathematical Society. New York: J. Wiley 1964.

    Google Scholar 

  5. Chow, S. N., Hale, J. K.: Methods of Bifurcation Theory. New York—Heidelberg—Berlin: Springer 1982.

    Book  Google Scholar 

  6. Fichera, G.: Linear Elliptic Differential Systems and Eigenvalue Problems. (Lecture Notes in Mathematics, Vol. 8.) Berlin—Heidelberg—New York: Springer 1965.

    Google Scholar 

  7. Franz, G. A., Franz, A. F., Selberherr, S., Ringhofer, C., Markowich, P. A.: Current Crowding Effects in Thyristors — A Two-Dimensional Numerical Analysis. Report, Institut für Allgemeine Elektrotechnik, Technische Universität Wien, Austria, 1984.

    Google Scholar 

  8. Gajewski, H.: On the Existence of Steady-State Carrier Distributions in Semiconductors. ZAMM, Vol. 65, pp. 101–108, 1985.

    Article  Google Scholar 

  9. Gajewski, H.: On Uniqueness and Stability of Steady-State Carrier Distributions in Semiconductors. (To appear in Proc. Equadiff. Conf. 1985.) Berlin—Heidelberg—New York: Springer 1985.

    Google Scholar 

  10. Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, 2nd ed. Berlin—Heidelberg—New York: Springer 1984.

    Google Scholar 

  11. Gummel, H. K.: A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations. IEEE Transactions on Electron Devices ED-11, 455–465 (1964).

    Google Scholar 

  12. 11a]Jerome, J. W.: Consistency of Semiconductor Modeling: An Existence/Stability Analysis for the Stationary Van Roosbrook System. SIAM J. Appl. Math. 45, 565–590 (1985).

    Google Scholar 

  13. Kawohl, B.: Über nichtlineare gemischte Randwertprobleme für elliptische Differentialgleichungen zweiter Ordnung auf Gebieten mit Ecken. Dissertation, TH Darmstadt, BRD, 1978.

    Google Scholar 

  14. 12a]Kerkhoven, T.: On the Dependence of the Convergence of Gummel’s Algorithm on the Regularity of the Solutions. Research Report YALEU/DCS/RR-366, Yale University, Department of Computer Science, U.S.A., 1985.

    Google Scholar 

  15. Krasnoselskii, M. A., Zabreiko, P. P.: Geometrical Methods of Nonlinear Analysis. Berlin—Heidelberg—New York: Springer 1984.

    Book  Google Scholar 

  16. Ladyzhenskaja, O. A., Uraltseva, N. N.: Linear and Quasilinear Elliptic Equations. New York: Academic Press 1968.

    Google Scholar 

  17. Markowich, P. A.: A Singular Perturbation Analysis of the Fundamental Semiconductor Device Equations. SIAM J. Appl. Math. 5, No. 44, 896–928 (1985).

    Google Scholar 

  18. Markowich, P. A.: A Nonlinear Eigenvalue Problem Modelling the Avalanche Effect in Semiconductor Diodes. SIAM J. Math. Anal. (1985).

    Google Scholar 

  19. Mock, M. S.: On Equations Describing Steady State Carrier Distributions in a Semiconductor Device. Comm. Pure and Appl. Math. 25, 781–792 (1972).

    Google Scholar 

  20. Mock, M. S.: An Example of Nonuniqueness of Stationary Solutions in Semiconductor Device Models. COMPEL 1, 165–174 (1982).

    Article  Google Scholar 

  21. Mock, M. S.: Analysis of Mathematical Models of Semiconductor Devices. Dublin: Boole Press 1983.

    Google Scholar 

  22. 19a]Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York—London: Academic Press 1970.

    Google Scholar 

  23. Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations. Englewood Cliffs, N. J.: Prentice-Hall 1967.

    Google Scholar 

  24. Rabinowitz, P. H.: Some Global Results for Nonlinear Eigenvalue Problems. Functional Analysis, 7, 487–513 (1971).

    Article  Google Scholar 

  25. Rabinowitz, P. H.: A Global Theorem for Nonlinear Eigenvalue Problems and Applications. In: Contributions to Nonlinear Functional Analysis ( Zarantonello, E. H., ed.). New York—London: Academic Press 1974.

    Google Scholar 

  26. Seidmann, T. I.: Steady State Solutions of Diffusion-Reaction Systems with Electrostatic Convection. Nonlinear Analysis 4, No. 3, 623–637 (1980).

    Article  Google Scholar 

  27. Seidmann, T. I., Troianello, G. M.: Time Dependent Solutions of a Nonlinear System Arising in Semiconductor Theory. Nonlinear Analysis (1985).

    Google Scholar 

  28. ] Seidmann, T. I.: Time Dependent Solutions of a Nonlinear System Arising in Semiconductor Theory II: Boundedness and Periodicity. (To appear, 1985.)

    Google Scholar 

  29. Seidmann, T. I., Choo, S. C.: Iterative Schemes for Computer Simulation of Semiconductor Devices. Solid-State Electronics, 15, 1229–1235 (1972).

    Article  Google Scholar 

  30. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Wien—New York: Springer 1984.

    Book  Google Scholar 

  31. Sze, M. S.: Physics of Semiconductor Devices. New York: J. Wiley 1981.

    Google Scholar 

  32. Watanabe, D. S., Sheikh, Q. M., Slamet, S.: Convergence of Quasi-Newton Methods for Semiconductor Equations. Report, Department of Comp. Science, University of Illinois, Urbana, Illinois, U.S.A., 1984.

    Google Scholar 

  33. Wigley, N. M.: Mixed Boundary Value Problems in Plane Domains with Corners. Math. Z. 115, 33–52 (1970).

    Article  Google Scholar 

  34. Wigley, N. M.: Asymptotic Expansions at a Corner of Solutions of Mixed Boundary Value Problems. Mathematics and Mechanics 13, No. 4, 549–576 (1964).

    Google Scholar 

  35. Wloka, J.: Partielle Differentialgleichungen. Stuttgart: Teubner 1982.

    Book  Google Scholar 

  36. Zarantonello, E. H.: Solving Functional Equations by Contractive Averaging. MRC—TSR 160, Math. Res. Center, University of Wisconsin-Madison, U.S.A., 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Wien

About this chapter

Cite this chapter

Markowich, P.A. (1986). Analysis of the Basic Stationary Semiconductor Device Equations. In: The Stationary Semiconductor Device Equations. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3678-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3678-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99937-0

  • Online ISBN: 978-3-7091-3678-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics