Analysis of the Basic Stationary Semiconductor Device Equations

  • Peter A. Markowich
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In this chapter we present existence, regularity, uniqueness and continuous-dependence-on-data results for the basic semiconductor device equations in the stationary case. The analysis will heavily rely on the modern abstract theory of elliptic differential equations and on functional analysis. The results on elliptic boundary value problems, which we shall use in the sequel, can be found in the references [3.7], [3.10], [3.14], [3.20], [3.32], the concepts from functional analysis in [3.5], [3.6], [3.10], [3.13], [3.21], [3.32] and the theory of Sobolev spaces in [3.1]. A list of notations is compiled in the Appendix.


Weak Solution Equilibrium Solution Semiconductor Device Implicit Function Theorem Iteration Scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [3.1]
    Adams, R. A.: Sobolev Spaces. New York—San Francisco—London: Academic Press 1975.Google Scholar
  2. [3.2]
    Bank, R. E., Rose, D. J., Fichtner, W.: Numerical Methods for Semiconductor Device Simulation. IEEE Transactions on Electron Devices ED-30, No. 9, 1031–1041 (1983).CrossRefGoogle Scholar
  3. [3.3]
    Bank, R. E., Jerome, J. W., Rose, D. J.: Analytical and Numerical Aspects of Semiconductor Modelling. Report 82–11274–2, Bell Laboratories, 1982.Google Scholar
  4. [3.4]
    Bers, L., John, F., Scheckter, M.: Partial Differential Equations, American Mathematical Society. New York: J. Wiley 1964.Google Scholar
  5. [3.5]
    Chow, S. N., Hale, J. K.: Methods of Bifurcation Theory. New York—Heidelberg—Berlin: Springer 1982.CrossRefGoogle Scholar
  6. [3.6] Dunford, N., Schwartz, J. T.: Linear Operators, Part 1. New York: J. Wiley 1957. [3.7]
    Fichera, G.: Linear Elliptic Differential Systems and Eigenvalue Problems. (Lecture Notes in Mathematics, Vol. 8.) Berlin—Heidelberg—New York: Springer 1965.Google Scholar
  7. [3.8]
    Franz, G. A., Franz, A. F., Selberherr, S., Ringhofer, C., Markowich, P. A.: Current Crowding Effects in Thyristors — A Two-Dimensional Numerical Analysis. Report, Institut für Allgemeine Elektrotechnik, Technische Universität Wien, Austria, 1984.Google Scholar
  8. [3.9]
    Gajewski, H.: On the Existence of Steady-State Carrier Distributions in Semiconductors. ZAMM, Vol. 65, pp. 101–108, 1985.CrossRefGoogle Scholar
  9. [3.9a]
    Gajewski, H.: On Uniqueness and Stability of Steady-State Carrier Distributions in Semiconductors. (To appear in Proc. Equadiff. Conf. 1985.) Berlin—Heidelberg—New York: Springer 1985.Google Scholar
  10. [3.10]
    Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, 2nd ed. Berlin—Heidelberg—New York: Springer 1984.Google Scholar
  11. [3.11]
    Gummel, H. K.: A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations. IEEE Transactions on Electron Devices ED-11, 455–465 (1964).Google Scholar
  12. 11a]Jerome, J. W.: Consistency of Semiconductor Modeling: An Existence/Stability Analysis for the Stationary Van Roosbrook System. SIAM J. Appl. Math. 45, 565–590 (1985).Google Scholar
  13. [3.12]
    Kawohl, B.: Über nichtlineare gemischte Randwertprobleme für elliptische Differentialgleichungen zweiter Ordnung auf Gebieten mit Ecken. Dissertation, TH Darmstadt, BRD, 1978.Google Scholar
  14. 12a]Kerkhoven, T.: On the Dependence of the Convergence of Gummel’s Algorithm on the Regularity of the Solutions. Research Report YALEU/DCS/RR-366, Yale University, Department of Computer Science, U.S.A., 1985.Google Scholar
  15. [3.13]
    Krasnoselskii, M. A., Zabreiko, P. P.: Geometrical Methods of Nonlinear Analysis. Berlin—Heidelberg—New York: Springer 1984.CrossRefGoogle Scholar
  16. [3.14]
    Ladyzhenskaja, O. A., Uraltseva, N. N.: Linear and Quasilinear Elliptic Equations. New York: Academic Press 1968.Google Scholar
  17. [3.15]
    Markowich, P. A.: A Singular Perturbation Analysis of the Fundamental Semiconductor Device Equations. SIAM J. Appl. Math. 5, No. 44, 896–928 (1985).Google Scholar
  18. [3.16]
    Markowich, P. A.: A Nonlinear Eigenvalue Problem Modelling the Avalanche Effect in Semiconductor Diodes. SIAM J. Math. Anal. (1985).Google Scholar
  19. [3.17]
    Mock, M. S.: On Equations Describing Steady State Carrier Distributions in a Semiconductor Device. Comm. Pure and Appl. Math. 25, 781–792 (1972).Google Scholar
  20. [3.18]
    Mock, M. S.: An Example of Nonuniqueness of Stationary Solutions in Semiconductor Device Models. COMPEL 1, 165–174 (1982).CrossRefGoogle Scholar
  21. [3.19]
    Mock, M. S.: Analysis of Mathematical Models of Semiconductor Devices. Dublin: Boole Press 1983.Google Scholar
  22. 19a]Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York—London: Academic Press 1970.Google Scholar
  23. [3.20]
    Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations. Englewood Cliffs, N. J.: Prentice-Hall 1967.Google Scholar
  24. [3.21]
    Rabinowitz, P. H.: Some Global Results for Nonlinear Eigenvalue Problems. Functional Analysis, 7, 487–513 (1971).CrossRefGoogle Scholar
  25. [3.22]
    Rabinowitz, P. H.: A Global Theorem for Nonlinear Eigenvalue Problems and Applications. In: Contributions to Nonlinear Functional Analysis ( Zarantonello, E. H., ed.). New York—London: Academic Press 1974.Google Scholar
  26. [3.23]
    Seidmann, T. I.: Steady State Solutions of Diffusion-Reaction Systems with Electrostatic Convection. Nonlinear Analysis 4, No. 3, 623–637 (1980).CrossRefGoogle Scholar
  27. [3.24]
    Seidmann, T. I., Troianello, G. M.: Time Dependent Solutions of a Nonlinear System Arising in Semiconductor Theory. Nonlinear Analysis (1985).Google Scholar
  28. [3.
    ] Seidmann, T. I.: Time Dependent Solutions of a Nonlinear System Arising in Semiconductor Theory II: Boundedness and Periodicity. (To appear, 1985.)Google Scholar
  29. [3.26]
    Seidmann, T. I., Choo, S. C.: Iterative Schemes for Computer Simulation of Semiconductor Devices. Solid-State Electronics, 15, 1229–1235 (1972).CrossRefGoogle Scholar
  30. [3.27]
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Wien—New York: Springer 1984.CrossRefGoogle Scholar
  31. [3.28]
    Sze, M. S.: Physics of Semiconductor Devices. New York: J. Wiley 1981.Google Scholar
  32. [3.29]
    Watanabe, D. S., Sheikh, Q. M., Slamet, S.: Convergence of Quasi-Newton Methods for Semiconductor Equations. Report, Department of Comp. Science, University of Illinois, Urbana, Illinois, U.S.A., 1984.Google Scholar
  33. [3.30]
    Wigley, N. M.: Mixed Boundary Value Problems in Plane Domains with Corners. Math. Z. 115, 33–52 (1970).CrossRefGoogle Scholar
  34. [3.31]
    Wigley, N. M.: Asymptotic Expansions at a Corner of Solutions of Mixed Boundary Value Problems. Mathematics and Mechanics 13, No. 4, 549–576 (1964).Google Scholar
  35. [3.32]
    Wloka, J.: Partielle Differentialgleichungen. Stuttgart: Teubner 1982.CrossRefGoogle Scholar
  36. [3.33]
    Zarantonello, E. H.: Solving Functional Equations by Contractive Averaging. MRC—TSR 160, Math. Res. Center, University of Wisconsin-Madison, U.S.A., 1960.Google Scholar

Copyright information

© Springer-Verlag Wien 1986

Authors and Affiliations

  • Peter A. Markowich
    • 1
  1. 1.Institut für Angewandte und Numerische MathematikTechnische Universität WienViennaAustria

Personalised recommendations