Elements of the Mathematical Theory of Linear Programming

  • Sven Danø


The general problem of linear programming can be formulated as follows: Find a set of numbers x1, x2,.., x n which satisfy a system of linear equations (side conditions)
$${a_{11}}{x_1} + {a_{12}}{x_2} + .... + {a_{1n}}{x_n} = {b_1}\;{a_{21}}{x_1} + {a_{22}}{x_2} + .... + {a_{2n}}{x_n} = {b_2}\;....\;{a_{m1}}{x_1} + {a_{m2}}{x_2} + ....{a_{mn}}{x_n} = {b_m}$$
and a set of sign restrictions (non-negativity requirements)
$$ {x_1} \geqslant 0,{x_2} \geqslant 0,...,{x_n} \geqslant 0 $$
and for which the linear function
$$ f = {c_1}{x_1} + {c_2}{x_2} + .... + {c_n}{x_n} $$
has a maximum.


Feasible Solution Basic Solution Linear Programming Problem Preference Function Fundamental Theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Wien 1965

Authors and Affiliations

  • Sven Danø
    • 1
  1. 1.University of CopenhagenCopenhagenDenmark

Personalised recommendations