Morphology of the cerebral cortex in relation to Alzheimer’s dementia

  • H. Braak
  • E. Braak
Part of the Key Topics in Brain Research book series (KEYTOPICS)


The hallmarks of Alzheimer’s disease are extracellular amyloid deposits and intraneuronal neurofibrillary changes. The distribution pattern of amyloid is different from that of neurofibrillary changes. Plaque-like deposits of amyloid should carefully be distinguished from the well known neuritic plaques. The brunt of the cortical pathology is borne by the entorhinal region, the hippocampal formation, and the isocortical association areas. The early occurring destruction of the entorhinal cortex disrupts the transport of information from isocortical association areas to the hippocampal formation.


Entorhinal Cortex Neurofibrillary Tangle Amyloid Plaque Hippocampal Formation Neuritic Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braak H (1980) Architectonics of the human telencephalic cortex. In: Braitenberg V, Barlow HB, Bizzi E, Florey E, Grösser OJ, van der Loos H (eds) Studies of brain function, vol 4. Springer, Berlin Heidelberg New York, pp 1–147Google Scholar
  2. Braak H (1984) Architectonics as seen by lipofuscin stains. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 59–104Google Scholar
  3. Braak H, Braak E (1985) On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol 68: 325–332PubMedCrossRefGoogle Scholar
  4. Braak H, Braak E ( 1988 a) Morphology of the human isocortex in young and aged individuals• qualitative and quantitative findings. In: von Hahn HP (ed) Interdisciplinary topics in gerontology, vol 25. Karger, Basel, pp 1–15Google Scholar
  5. Braak H, Braak E (1988 b) Neuropil threads occur in dendrites of tangle-bearing nerve cells. Neuropathol Appl Neurobiol 14: 39–44PubMedCrossRefGoogle Scholar
  6. Braak H, Braak E, Grundke-Iqbal I, Iqbal K (1986) Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci Lett 65: 351–355PubMedCrossRefGoogle Scholar
  7. Braak H, Braak E, Kalus P (1989) Alzheimer’s disease: areal and laminar pathology in the occipital isocortex. Acta Neuropathol 77: 494–506PubMedCrossRefGoogle Scholar
  8. Brun A (1983) An overview of light and electron microscopic changes. In: Reisberg B (ed) Alzheimer’s disease. The standard reference. Free Press, New York, pp 37–47Google Scholar
  9. Brun A, Gustafson L (1976) Distribution of cerebral degeneration of Alzheimer’s disease. Arch Psychiat Nervenkr 223: 15–33PubMedCrossRefGoogle Scholar
  10. Campbell SK, Switzer RC, Martin TL (1987) Alzheimer’s plaques and tangles: a controlled and enhanced silver-staining method. Soc Neurosci Abstr 13: 678Google Scholar
  11. Gallyas F, Wolff JR (1986) Metal-catalyzed oxidation renders silver intensification selective. Applications for the histochemistry of diaminobenzidine and neurofibrillary changes. J Histochem Cytochem 34: 1667–1672PubMedCrossRefGoogle Scholar
  12. Hyman BT, van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168 –1170Google Scholar
  13. Hyman BT, van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472–481PubMedCrossRefGoogle Scholar
  14. Mann DMA (1985) The neuropathology of Alzheimer’s disease: a review with pathogenetic, aetiological and therapeutic considerations. Mech Ageing Dev 31: 213–255PubMedCrossRefGoogle Scholar
  15. Price DL (1986) New perspectives of Alzheimer’s disease. Ann Rev Neurosci 9: 489–512PubMedCrossRefGoogle Scholar
  16. Probst A, Ulrich J, Heitz PU (1982) Senile dementia of Alzheimer type: astroglial reaction to extracellular neurofibrillary tangles in the hippocampus. An immunocytochemical and electron-microscopic study. Acta Neuropathol 57:75 – 79PubMedCrossRefGoogle Scholar
  17. Stephan H (1975) Allocortex. In: Bargmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd 4/9. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Van Hoesen GW (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5: 345–350CrossRefGoogle Scholar
  19. Van Hoesen GW, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 175: 1471–1473PubMedCrossRefGoogle Scholar
  20. Von Braunmühl A (1957) Alterserkrankungen des Zentralnervensystems. Senile Involution. Senile Demenz. Alzheimersche Krankheit. In: Lubarsch O, Henke F, Rössle R (Hrsg) Handbuch der speziellen pathologischen Anatomie und Histologie, Bd 13/1A. Springer, Berlin, S 337–539Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • H. Braak
    • 1
  • E. Braak
    • 1
  1. 1.Zentrum der MorphologieJohann Wolfgang Goethe UniversitätFrankfurt/MainFederal Republic of Germany

Personalised recommendations