PET criteria for diagnosis of Alzheimer’s disease and other dementias

  • W.-D. Heiss
  • B. Szelies
  • R. Adams
  • J. Kessler
  • G. Pawlik
  • K. Herholz
Part of the Key Topics in Brain Research book series (KEYTOPICS)


At present, PET is the only technology affording the quantitative, three-dimensional imaging of various aspects of brain function. Since function and metabolism are coupled, and since glucose is the dominant substrate of the brain’s energy metabolism, studies of glucose metabolism by PET of 2(18F)-fluoro-2-deoxy-D-glucose (FDG) are widely applied for investigating the participation of various brain systems in simple or complex stimulations and tasks. In focal or diffuse disorders of the brain, functional impairment of affected or inactivated brain regions is a reproducible finding.

While glucose metabolism is decreased slightly with age in a regionally different degree, in most types of dementia severe changes of glucose metabolism are observed. Degenerative dementia of the Alzheimer type is characterized by a metabolic disturbance most prominent in the parieto-occipito-temporal association cortex and later in the frontal lobe, while primary cortical areas, basal ganglia, thalamus, brainstem and cerebellum are not affected. By this typical pattern Alzheimer disease can be differentiated from other dementia syndromes, as e. g., Pick’s disease (with the metabolic depression most prominent in the frontal and temporal lobe), multi infarct dementia (with multiple focal metabolic defects), Huntington’s chorea (with metabolic disturbance in the neostriatum) and other diseases leading to cognitive impairment with more or less typical metabolic patterns. A ratio calculated from CMRG1 of affected (temporo-parieto-occipital and frontal association cortex) and non-affected brain regions (primary cortical areas, brainstem, cerebellum) was able to separate clearly AD patients from age-matched controls and permitted discrimination of patients suffering from cognitive impairment of other origin in 82%. The discrimination power can be further improved by specific activitation studies. In demented patients PET can also be used to assess treatment effects on disturbed metabolism. Such studies demonstrated an equalization of metabolic heterogeneities in patients responding to muscarinergic cholinagonists and diffuse increase of metabolism during treatment with piracetam and phosphatidylserine. The therapeutic relevance of such metabolic effects, however, must be proved in controlled clinical trials.


Alzheimer Type Cereb Blood Flow Cerebral Glucose Metabolism Dementia Syndrome Degenerative Dementia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alavi A, Fazekas F, Chawluk J, Zimmerman R (1987) Magnetic resonance imaging of the brain in normal aging and dementia. In: Meyer JS, Lechner H, Reivich M, Ott EO (eds) Cerebral vascular disease 6. Excerpta Medica, Amsterdam New York Oxford, pp 191–195Google Scholar
  2. American Psychiatric Association (1980) Diagnostic and statistical manual of mental disorders, 3rd edn ( DSM-III ). Washington, DC, pp 124–126Google Scholar
  3. Baxter LR, Phelps ME, Mazziotta JC, et al (1987) Local cerebral glucose metabolic rates in obsessive-compulsive disorder — a comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry 44: 211–218PubMedCrossRefGoogle Scholar
  4. Coyle JT, Price DL, Delong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219: 1184–1190PubMedCrossRefGoogle Scholar
  5. Davies P, Maloney AJF (1976) Selective loss of control cholinergic neurons in Alzheimer’s disease. Lancet 11: 1403CrossRefGoogle Scholar
  6. Davis KL, Mohs RC, Tinklenberg JR, et al (1978) Physostigmine: improvement of long-term memory processes in normal humans Science 201: 272–274Google Scholar
  7. DeLeon MJ, Ferris SH, George AE, et al (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3: 391–394CrossRefGoogle Scholar
  8. Duara R, Grady C, Haxby J, et al (1986) Positron emission tomography in Alzheimer’s disease. Neurology 36: 879–887PubMedCrossRefGoogle Scholar
  9. Ferris SH, Reisberg B, Crook T, et al (1982) Pharmacologic treatment of senile dementia: choline, L-dopa, piracetam, and choline plus piracetam. In: Corkin S, et al (eds) Alzheimer’s disease: a report of progress. Raven Press, New York, pp 475–481 W.-D. Heiss et al.Google Scholar
  10. Foster NL, Chase TN, Fedio P, et al (1983) Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology (Cleveland) 33: 961–965CrossRefGoogle Scholar
  11. Frackowiak RSJ, Pozzilli C, Legg NJ, et al (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104: 753–778PubMedCrossRefGoogle Scholar
  12. Friedland RP, Budinger TF, Ganz E, et al (1983) Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with (18F)fluorodeoxyglucose. J Comput Assist Tomogr 7: 590–598PubMedCrossRefGoogle Scholar
  13. Gibbs JM, Frackowiak RSJ, Legg NJ (1986) Regional cerebral blood flow and oxygen metabolism in dementia due to vascular disease. Gerontology 32 [Suppl 11: 84–88CrossRefGoogle Scholar
  14. Hachinski VC, Iliff LD, Zilkha E, et al (1975) Cerebral blood flow in dementia. Arch Neurol 32: 632–637PubMedCrossRefGoogle Scholar
  15. Hayden MR, Hewitt J, Stoessl AJ, et al (1987) The combined use of positron emission tomography and DNA polymorphisms for preclinical detection of Huntington’s disease. Neurology 37: 1441–1447PubMedCrossRefGoogle Scholar
  16. Heiss WD, Hebold I, Klinkhammer P, et al (1988) Effect of piracetam on cerebral glucose metabolism in Alzheimer’s disease as measured by PET. J Cereb Blood Flow Metab 8: 613–617PubMedCrossRefGoogle Scholar
  17. Heiss WD, Herholz K, Böcher-Schwarz HG, et al (1986) PET, CT, and MR imaging in cerebrovascular disease. J Comput Assist Tomogr 10: 903–911PubMedCrossRefGoogle Scholar
  18. Heiss WD, Pawlik G, Herholz K, et al (1984) Regional kinetic constants and CMRGIu in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4: 212–223PubMedCrossRefGoogle Scholar
  19. Hollander E, Mohs RC, Davis KL (1986) Cholinergic approaches to the treatment of Alzheimer’s disease. Br Med Bull 42: 97–100PubMedGoogle Scholar
  20. Kamo H, MCGeer PL, Harrop R, et al (1987) Positron emission tomography and histopathology in Pick’s disease. Neurology 37: 439–445PubMedCrossRefGoogle Scholar
  21. Kessler J, Adams R, Herholz K, et al (1989) Impaired metabolic activation (FDG-PET) in patients with Alzheimer’s disease under stimulation by continuous recognition. Aging of the brain and dementia: ten years later. Symposium, Florenz, May 31— June 3, 1989Google Scholar
  22. Kuhl DE, Metter EJ, Benson DF, et al (1985) Similarities of cerebral glucose metabolism in Alzheimer’s and Parkinsonian dementia. J Cereb Blood Flow Metab 5 [Suppl 1]: S169 — S170Google Scholar
  23. Kuhl DE, Metter EJ, Riege WH, Markham CH (1984) Patterns of cerebral glucose utilization in Parkinson’s disease and Huntington’s disease. Ann Neurol 15 [Suppl]: S119 —S125Google Scholar
  24. Kuhl DE, Metter EJ, Riege WH, et al (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia, and Alzheimer’s disease. J Cereb Blood Flow Metab 3 [Suppl 1]: S494 — S495Google Scholar
  25. Kurz A, Rüster P, Romero B, Zimmer R (1986) Cholinerge Behandlungsstrategien bei der Alzheimer’schen Krankheit. Nervenarzt 57: 558–569PubMedGoogle Scholar
  26. Mazziotta JC, Phelps ME, Carson RE, Kuhl DE (1982) Tomographic mapping of human cerebral metabolism: sensory deprivation. Ann Neurol 12: 435–444PubMedCrossRefGoogle Scholar
  27. Mazziotta JC, Phelps ME, Pahl J. J, et al (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 316: 357–362PubMedCrossRefGoogle Scholar
  28. McKhann G, Folstein M, Katzman R, et al (1984) Clinical diagnosis of Alzheimer’s disease. Neurology 34: 939–944PubMedCrossRefGoogle Scholar
  29. Nahmias C, Garnett ES, Firnau G, Lang A (1985) Striatal dopamine distribution in Parkinsonian patients during life. J Neurol Sci 69: 223–230PubMedCrossRefGoogle Scholar
  30. Rossor MN, Emson PC, Mountjoy CQ, et al (1982) Neurotransmitters of the cerebral cortex in senile dementia of Alzheimer type. Exp Brain Res [Suppl 5]: 153–157Google Scholar
  31. Smith RC, Vroulis G, Johnson R, Morgan R (1984) Pharmacologic treatment of Alzheimer’s-type dementia: new approaches. Psychopharmacol Bull 20: 542 — 545Google Scholar
  32. Summers WK, Majovski LV, Marsh GM, et al (1986) Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer-type. N Engl J Med 315: 1241–1245PubMedCrossRefGoogle Scholar
  33. Szelies B, Herholz K, Pawlik G, et al (1986) Zerebraler Glukosestoffwechsel bei präseniler Demenz vom Alzheimer-Typ — Verlaufskontrolle unter Therapie mit muskarinergem Cholinagonisten. Fortschr Neurol Psychiatr 54: 364–373PubMedCrossRefGoogle Scholar
  34. Szelies B, Karenberg A (1986) Störungen des Glukosestoffwechsels bei Pick’scher Erkrankung. Fortschr Neurol Psychiatr 54: 393–397PubMedCrossRefGoogle Scholar
  35. Szelies B, Wullen T, Adams R, et al (1989) Comparison between cerebral glucose metabolism and late evoked potentials in patients with Alzheimer’s disease. International Symposium on Alzheimer’s disease, Würzburg, June 21–24, 1989Google Scholar
  36. Terry RD, Peck A, De Teresa R, et al (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10: 184–192PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • W.-D. Heiss
    • 1
  • B. Szelies
    • 1
  • R. Adams
    • 1
  • J. Kessler
    • 1
  • G. Pawlik
    • 1
  • K. Herholz
    • 1
  1. 1.Universitätsklinik für NeurologieMax-Planck-Institut für Neurologische ForschungCologneFederal Republic of Germany

Personalised recommendations