Skip to main content

PET criteria for diagnosis of Alzheimer’s disease and other dementias

  • Chapter

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

Summary

At present, PET is the only technology affording the quantitative, three-dimensional imaging of various aspects of brain function. Since function and metabolism are coupled, and since glucose is the dominant substrate of the brain’s energy metabolism, studies of glucose metabolism by PET of 2(18F)-fluoro-2-deoxy-D-glucose (FDG) are widely applied for investigating the participation of various brain systems in simple or complex stimulations and tasks. In focal or diffuse disorders of the brain, functional impairment of affected or inactivated brain regions is a reproducible finding.

While glucose metabolism is decreased slightly with age in a regionally different degree, in most types of dementia severe changes of glucose metabolism are observed. Degenerative dementia of the Alzheimer type is characterized by a metabolic disturbance most prominent in the parieto-occipito-temporal association cortex and later in the frontal lobe, while primary cortical areas, basal ganglia, thalamus, brainstem and cerebellum are not affected. By this typical pattern Alzheimer disease can be differentiated from other dementia syndromes, as e. g., Pick’s disease (with the metabolic depression most prominent in the frontal and temporal lobe), multi infarct dementia (with multiple focal metabolic defects), Huntington’s chorea (with metabolic disturbance in the neostriatum) and other diseases leading to cognitive impairment with more or less typical metabolic patterns. A ratio calculated from CMRG1 of affected (temporo-parieto-occipital and frontal association cortex) and non-affected brain regions (primary cortical areas, brainstem, cerebellum) was able to separate clearly AD patients from age-matched controls and permitted discrimination of patients suffering from cognitive impairment of other origin in 82%. The discrimination power can be further improved by specific activitation studies. In demented patients PET can also be used to assess treatment effects on disturbed metabolism. Such studies demonstrated an equalization of metabolic heterogeneities in patients responding to muscarinergic cholinagonists and diffuse increase of metabolism during treatment with piracetam and phosphatidylserine. The therapeutic relevance of such metabolic effects, however, must be proved in controlled clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alavi A, Fazekas F, Chawluk J, Zimmerman R (1987) Magnetic resonance imaging of the brain in normal aging and dementia. In: Meyer JS, Lechner H, Reivich M, Ott EO (eds) Cerebral vascular disease 6. Excerpta Medica, Amsterdam New York Oxford, pp 191–195

    Google Scholar 

  • American Psychiatric Association (1980) Diagnostic and statistical manual of mental disorders, 3rd edn ( DSM-III ). Washington, DC, pp 124–126

    Google Scholar 

  • Baxter LR, Phelps ME, Mazziotta JC, et al (1987) Local cerebral glucose metabolic rates in obsessive-compulsive disorder — a comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry 44: 211–218

    Article  PubMed  Google Scholar 

  • Coyle JT, Price DL, Delong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219: 1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Maloney AJF (1976) Selective loss of control cholinergic neurons in Alzheimer’s disease. Lancet 11: 1403

    Article  Google Scholar 

  • Davis KL, Mohs RC, Tinklenberg JR, et al (1978) Physostigmine: improvement of long-term memory processes in normal humans Science 201: 272–274

    CAS  Google Scholar 

  • DeLeon MJ, Ferris SH, George AE, et al (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3: 391–394

    Article  CAS  Google Scholar 

  • Duara R, Grady C, Haxby J, et al (1986) Positron emission tomography in Alzheimer’s disease. Neurology 36: 879–887

    Article  PubMed  CAS  Google Scholar 

  • Ferris SH, Reisberg B, Crook T, et al (1982) Pharmacologic treatment of senile dementia: choline, L-dopa, piracetam, and choline plus piracetam. In: Corkin S, et al (eds) Alzheimer’s disease: a report of progress. Raven Press, New York, pp 475–481 W.-D. Heiss et al.

    Google Scholar 

  • Foster NL, Chase TN, Fedio P, et al (1983) Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology (Cleveland) 33: 961–965

    Article  CAS  Google Scholar 

  • Frackowiak RSJ, Pozzilli C, Legg NJ, et al (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104: 753–778

    Article  PubMed  CAS  Google Scholar 

  • Friedland RP, Budinger TF, Ganz E, et al (1983) Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with (18F)fluorodeoxyglucose. J Comput Assist Tomogr 7: 590–598

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JM, Frackowiak RSJ, Legg NJ (1986) Regional cerebral blood flow and oxygen metabolism in dementia due to vascular disease. Gerontology 32 [Suppl 11: 84–88

    Article  Google Scholar 

  • Hachinski VC, Iliff LD, Zilkha E, et al (1975) Cerebral blood flow in dementia. Arch Neurol 32: 632–637

    Article  PubMed  CAS  Google Scholar 

  • Hayden MR, Hewitt J, Stoessl AJ, et al (1987) The combined use of positron emission tomography and DNA polymorphisms for preclinical detection of Huntington’s disease. Neurology 37: 1441–1447

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Hebold I, Klinkhammer P, et al (1988) Effect of piracetam on cerebral glucose metabolism in Alzheimer’s disease as measured by PET. J Cereb Blood Flow Metab 8: 613–617

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Herholz K, Böcher-Schwarz HG, et al (1986) PET, CT, and MR imaging in cerebrovascular disease. J Comput Assist Tomogr 10: 903–911

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Pawlik G, Herholz K, et al (1984) Regional kinetic constants and CMRGIu in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4: 212–223

    Article  PubMed  CAS  Google Scholar 

  • Hollander E, Mohs RC, Davis KL (1986) Cholinergic approaches to the treatment of Alzheimer’s disease. Br Med Bull 42: 97–100

    PubMed  CAS  Google Scholar 

  • Kamo H, MCGeer PL, Harrop R, et al (1987) Positron emission tomography and histopathology in Pick’s disease. Neurology 37: 439–445

    Article  PubMed  CAS  Google Scholar 

  • Kessler J, Adams R, Herholz K, et al (1989) Impaired metabolic activation (FDG-PET) in patients with Alzheimer’s disease under stimulation by continuous recognition. Aging of the brain and dementia: ten years later. Symposium, Florenz, May 31— June 3, 1989

    Google Scholar 

  • Kuhl DE, Metter EJ, Benson DF, et al (1985) Similarities of cerebral glucose metabolism in Alzheimer’s and Parkinsonian dementia. J Cereb Blood Flow Metab 5 [Suppl 1]: S169 — S170

    Google Scholar 

  • Kuhl DE, Metter EJ, Riege WH, Markham CH (1984) Patterns of cerebral glucose utilization in Parkinson’s disease and Huntington’s disease. Ann Neurol 15 [Suppl]: S119 —S125

    Google Scholar 

  • Kuhl DE, Metter EJ, Riege WH, et al (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia, and Alzheimer’s disease. J Cereb Blood Flow Metab 3 [Suppl 1]: S494 — S495

    Google Scholar 

  • Kurz A, Rüster P, Romero B, Zimmer R (1986) Cholinerge Behandlungsstrategien bei der Alzheimer’schen Krankheit. Nervenarzt 57: 558–569

    PubMed  CAS  Google Scholar 

  • Mazziotta JC, Phelps ME, Carson RE, Kuhl DE (1982) Tomographic mapping of human cerebral metabolism: sensory deprivation. Ann Neurol 12: 435–444

    Article  PubMed  CAS  Google Scholar 

  • Mazziotta JC, Phelps ME, Pahl J. J, et al (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 316: 357–362

    Article  PubMed  CAS  Google Scholar 

  • McKhann G, Folstein M, Katzman R, et al (1984) Clinical diagnosis of Alzheimer’s disease. Neurology 34: 939–944

    Article  PubMed  CAS  Google Scholar 

  • Nahmias C, Garnett ES, Firnau G, Lang A (1985) Striatal dopamine distribution in Parkinsonian patients during life. J Neurol Sci 69: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Rossor MN, Emson PC, Mountjoy CQ, et al (1982) Neurotransmitters of the cerebral cortex in senile dementia of Alzheimer type. Exp Brain Res [Suppl 5]: 153–157

    Google Scholar 

  • Smith RC, Vroulis G, Johnson R, Morgan R (1984) Pharmacologic treatment of Alzheimer’s-type dementia: new approaches. Psychopharmacol Bull 20: 542 — 545

    Google Scholar 

  • Summers WK, Majovski LV, Marsh GM, et al (1986) Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer-type. N Engl J Med 315: 1241–1245

    Article  PubMed  CAS  Google Scholar 

  • Szelies B, Herholz K, Pawlik G, et al (1986) Zerebraler Glukosestoffwechsel bei präseniler Demenz vom Alzheimer-Typ — Verlaufskontrolle unter Therapie mit muskarinergem Cholinagonisten. Fortschr Neurol Psychiatr 54: 364–373

    Article  PubMed  CAS  Google Scholar 

  • Szelies B, Karenberg A (1986) Störungen des Glukosestoffwechsels bei Pick’scher Erkrankung. Fortschr Neurol Psychiatr 54: 393–397

    Article  PubMed  CAS  Google Scholar 

  • Szelies B, Wullen T, Adams R, et al (1989) Comparison between cerebral glucose metabolism and late evoked potentials in patients with Alzheimer’s disease. International Symposium on Alzheimer’s disease, Würzburg, June 21–24, 1989

    Google Scholar 

  • Terry RD, Peck A, De Teresa R, et al (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10: 184–192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Wien

About this chapter

Cite this chapter

Heiss, WD., Szelies, B., Adams, R., Kessler, J., Pawlik, G., Herholz, K. (1990). PET criteria for diagnosis of Alzheimer’s disease and other dementias. In: Maurer, K., Riederer, P., Beckmann, H. (eds) Alzheimer’s Disease. Epidemiology, Neuropathology, Neurochemistry, and Clinics. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3396-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3396-5_54

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82197-8

  • Online ISBN: 978-3-7091-3396-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics