Advertisement

Regulation of EEG delta activity by the cholinergic nucleus basalis

  • P. J. Riekkinen
  • P. J. RiekkinenJr.
  • H. Soininen
  • K. J. Reinikainen
  • V. Laulumaa
  • V. S. J. Partanen
  • T. Halonen
  • L. Paljärvi
Part of the Key Topics in Brain Research book series (KEYTOPICS)

Summary

To study the relationship between cholinergic pathology and EEG deterioriation, spectral EEG and CSF neurotransmitter markers were examined in 23 probable AD patients. CSF acetylcholinesterase was correlated with delta power and alpha/delta ratio. In an autopsy study, cortical ChAT activity and the nucleus basalis cell number were lower and delta power higher in 4 demented patients than in 6 age-matched controls. In the group of demented patients, the lowest ChAT activities were associated with the highest delta power.

Keywords

High Pressure Liquid Chromatography Nucleus Basalis Demented Patient ChAT Activity Delta Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleyard ME, Smith AD, Berman P, Wilcock GK, Esiri MM, Neary D, Bowen DM (1987) Cholinesterase activities in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Brain 110: 1309–1322PubMedCrossRefGoogle Scholar
  2. Arendt T, Bigl V, Walther F, Sonntag M (1984) Decreased ratio of CSF acetyl-cholinesterase to butylcholinesterase activity in Alzheimer’s disease. Lancet 2: 173CrossRefGoogle Scholar
  3. Bird TD, Stranahan S, Sumi SM, Raskind M (1983) Alzheimer’s disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol 14: 284–293PubMedCrossRefGoogle Scholar
  4. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8: 4007–4026PubMedGoogle Scholar
  5. Coben LA, Danziger WL, Berg L (1983) Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type. Electroencephalogr Clin Neurophysiol 55: 372–380PubMedCrossRefGoogle Scholar
  6. Coben LA, Danziger WL, Storand M (1985) A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and 2.5 years. Electroencephalogr Clin Neurophysiol 61: 101–112PubMedCrossRefGoogle Scholar
  7. Davies P (1983) An update on the neurochemistry of Alzheimer’s disease. In: Mayeux R, Rosen WG (eds) The dementias. Raven Press, New York, pp 75–86Google Scholar
  8. Duffy FH, Albert MS, McAmilty G (1984) Brain electrical activity in patients with presenile and senile dementia of the Alzheimer type. Ann Neurol 16: 439–448PubMedCrossRefGoogle Scholar
  9. Ellman GL, Courtney DK, Anders V, Featherstone RM (1961) A new and rapid calorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88–95PubMedCrossRefGoogle Scholar
  10. Fonnum F (1975) A rapid radiochemical method of the determination of choline acetyltransferase. J Neurochem 24: 407–409PubMedCrossRefGoogle Scholar
  11. Greenfield SA (1984) Acetylcholinesterase may have novel functions in the brain. Trends Neurosci 7: 364–368CrossRefGoogle Scholar
  12. Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262: 105–124PubMedCrossRefGoogle Scholar
  13. Hughes CP, Berg L, Danzinger (1982) A new clinical scale for staging dementia. Br J Psychiatry 140: 566–572CrossRefGoogle Scholar
  14. Kaziak AW, Garron DC, Fox JH, Bergen D, Huckman M (1979) Cerebral atrophy, EEG slowing, age, education and cognitive functioning in suspected dementia. Neurology 29: 1273–1279Google Scholar
  15. Lindvall O, Björklund A, Nobin A, Stenevi U (1974) The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J Comp Neurol 154: 314–348CrossRefGoogle Scholar
  16. Mefford IN (1981) Application of high performance liquid chromatography with electrochemical detection to neurochemical analysis: measurements of chatecholamines, serotonin and metabolites in rat brain. J Neurosci Methods 3: 207–224PubMedCrossRefGoogle Scholar
  17. Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180: 417–438PubMedCrossRefGoogle Scholar
  18. Mölsä P, Säkö E, Paljärvi L, Rinne JO, Rinne UK (1987) Alzheimer’s disease: neuropathological correlates of cognitive and motor disorders. Acta Neurol Scand 75: 376–384PubMedCrossRefGoogle Scholar
  19. Palmer AM, Wilcock GK, Esiri MM, Francis PT, Bowen DM (1987) Monoaminergic innervation of the frontal and temporal lobes in Alzheimer’s disease. Brain Res 401: 231–238PubMedCrossRefGoogle Scholar
  20. Reinikainen K, Paljärvi L, Halonen T, Malminen O, Kosma VM, Laakso M, Riekkinen PJ (1988) Dopaminergic system and monoamine oxidase-B activity in Alzheimer’s disease. Neurobiol Aging 9: 245–252PubMedCrossRefGoogle Scholar
  21. Reinikainen KJ, Riekkinen PJ, Paljärvi L, Soininen H, Helkala EL, Jolkkonen J, Laakso M (1988) Cholinergic deficit in Alzheimer’s disease: a study based on CSF and autopsy data. Neurochem Res 13: 135–146PubMedCrossRefGoogle Scholar
  22. Riekkinen P Jr, Miettinen R, Rummukainen J, Pitkänen A, Paljärvi L, Riekkinen P (1990 a) The effects of lesioning the basal forebrain neurones on CSF ACNE activity. Neurosci Res 6: 37–43Google Scholar
  23. Riekkinen P Jr, Sirviö J, Riekkinen P (1990b) Relationship between cortical ChAT content and EEG delta power. Neurosci Res (in apress)Google Scholar
  24. Rinne JO, Paljärvi L, Rinne UK (1987) Neuronal size and density in the nucleus basalis of Meynert in Alzheimer’s disease. J Neurol Sci 79: 67–76PubMedCrossRefGoogle Scholar
  25. Rossor MN, Iversen LL (1986) Non-cholinergic neurotransmitter abnormalities in Alzheimer’s disease. Br Med Bull 42: 70–74PubMedGoogle Scholar
  26. Sirviö J (1989) The cholinergic system in aging and dementia. Academic Diss, University Printing Office, University of KuopioGoogle Scholar
  27. Soininen H, Partanen VJ, Helkala EL, Riekkinen PJ (1982) EEG findings in senile dementia and normal aging. Acta Neurol Scand 65: 59–70PubMedCrossRefGoogle Scholar
  28. Soininen H, Partanen J, Laulumaa V, Helkala EL, Laakso M, Riekkinen PJ (1989) Longitudinal EEG spectral analysis in early stage of Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 72: 290–297PubMedCrossRefGoogle Scholar
  29. Stewart D J, MacFabe DF, Vanderwolf CH (1984) Cholinergic activation of the electrocorticogram: role of substantia innominata and effects of atropine and quinnuclidinyl benzylate. Brain Res 322: 219–232PubMedCrossRefGoogle Scholar
  30. Vanderwolf CD (1975) Neocortical and hippocampal activation in relation to behavior. Effects of atropine, eserine, phenothiazines and amphetamine. J Comp Physiol Psychol 88: 300–323PubMedCrossRefGoogle Scholar
  31. Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122–126PubMedCrossRefGoogle Scholar
  32. Wikler A (1952) Pharmacologic dissociation on behavior and EEG sleep patterns in dogs: morphine, N-allylnormorphine and atropine. Proc Soc Exp Biol Med 79: 261–265PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • P. J. Riekkinen
    • 1
  • P. J. RiekkinenJr.
    • 2
  • H. Soininen
    • 2
  • K. J. Reinikainen
    • 2
  • V. Laulumaa
    • 2
  • V. S. J. Partanen
    • 3
  • T. Halonen
    • 2
  • L. Paljärvi
    • 4
  1. 1.Department of NeurologyUniversity of KuopioKuopioFinland
  2. 2.Department of NeurologyUniversity of KuopioKuopioFinland
  3. 3.Department of NeurophysiologyUniversity of KuopioKuopioFinland
  4. 4.Department of PathologyUniversity of KuopioKuopioFinland

Personalised recommendations