Advertisement

Neuroendocrine dysfunction in early-onset Alzheimer’s disease

  • K. P. Lesch
  • R. Ihl
  • L. Fröhlich
  • R. Rupprecht
  • U. Müller
  • H. M. Schulte
  • K. Maurer
Part of the Key Topics in Brain Research book series (KEYTOPICS)

Summary

To explore hypothalamic-pituitary-somatotropic (HPS) and -adrenal (HPA) system integrity in early-onset Alzheimer’s disease (AD) 10 drug-naive patients and matched controls received 50 µg GHRH at 9:00 and 100 µg CRH at 18:00 as an i.v. bolus dose. Compared with controls, patients with AD showed attenuated GHRH-induced GH responses and decreased ACTH but normal cortisol secretion following CRH. GH responses to GHRH were negatively correlated with the plasma insulin-like growth factor (IGF-I) concentrations and the severity of dementia. A positive correlation was found between GHRH-evoked GH release and ACTH responses to CRH. The results suggest a pathologic process at the level of the pituitary and/or hypothalamus possibly involving a cholinergic, monoaminergic, and/or peptidergic imbalance in AD and support the view that altered HPS and HPA secretory dynamics in AD are related to the underlying brain dysfunction.

Keywords

ACTH Response Basal Growth Hormone Neuroendocrine Dysfunction Blunt Growth Hormone Response Brain Electrical Activity Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balldin J, Gottfries CG, Karlsson I, et al (1983) Dexamethasone suppression test and serum prolactin in dementia disorders. Br J Psychiatry 143: 277–281PubMedCrossRefGoogle Scholar
  2. Bissette G, Reynolds GP, Kilts CD, Widerlöv E, Nemeroff CB (1985) Corticotropin-releasing factor-like immunoreactivity in senile dementia of the Alzheimer type. J Am Med Assoc 254: 3067–3069CrossRefGoogle Scholar
  3. Christie JE, Whalley L.J, Bennie J, Dick H, Blackburn IM, Fink G (1987) Characteristic plasma hormone changes in Alzheimer’s disease. Br J Psychiatry 150: 674–681PubMedCrossRefGoogle Scholar
  4. Davies P, Terry RD (1981) Reduced cortical somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and senile dementia of the Alzheimer type. Neurobiol Aging 2: 9–14PubMedCrossRefGoogle Scholar
  5. Davis BM, Levy MI, Rosenberg GS, Mathe A, Davis KL (1982) Relationship between growth hormone and cortisol and acetylcholine: a possible neuroendocrine strategy for assessing the cholinergic deficit. In: Corkin S, Davis KL, Growdon JH, Usdin E, Wurtman J (eds) Alzheimer’s disease: report of progress in research. Raven, New York, pp 9–14Google Scholar
  6. Davis KL, Davis BM, Greenwald BS, et al (1986) Cortisol and Alzheimer’s disease: basal studies. Am J Psychiatry 143: 300–305PubMedGoogle Scholar
  7. De Souza EB, Whitehouse PJ, Kuhar MJ, Price DL, Vale WW (1986) Reciprocal changes in corticotropin-releasing factor ( CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease. Nature 319: 593–595Google Scholar
  8. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–198Google Scholar
  9. Greenwald BS, Mohs RC, Davis KL (1983) Neurotransmitter deficits in Alzheimer’s disease: criteria for significance. J Am Geriatr Soc 31: 310–316PubMedGoogle Scholar
  10. Lesch KP, Müller U, Rupprecht R, Kruse K, Schulte HM (1989) Endocrine responses to growth hormone-releasing hormone, thyrotropin-releasing hormone and corticotropin-releasing hormone in depression. Acta Psychiatr Scand 79: 597–602PubMedCrossRefGoogle Scholar
  11. McKhann G, Drachman D, Folstein M, et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology (NY) 34: 485–490CrossRefGoogle Scholar
  12. Perry EK (1987) Cortical neurotransmitter chemistry in Alzheimer’s disease. In: Meltzer H (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 568–575Google Scholar
  13. Raskind M, Peskind E, Rivard MF, et al (1982) Dexamethasone suppression test and cortisol circadian rhythm in primary degenerative dementia. Am J Psychiatry 139:1468 —1471Google Scholar
  14. Reisberg B, London E, Ferris SH, Borenstein J, Scheier L, de Leon MJ (1983) The brief cognitive rating scale: language, motorie and mood, concomitants in primary degenerative dementia ( PDD ). Psychopharmacol Bull 19: 702–708Google Scholar
  15. Rossor MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M (1984) Neuro-chemical characteristics of early and late onset types of Alzheimer’s disease. Br Med J 288: 961–969CrossRefGoogle Scholar
  16. Thienhaus OJ, Zemlan FP, Bienenfeld D, Hartford JT, Bosmann HB (1987) Growth hormone response to edrophonium in Alzheimer’s disease. Am J Psychiatry 144: 1049–1059PubMedGoogle Scholar
  17. Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NPV (1982) Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31: 2073–2079PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • K. P. Lesch
    • 1
  • R. Ihl
    • 1
  • L. Fröhlich
    • 1
  • R. Rupprecht
    • 1
  • U. Müller
    • 1
  • H. M. Schulte
    • 2
  • K. Maurer
    • 1
  1. 1.Department of PsychiatryUniversity of WürzburgWürzburgGermany
  2. 2.Department of Medicine IUniversity of KielKielFederal Republic of Germany

Personalised recommendations