Cholinergic and monoaminergic neuromediator systems in DAT. Neuropathological and neurochemical findings

  • G. Moll
  • W. Gsell
  • I. Wichart
  • K. Jellinger
  • P. Riederer
Part of the Key Topics in Brain Research book series (KEYTOPICS)


The patterns of cholinergic (activity of choline acetyltransferase) and monoaminergic (concentrations of noradrenaline, dopamine, homovanillic acid, serotonin and 5-hydroxyindoleacetic acid) neuromediator systems were studied in postmortem tissue of the cortical lobes in each seven cases of patients with dementia of Alzheimer type (DAT) and controls. The findings show severe degenerations of neurons and deficits of neurotransmitters in all neuromediator systems. These results suggest that a substitutional therapy of only one neuromediator deficiency will not be clinically effective.


Locus Coeruleus Basal Forebrain Nucleus Raphe Dorsalis Choline Acetyltransferase Senile Dementia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolfsson R, Gottfries C-G, Roos BE, Winblad B (1979) Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br J Psychiatry 135: 216–223PubMedCrossRefGoogle Scholar
  2. Arai H, Kosaka K, Iizuka R (1984) Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J Neurochem 17: 388–393Google Scholar
  3. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol 61: 101–110PubMedCrossRefGoogle Scholar
  4. Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417PubMedCrossRefGoogle Scholar
  5. Bowen DM, Smith CP, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99: 459–496PubMedCrossRefGoogle Scholar
  6. Chui HC, Mortimer JA, Slager U, Zarrow C, Bondareff W, Webster DD (1986) Pathologic correlates of dementia in Parkinson’s disease. Arch Neurol 43: 991–995PubMedCrossRefGoogle Scholar
  7. Damasio AR, Graff-Radford NR, Eslinger PJ, Damasio H, Kassell N (1985)Google Scholar
  8. Amnesia following basal forebrain lesions. Arch Neurol 42:263–271 Davies P, Maloney AJ (1976) Selective loss of cholinergic neurons inGoogle Scholar
  9. Alzheimer’s disease. Lancet ii:1403Google Scholar
  10. Etienne P, Robitaille Y, Wood P, et al (1986) Nucleus basalis neuron loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer disease. Neuroscience 19: 1279–1291PubMedCrossRefGoogle Scholar
  11. Fonnum F (1975) A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24: 407–409PubMedCrossRefGoogle Scholar
  12. Gottfries C-G, Bartfai T, Carlsson A, Eckernaes SA, Svennerholm L (1986) Prog Neuropsychopharmacol Biol Psychiatry 10: 405–413PubMedCrossRefGoogle Scholar
  13. Grundy E (1983) Demography and old age. J Am Geriatr Soc 31:325–336 Ichimiya Y, Arai H, Iizuka R (1986) Morphological and biochemical changes inGoogle Scholar
  14. the cholinergic and monoaminergic system in Alzheimer-type dementia. ActaGoogle Scholar
  15. Neuropathol 70:12–116Google Scholar
  16. Jellinger K (1986) Overview of morphological changes in Parkinson’s disease. In: Yahr MD, Bergmann KJ (eds) Advances in neurology, vol 45. Raven Press, New York, pp 1–18Google Scholar
  17. Kay DWK, Bergmann K, Foster EM, McKechnie AG, Roth M (1970) Mental illness and hospital usage in the elderly: a random sample follow-up. Compr Psychiatry II: 26–35Google Scholar
  18. Khatchaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42:1097 —1105Google Scholar
  19. Mann DMA, Yates PO, Hawkes J (1982) The noradrenergic system in Alzheimer’s and multi-infarct dementias. J Neurol Neurosurg Psychiatry 45: 113–119PubMedCrossRefGoogle Scholar
  20. Mann DMA, Yates PO, Marcyniuk B (1984) Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 10: 185 — 207Google Scholar
  21. Mann DMA, Yates PO, Marcyniuk B (1985) Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer’s disease, senile dementia of the Alzheimer type and Down’s syndrome in middle age. J Neurol Sci 69: 139–159PubMedCrossRefGoogle Scholar
  22. Mann DMA, Yates PO (1986) Neurotransmitter deficits in Alzheimer’s disease and in other dementing disorders. Human Neurobiol 5: 147–158Google Scholar
  23. Mann DMA, Yates PO, Marcyniuk B (1987) Dopaminergic neurotransmitter systems in Alzheimer’s disease and in Down’s syndrome at middle age. J Neurol Neurosurg Psychiatry 50:341 —344Google Scholar
  24. Mesulam MM, Mufson EJ, Levey AL, Wainer BHJ (1983) Cholinergic innervation of cortex by the basal forebrain. J Comp Neurol 214:170–197PubMedCrossRefGoogle Scholar
  25. Mountjoy CQ (1986) Correlations between neuropathological and neurochemical changes. Br Med Bull 42: 81–85PubMedGoogle Scholar
  26. Nielsen J (1962) Gerontopsychiatric period-prevalence investigation in a geographically delimited population. Acta Psychiatr Scand 38: 307–330CrossRefGoogle Scholar
  27. Nieuwenhuys R, Voogd J, van Huijzen C (1981) The human central nervous system. A synopsis and atlas. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. Nyberg P, Adolfsson R, Hardy JA, Nordberg P, Wester P, Winblad B (1985) Catecholamine topochemistry in human basal ganglia. Comparison between normal and Alzheimer brains. Brain Res 333:139 —142Google Scholar
  29. Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia. J Neurol Sci 34: 247–265PubMedCrossRefGoogle Scholar
  30. Perry RH, Candy JM, Perry EK, Irving D, Blessed G, Fairburn AF, Tomlinson BE (1982) Extensive loss of choline acetyltransferase activity is not reflected by neuronal loss in the nucleus basalis of Meynert in Alzheimer’s disease. Neurosci Lett 33: 311–315PubMedCrossRefGoogle Scholar
  31. Perry EK, Atack JR, Perry RH, Hardy JA, Dodd PR, Edwardson JA, Blessed G, Tomlinson BE, Fairbairn AF (1984) Intralaminar neurochemical distribution in human midtemporal cortex: comparison between Alzheimer’s disease and the normal. J Neurochem 42: 1402–1410PubMedCrossRefGoogle Scholar
  32. Reinikainen KJ, Paljaervi L, Huuskonen M, Soininen H, Laakso M, Riekkinen PJ (1988) A post-mortem study of noradrenergic, serotoninergic and GABAergic neurons in Alzheimer’s disease. J Neurol Sci 84: 101–116PubMedCrossRefGoogle Scholar
  33. Rogers JD, Brogan D, Mirra SS (1985) The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann Neurol 17: 163–170PubMedCrossRefGoogle Scholar
  34. Rossor MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M (1984) Neuro-chemical characteristics of early and late onset types of Alzheimer’s disease. Br Med J 288: 961–964CrossRefGoogle Scholar
  35. Sofic E (1986) Dissertation. Technical University of Vienna, AustriaGoogle Scholar
  36. Tabaton M, Schenone A, Romagnoli P, Mancardi GL (1985) A quantitative andGoogle Scholar
  37. ultrastructural study of substantia nigra and nucleus centralis superior inGoogle Scholar
  38. Alzheimer’s disease. Acta Neuropathol 68:218–223Google Scholar
  39. Tagliavini F, Pilleri G (1983) Basal nucleus of Meynert: a neuropathological study in Alzheimer’s disease, simple senile dementia, Pick’s disease and Huntington’s chorea. J Neurol Sci 62: 243–260Google Scholar
  40. Tariot PN, Sunderland T, Weingartner H, Murphy DL, Welkowitz JA, Thompson K, Cohen RM (1987 a) Cognitive effects of L-deprenyl in Alzheimer’s disease. Psychopharmacology 91: 489–495Google Scholar
  41. Tariot PN, Cohen RM, Sunderland T, Newhouse PA, Yount D, Mellow AM, Weingartner H, Mueller EA, Murphy DL (1987 b) L-deprenyl in Alzheimer’s disease. Arch Gen Psychiatry 44: 427–433Google Scholar
  42. Vijayashankar N, Brody H (1979) A quantitative study of the pigmented neurons in the nuclei coeruleus and subcoeruleus in man as related to aging. J Neuropathol Exp Neurol 38: 490–497PubMedCrossRefGoogle Scholar
  43. Wurtman RJ (1988) Cholinergic brain neurons and the dementias associated with old age: toward the development of effective drugs. In: Maurer K, Wurtman RJ (eds) Organic brain disorders. Recent neurobiochemical findings, diagnostic procedures and consequences for treatment. Vieweg, Braunschweig, pp 11–17Google Scholar
  44. Yates CM, Ritchie IM, Simpson J, Maloney AFJ, Gordon SA (1981) Nor-adrenaline in Alzheimer-type dementia and Down’s syndrome. Lancet ii:39 —40Google Scholar
  45. Yates CM, Simpson J, Gordon SA, Maloney AFJ, Allison Y, Ritchie IM, Urquart A (1983) Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down’s syndrome. Brain Res 280: 119–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • G. Moll
    • 3
  • W. Gsell
    • 1
  • I. Wichart
    • 2
  • K. Jellinger
    • 2
  • P. Riederer
    • 1
  1. 1.Department of Psychiatry, Division of Clinical NeurochemistryUniversity of WürzburgFederal Republic of Germany
  2. 2.Ludwig Boltzmann Institute for Clinical Neurobiology, Department of NeurologyLainz HospitalViennaAustria
  3. 3.Department of Psychiatry, Division of Clinical NeurochemistryUniversity of WürzburgWürzburgFederal Republic of Germany

Personalised recommendations