Brain abnormalities in aged monkeys: a model sharing features with Alzheimer’s disease

  • D. L. Price
  • E. H. Koo
  • S. S. Sisodia
  • L. J. Martin
  • L. C. Walker
  • C. A. Kitt
  • L. C. Cork
Part of the Key Topics in Brain Research book series (KEYTOPICS)


Macaques develop age-associated cognitive/memory impairments as well as brain abnormalities (particularly senile plaques) similar to those occurring in the brains of older humans and individuals with Alzheimer’s disease (AD). Some of these abnormalities can be clarified by investigations of aged nonhuman primates. Brain tissues from animals (ranging in age from 4–35 years) were examined by RNA blotting techniques, in situ hybridization, immunoblotting, and immunocytochemistry. These approaches allowed analysis of the evolution of some of the structural/chemical alterations (formation of neurites, amyloid deposition, and neurofibrillary tangles [NFT]) that occur in these animals. These investigations have relevance for understanding some of the behavioral, neuropathological, and neurochemical abnormalities that occur in older humans and in individuals with AD.


Senile Plaque Cerebral Amyloid Angiopathy Paired Helical Filament Aged Monkey Hereditary Cerebral Hemorrhage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham CR, Selkoe DJ, Potter H, Price DL, Cork LC (1989) αl-Antichymotrypsin is present together with the β-protein in monkey brain amyloid deposits. Neuroscience 32: 715–720Google Scholar
  2. Allsop D, Wong CW, Ikeda S-I, Landon M, Kidd M, Glenner GG (1988) Immunohistochemical evidence for the derivation of a peptide ligand from the amyloid β-protein precursor of Alzheimer disease. Proc Natl Acad Sci USA 85: 2790–2794PubMedCrossRefGoogle Scholar
  3. Anderton BH, Breinburg D, Downes MJ, Green PJ, Tomlinson BE, Ulrich J, Wood JN, Kahn J (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature 298: 84–86PubMedCrossRefGoogle Scholar
  4. Bahmanyar S, Higgins GA, Goldgaber D, Lewis DA, Morrison JH, Wilson MC, Shankar SK, Gajdusek DC (1987) Localization of amyloid β-protein messenger RNA in brains from patients with Alzheimer’s disease. Science 237: 77–79PubMedCrossRefGoogle Scholar
  5. Brion JP, van den Bosch de Aguilar P, Flament-Durand J (1985) Senile dementia of the Alzheimer type: morphological and immunocytochemical studies. In: Traber J, Gispen WH (eds) Senile dementia of the Alzheimer type. Springer, Berlin Heidelberg New York Tokyo, pp 164–174CrossRefGoogle Scholar
  6. Casella JF, Flanagan MD, Lin S (1983) Cytochalasins: their use as tools in the investigation of actin polymerization in vivo and in vitro. In: DosRemedios CG, Barden JA (eds) Actin: structure and function in muscle and non-muscle cells. Academic Press, Sydney, pp 227–240Google Scholar
  7. Castano EM, Frangione B (1988) Biology of disease. Human amyloidosis, Alzheimer disease and related disorders. Lab Invest 58: 122–132Google Scholar
  8. Cohen ML, Go1de TE, Usiak MF, Younkin LH, Younkin SG (1988) In situ hybridization of nucleus basalis neurons shows increased β-amyloid mRNA in Alzheimer disease. Proc Natl Acad Sci USA 85: 1227–1231PubMedCrossRefGoogle Scholar
  9. Cork LC, Sternberger NH, Sternberger LA, Casanova MF, Strubie RG, Price DL (1986) Phosphorylated neurofilament antigens in neurofibrillary tangles in Alzheimer’s disease. J Neuropathol Exp Neurol 45: 56–64PubMedCrossRefGoogle Scholar
  10. Cork LC, Walker LC, Price DL (1989) Neurofibrillary tangles and senile plaques in a cognitively impaired, aged nonhuman primate. J Neuropathol Exp Neurol 48: 378CrossRefGoogle Scholar
  11. Glenner GG (1983) Alzheimer’s disease: multiple cerebral amyloidosis. Biological aspects of Alzheimer’s disease. Banbury Rep 15: 137–144Google Scholar
  12. Goedert M (1987) Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer’s disease. EMBO J 6: 3627–3632PubMedGoogle Scholar
  13. Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235: 877–880PubMedCrossRefGoogle Scholar
  14. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y-C, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261: 6084–6089Google Scholar
  15. Hart MN, Merz P, Bennett-Gray J, Menezes AH, Goeken JA, Schelper RL, Wisniewski HM (1988) ß-Amyloid protein of Alzheimer’s disease is found in cerebral and spinal cord of vascular malformations. Am J Pathol 132: 167–172PubMedGoogle Scholar
  16. Higgins GA, Lewis DA, Bahmanyar S, Goldgaber D, Gajdusek DC, Young WG, Morrison JH, Wilson MC (1988) Differential regulation of amyloid-βprotein mRNA expression within hippocampal neuronal subpopulations in Alzheimer’s disease. Proc Natl Acad Sci USA 85: 1297–1301PubMedCrossRefGoogle Scholar
  17. Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  18. Kemper TL (1983) Organization of the neuropathology of the amygdala in Alzheimer’s disease. Biological aspects of Alzheimer’s disease. Banbury Rep 15: 31–35Google Scholar
  19. Kitaguchi N, Takahashi Y, Tokushima Y, Shiojiri S, Ito H (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331: 530–532PubMedCrossRefGoogle Scholar
  20. Kitt CA, Price DL, Struble RG, Cork LC, Wainer BH, Becher MW, Mobley WC (1984) Evidence for cholinergic neurites in senile plaques. Science 226: 1443–1445PubMedCrossRefGoogle Scholar
  21. Kitt CA, Struble RG, Cork LC, Mobley WC, Walker LC, Joh TH, Price DL (1985 a) Catecholaminergic neurites in senile plaques in prefrontal cortex of aged nonhuman primates. Neuroscience 16: 691–699Google Scholar
  22. Kitt CA, Walker LC, Molliver ME, Price DL (1985 b) Serotonergic neurites in senile plaques of aged nonhuman primates. Anat Rec 211: 98AGoogle Scholar
  23. Koo EH, Goldgaber D, Sisodia SS, Applegate MD, Gajdusek DC, Price DL (1988) Studies of ß-amyloid precursor gene expression in brains of aged monkeys. Soc Neurosci Abstr 14: 637Google Scholar
  24. Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Price DL (1990 a) Amyloid precursor protein undergoes fast anterograde axonal transport. Proc Natl Acad Sci (in press)Google Scholar
  25. Koo EH, Sisodia SS, Cork LC, Unterbeck A, Bayney RM, Price DL (1990 b) Differential expression of amyloid precursor protein mRNAs in cases of Alzheimer’s disease and in aged nonhuman primates. Neuron 2: 97–104Google Scholar
  26. Kosik KS (1989) Minireview: the molecular and cellular pathology of Alzheimer neurofibrillary lesions. J Gerontol Biol Sci 44: B55–B58CrossRefGoogle Scholar
  27. Kurucz J, Charbonneau R, Kurucz A, Ramsey P (1981) Quantitative clinico-pathologic study of cerebral amyloid angiopathy. J Am Geriatr Soc 29: 61–69PubMedGoogle Scholar
  28. Martin LJ, Cork LC, Koo EH, Sisodia SS, Weidemann A, Beyreuther K, Masters C, Price DL (1989) Localization of amyloid precursor protein ( APP) in brains of young and aged monkeys. Soc Neurosci Abstr 15: 23Google Scholar
  29. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer’s disease and Down syndrome. Proc Natl Acad Sci USA 82: 4245–4249PubMedCrossRefGoogle Scholar
  30. Palmeri MR, Golde TE, Cohen ML, Kovacs DM, Tanzi RE, Gusella JF, Usiak MF, Younkin LH, Younkin SG (1988) Amyloid protein precursor messenger RNAs: differential expression in Alzheimer’s disease. Science 241: 1080–1084CrossRefGoogle Scholar
  31. Ponte P, Gonzalez-DeWhitt P, Schilling J, Miller J, Hsu D, Greenberg B, Davis K, Wallace W, Lieberburg I, Fuller F, Cordell B (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331: 525–527PubMedCrossRefGoogle Scholar
  32. Presty SK, Bachevalier J, Walker LC, Struble RG, Price DL, Mishkin M, Cork LC (1987) Age differences in recognition memory of the rhesus monkey ( Macaca mulatta ). Neurobiol Aging 8: 435–440Google Scholar
  33. Price DL, Koo EH, Unterbeck A (1989) Cellular and molecular biology of Alzheimer’s disease. BioEssays 10: 69 – 74PubMedCrossRefGoogle Scholar
  34. Price DL (1986) New perspectives on Alzheimer’s disease. Annu Rev Neurosci 9: 489 – 512PubMedCrossRefGoogle Scholar
  35. Robakis NK, Ramakrishna N, Wolfe G, Wisniewski HM (1987 a) Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci USA 84: 4190–4194Google Scholar
  36. Robakis NK, Wisniewski HM, Jenkins EC, Devine-Gage EA, Houck GE, Yau X-L, Ramakrishna N, Wolfe G, Silverman WP, Brown WT (1987 b) Chromosome 21g21 sublocalisation of gene encoding beta-amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer’s disease and Down syndrome. Lancet i:384–385Google Scholar
  37. Schlaepfer WW, Freeman LA (1978) Neurofilament proteins of rat peripheral nerve and spinal cord. J Cell Biol 78: 653–662PubMedCrossRefGoogle Scholar
  38. Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235: 873–877PubMedCrossRefGoogle Scholar
  39. Selkoe DJ (1989) Biochemistry of altered brain proteins in Alzheimer’s disease. Annu Rev Neurosci 12: 463–490PubMedCrossRefGoogle Scholar
  40. Shivers BD, Hilbich C, Multhaup G, Salbaum M, Beyreuther K, Seeburg PH (1988) Alzheimer’s disease amyloidogenic glycoprotein: expression pattern in rat brain suggests a role in cell contact. EMBO J 7: 1365–1370PubMedGoogle Scholar
  41. Sisodia SS, Koo EH, Martin LJ, Unterbeck AJ, Beyreuther K, Weidemann A, Price DL (1989) Biosynthesis and processing of amyloid precursor protein ( APP) in vitro. Soc Neurosci Abstr 15: 23Google Scholar
  42. Struble RG, Cork LC, Whitehouse PJ, Price DL (1982) Cholinergic innervation in neuritic plaques. Science 216: 413–415PubMedCrossRefGoogle Scholar
  43. Struble RG, Hedreen JC, Cork LC, Price DL (1984) Acetylcholinesterase activity in senile plaques of aged macaques. Neurobiol Aging 5: 191–198PubMedCrossRefGoogle Scholar
  44. Struble RG, Price DL Jr, Cork LC, Price DL (1985) Senile plaques in cortex of aged normal monkeys. Brain Res 361: 267–275PubMedCrossRefGoogle Scholar
  45. Tanzi RE, Gusella JF, Watkins PC, Bruns GAP, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid ß-protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235: 880–884PubMedCrossRefGoogle Scholar
  46. Tanzi RE, McClatchey AI, Lampert ED, Villa-Komaroff L, Gusella JF, Neve RL (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331: 528–530PubMedCrossRefGoogle Scholar
  47. van Duinen SG, Castano EM, Prelli F, Bots GTAB, Luyendijk W, Frangione B (1987) Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer’s disease. Proc Natl Acad Sci USA 84: 5991–5994PubMedCrossRefGoogle Scholar
  48. Walker LC, Kitt CA, Cork LC, Struble RG, Dellovade TL, Price DL (1988 a) Multiple transmitter systems contribute neurites to individual senile plaques. J Neuropathol Exp Neurol 47: 138–144Google Scholar
  49. Walker LC, Kitt CA, Schwam E, Buckwald B, Garcia F, Sepinwall J, Price DL (1987) Senile plaques in aged squirrel monkeys. Neurobiol Aging 8: 291–296PubMedCrossRefGoogle Scholar
  50. Walker LC, Kitt CA, Struble RG, Schmechel DE, Oertel WH, Cork LC, Price DL (1985) Glutamic acid decarboxylase-like immunoreactive neurites in senile plaques. Neurosci Lett 59: 165–169PubMedCrossRefGoogle Scholar
  51. Walker LC, Kitt CA, Struble RG, Wagster MV, Price DL, Cork LC (1988 b) The neural basis of memory decline in aged monkeys. Neurobiol Aging 9: 657–666Google Scholar
  52. Weidemann A, König G, Bunke D, Fischer P, Salbaum JM, Masters CL, Beyreuther K (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126PubMedCrossRefGoogle Scholar
  53. Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988 a) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85: 4884–4888Google Scholar
  54. Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988 b) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85: 4506–4510Google Scholar
  55. Wisniewski HM, Ghetti B, Terry RD (1973) Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J Neuropathol Exp Neurol 32: 566–584PubMedCrossRefGoogle Scholar
  56. Wong CW, Quaranta V Glenner GG (1985) Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc Natl Acad Sci USA 82: 8729–8732PubMedCrossRefGoogle Scholar
  57. Zimmerman Z, Herget T, Salbaum JM, Schubert W, Hilbich C, Cramer M, Masters CL, Multhaup G, Kang J, Lemaire H-G, Beyreuther K, StarzinskiPowitz A (1988) Localization of the putative precursor of Alzheimer’s disease-specific amyloid at nuclear envelopes of adult human muscle. EMBO J 7: 367 – 373Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • D. L. Price
    • 1
    • 3
    • 5
  • E. H. Koo
    • 1
    • 2
    • 5
  • S. S. Sisodia
    • 2
    • 5
  • L. J. Martin
    • 2
    • 5
  • L. C. Walker
    • 2
    • 5
  • C. A. Kitt
    • 2
    • 5
  • L. C. Cork
    • 2
    • 4
    • 5
  1. 1.Departments of NeurologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Division of Comparative Medicine (LCC)The Johns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Neuropathology LaboratoryThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations