An in vitro model for the study of the neurofibrillary degeneration of the Alzheimer type

  • S. Flament
  • A. Delacourte
  • A. Défossez
Part of the Key Topics in Brain Research book series (KEYTOPICS)


We have recently reported that two abnormally phosphorylated Tau proteins (Tau 64 and 69) were systematically present in Alzheimer brain areas which are affected by the neurofibrillary degeneration (NFD). We suggest here that these likely early markers of the NFD might define an in vitro model for the study of the NFD. A such model might be useful to verify the different etiopathogenic hypothesis which have been proposed up to here.


Senile Plaque Sodium Pyrophosphate Paired Helical Filament Neurofibrillary Degeneration Copper Zinc Superoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baudier J, Cole RD (1987) Phosphorylation of Tau proteins to a state like that in Alzheimer’s brain is catalized by a calcium/calmodulin dependent kinase and modulated by phospholipids. J Biol Chem 262: 17577–17583PubMedGoogle Scholar
  2. Brion JP, Passareiro H, Nunez J, Flament-Durand J (1985) Mise en évidence immunologique de la proteine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d’Alzheimer. Arch Biol 95: 229–235Google Scholar
  3. Candy JM, Klinowski J, Perry RH, Perry EK, Fairbrain A, Oakley AE, Carpenter TA, Atack JR, Blessed G, Edwardson JA (1986) Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet i: 354–356Google Scholar
  4. Defossez A, Beauvillain J-C, Delacourte A, Mazzuca M (1988) Alzheimer’s disease: a new evidence for common epitopes between microtubule associated protein Tau and paired helical filaments (PHF): demonstration at the electron microscope by a double immunogold labelling. Virchows Arch 413: 141–145CrossRefGoogle Scholar
  5. Delacourte A, Défossez A (1986) Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are major antigenic components of paired helical filaments. J Neurol Sci 76: 173–186PubMedCrossRefGoogle Scholar
  6. Delacourte A, Défossez A, Céballos I, Nicole A, Sinet PM (1988) Preferential localization of copper zinc superoxide dismutase in the vulnerable cortical neurons in Alzheimer’s disease. Neurosci Lett 92: 247–253PubMedCrossRefGoogle Scholar
  7. Duyckaerts C, Delaère P, Poulain V, Brion J-P, Hauw JJ (1988) Does amyloid precede “PHF” in the senile plaque? A study of 15 cases with graded intellectual status in aging and AD. Neurosci Lett 91: 354–359PubMedCrossRefGoogle Scholar
  8. Flament S, Delacourte A (1989) Abnormal Tau species are produced during Alzheimer’s disease neurodegenerating process. FEBS Lett 247: 213–216PubMedCrossRefGoogle Scholar
  9. Grundke-Iqbal J, Iqbal K, Quinlan M, Tung Y-C, Zaidi MS, Wisniewski HM (1986 a) Microtubule-associated protein tau a component of alzheimer paired helical filaments. J Biol Chem 261: 6084–6089Google Scholar
  10. Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986 b) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83: 4913–4917Google Scholar
  11. Hansen LA, De Teresa R, Davies P, Terry RD (1988) Neocortical morphometry, lesion counts, and choline acetyltransferase levels in the age spectrum of Alzheimer’s disease. Neurology 38: 48–54PubMedCrossRefGoogle Scholar
  12. Ihara Y, Nukina N, Miura R, Ogawara M (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem (Tokyo) 99: 1807–1810Google Scholar
  13. Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  14. Kidd M (1964) Alzheimer’s disease, an electron microscopical study. Brain 87: 309–320CrossRefGoogle Scholar
  15. Ksiezak-Reding H, Binder LI, Yen S-H (1988) Immunochemical and biochemical characterization of tau proteins in normal and Alzheimer’s disease brains with Alz 50 and Tau-1. J Biol Chem 263: 7947–7953Google Scholar
  16. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83: 4044–4048PubMedCrossRefGoogle Scholar
  17. Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis. Science 224: 1057–1063PubMedCrossRefGoogle Scholar
  18. Mann DMA (1988) Alzheimer’s disease and Down’s syndrome. Histopathology 13: 125–137PubMedCrossRefGoogle Scholar
  19. Maragos WF, Greenamyre JT, Penney JB, Young AB (1987) Glutamate dysfunction in Alzheimer’s disease: an hypothesis. Trends Neurosci 10: 65–68CrossRefGoogle Scholar
  20. Nukina N, Ihara Y (1986) One of the antigenic determinants of paired helical filaments is related to tau protein. J Biochem (Tokyo) 99: 1541–1544Google Scholar
  21. Perl DP, Brody AR (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminium accumulation in neurofibrillary tangle-bearing neurones. Science 208: 297–299Google Scholar
  22. Wood JG, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer’s disease share antigenic determinants with the axonal microtubule-associated protein tau. Proc Natl Acad Sci USA 83: 4040–4043PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • S. Flament
    • 1
  • A. Delacourte
    • 1
  • A. Défossez
    • 1
  1. 1.Unité INSERM n°16LilleFrance

Personalised recommendations