Skip to main content

Unusual Computer Components

  • Chapter
Design of Digital Computers
  • 32 Accesses

Abstract

In this chapter we shall discuss unusual or unconventional computer components, that is, such components which presently have no wide-spread application, but which offer, at least in some respects, potential advantages over conventional components. In addition, some components will be discussed which almost certainly have no practical value. These are included when their operating principle is theoretically interesting, and when the latter might conceivably be used with novel components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Magnetic Cores as Logic Elements

  • Guterman, Kodis, and Ruhman: Logical and Control Functions Performed with Magnetic Cores, Proceedings IRE, vol. 43, No. 3, pp. 291–298. March 1955.

    Article  Google Scholar 

  • Auerbach, and Disson: Magnetic Elements in Arithmetic and Control Circuits, Elec. Eng., vol. 74, pp. 776–770. Sep. 1955.

    Google Scholar 

  • Loev, Miehle, Paivinen, and Wylen: Magnetic Core Circuits for Digital Data Systems, Proceedings IRE, vol. 44, No. 2, pp. 154–162. Feb. 1956.

    Article  Google Scholar 

  • Newhouse, and Prywess: High-Speed Shift Registers Using One Core per Bit, Transactions IRE, vol. EC-5, No. 3, pp. 114–120. Sep. 1956.

    Google Scholar 

  • Einhorn S. N.: The Use of the Simplex Algorithm in the Mechanization of Boolean Functions by Means of Magnetic Cores, Transactions IRE, vol. EC-10, No. 4, pp. 615–622. Dec. 1961.

    MathSciNet  Google Scholar 

Transfluxors

  • Rajchman, and Lo: The Transfluxor, Proceedings IRE, vol. 44, No. 3, pp. 321–332. March 1956.

    Article  Google Scholar 

  • Abbot, and Suran: Multihole Ferrite Core Configurations and Applications, Proceedings IRE, vol. 45, No. 8, pp. 1081–1093. Aug. 1957.

    Article  Google Scholar 

  • Prywes N. S.: Diodeless Magnetic Shift Registers Utilizing Transfluxors, Transactions IRE, vol. EC-7, No. 4, pp. 316–324. Dec. 1958.

    Google Scholar 

  • Crane H. D.: High-Speed Logic Systems Using Magnetic Elements, etc., Proceedings IRE, vol. 47, No. 1, pp. 63–73. Jan. 1959.

    Article  Google Scholar 

  • Giandola, and Crowley: The Laddice — A Magnetic Device for Performing Logic, Bell System Tech. Journal, vol. 38, pp. 45–71. Jan. 1959.

    Google Scholar 

  • Crane, and De Riet: Design of an All-Magnetic Computing System, Transactions IRE, vol. EC-10, No. 2, pp. 207–232. June 1961.

    Google Scholar 

  • Leaycraft, and Melan: Characteristics of a High-Speed Multipath Core for a Coincident-Current Memory, Transactions IRE, vol. EC-11, No. 3, pp. 405–409. June 1962.

    Google Scholar 

  • Lussier, and Schneider: All-Magnetic Content Addressed Memory, Electronic Industries, pp. 92–96. March 1963.

    Google Scholar 

  • Anderson, and Dietmeyer: A Magnetic Ternary Device, Transactions IEEE, vol. EC-12, No. 5, pp. 911–914. Dec. 1963.

    Google Scholar 

Phase-Locked Oscillators

  • Muroga: Elementary Principle of Parametron and its Application to Digital Computers, Datamation, vol. 4, No. 5, pp. 31–34. Sept./Oct. 1958.

    Google Scholar 

  • Terada H.: The Parametron — An Amplifying Logical Element, Control Engineering. April 1959.

    Google Scholar 

  • Goto E.: The Parametron, a Digital Computing Element which Utilizes Parametric Oscillation, Proceedings IRE, vol. 47, No. 8, pp. 1304–1316. Aug. 1959.

    Article  Google Scholar 

  • Onyshkevych, Kosomocky, and Lo: Parametric Phase-Locked Oscillator — Characteristics and Applications to Digital Systems, Transactions IRE, vol. EC-8, No. 3, pp. 277–286. Sept. 1959.

    Google Scholar 

  • Hilibrand, Mueller, Stocker, and Gold: Semiconductor Parametric Diodes in Microwave Computer, Transactions IRE, vol. EC-8, No. 3, pp. 287–296. Sept. 1959.

    Google Scholar 

  • Abeyta, Borgini, and Crosby: A Computer System Using Kilomegacycle Subharmonic Oscillators, Proceedings IRE, vol. 49, No. 1, pp. 128–135. Jan. 1961.

    Article  Google Scholar 

Magnetic Film Devices

  • Bobeck H. A.: A New Storage Element Suitable for Large-Sized Memory Arrays — The Twistor, Bell System Technical Journal, vol. 36, pp. 1319–1340. Nov. 1957.

    Google Scholar 

  • Bobeck, and Fischer: A Reversible Diodeless Twistor Shift Register, Journal of Applied Physics, vol. 30, pp. 39S–44S. Apr. 1959.

    Article  Google Scholar 

  • Meier: A Millimicrosecond Switching and Storage Element, Journal of Applied Physics, vol. 30, pp. 45S–46S. Apr. 1959.

    Article  Google Scholar 

  • Bittman E. E.: Thin-Film Memories, Transactions IRE, vol. EC-8, No. 2, pp. 92–97. June 1959.

    Google Scholar 

  • Kolk, and Doherty: Thin Magnetic Films for Computer Applications, Datamation, vol. 5, No. 5, pp. 8–12. Sept./Oct. 1959.

    Google Scholar 

  • Schwartz, and Sallo: Electro-Deposited Twistor and Bit Wire Components, Transactions IRE, vol. EC-8, No. 4, pp. 465–469. Dec. 1959.

    Google Scholar 

  • Raffel, Crowther, Anderson, and Herndon: Magnetic Film Memory Design, Proceedings IRE, vol. 49, No. 1, pp. 155–164. Jan. 1961.

    Article  Google Scholar 

  • Davies, and Wells: Investigation of a Woven Screen Mass Memory System. AFIPS Conference Proceedings, vol. 24, pp. 311–326. Fall Joint Computer Conference, 1963.

    Google Scholar 

  • Koenig M.: Magnetic Thin Films as Digital Storage Devices — part 2, Computer Design, pp. 16–24. March 1964.

    Google Scholar 

  • Townsend, and Fox: Cylindrical Memory Device Characteristics, Transactions IEEE, vol. EC-13, No. 3, pp. 261–268. June 1964.

    Google Scholar 

  • Chong, Reid, and Turczyn: Medium Speed Mass Random Access Memory, Rome Air Development Center, Technical Documentary Report, RADCTR-64–571. March 1965.

    Google Scholar 

  • Maeda, Takashima, and Kolk: A High-Speed, Woven Read-Only Memory, AFIPS Conference Proceedings, vol. 27, part 1, pp. 789–780. Fall Joint Computer Conference, 1965.

    Google Scholar 

Nondestructive Readout

  • Widrow: A Radio-Frequency Nondestructive Readout for Magnetic Core Memories, Transactions IRE, vol. EC-3, No. 4, pp. 12–15. Dec. 1954.

    Google Scholar 

  • Thorensen, and Arsenault: A Nondestructive Read for Magnetic Cores, Proceedings of the Western Joint Computer Conference, pp. 111–116. March 1955.

    Google Scholar 

  • Newhouse: The Use of Domain Wall Viscosity in Data Handling Devices, Proceedings IRE, vol. 45, No. 11, pp. 1484–1492. Nov. 1957.

    Article  Google Scholar 

  • Looney D. H.: A Twistor Matrix Memory for Semipermanent Information. Proceedings Western Joint Computer Conference, pp. 36–40. March 1959.

    Google Scholar 

  • Debuske, Janik, and Simons: A Card Changeable Nondestructive Readout Twistor Store, Proceedings Western Joint Computer Conference, pp. 41–46. March 1959.

    Google Scholar 

  • Wanlass, and Wanlass: Biax High-Speed Magnetic Computer Element, IRE Wescon Conference Record, No. 5, pp. 46–48. Sept./Oct. 1959.

    Google Scholar 

  • Boutwell, and Conn: The Biax Magnetic Element, Datamation, vol. 5, No. 5, pp. 46–48. Sept./Oct. 1959.

    Google Scholar 

  • Lambert: Nondestructive Readout of Metallic—Tape Computer Cores, Transactions IRE, vol. EC-8, No. 4, pp. 470–474. Dec. 1959.

    Google Scholar 

  • Kilburn, and Grimsdale: A Digital Computer Store With Very Short Read Time, Proceedings IEEE, vol. 47, No. 11, pp. 567–572. Nov. 1960.

    Google Scholar 

  • Gray R. L.: An Electrically Alterable Nondestructive Twistor Memory, Transactions IRE, vol. EC-9, No. 4, pp. 451–455. Dec. 1960.

    Google Scholar 

  • Kuttner P.: The Rope Memory — A Permanent Storage Device, AFIPS Conference Proceedings, vol. 24, pp. 45–57. Fall Joint Computer Conference, 1963.

    Google Scholar 

  • Pick, Gray, and Brick: The Solenoid Array — A New Computer Element, Transactions IEEE, vol. EC-13, No. 1, pp. 27–35. Feb. 1964.

    Google Scholar 

  • Wiesner E. P.: Memory has Nondestructive Readout of Standard Ferrite Cores, Electronic Design News, pp. 44–45. March 1964.

    Google Scholar 

  • Butcher I. R.: A Prewired Storage Unit, Transactions IEEE, vol. EC-13, No. 2, pp. 106–111. Apr. 1964.

    Google Scholar 

  • Wiesner E. P.: Read-Only Memory, Electronic Design News, pp. 36–38. Apr. 1964.

    Google Scholar 

  • Clemson, and Kuttner: Applications of Rope Memory Devices, Computer Design, pp. 12–22. Aug. 1964.

    Google Scholar 

  • Baker W. A.: Memory Elements — A New Twist, Data Systems Design, pp. 9–15. Jan. 1965.

    Google Scholar 

  • Study and Investigation of Techniques for Constructing Medium-Speed RandomAccess Memory, Rome Air Development Center, Technical Report, RADCTR-64–538. March 1965.

    Google Scholar 

  • Lewin M.: A Survey of Read-Only Memories, AFIPS Conference Proceedings, vol. 27, part 1, pp. 775–787. Fall Joint Computer Conference, 1965.

    Google Scholar 

  • Maeda, Takashima, and Kolk: A High-Speed, Woven Read-Only Memory, AFIPS Conference Proceedings, vol. 27, part 1, pp. 775–787. Fall Joint Computer Conference, 1965.

    Google Scholar 

  • May, Powell, and Armstrong: A Thin Magnetic Film Computer Memory Using a Resonant Absorption Nondestructive Readout Technique, AFIPS Conference Proceedings, vol. 27, part 1, pp. 801–808. Fall Joint Computer Conference, 1965.

    Google Scholar 

  • Sidmu P. S.: Development of an E-Core Read-Only Memory, AFIPS Conference Proceedings, vol. 27, part 1, pp. 809–818. Fall Joint Computer Conference, 1965.

    Google Scholar 

Miscellaneous Magnetic Devices and Techniques

  • Rhodes, Russel, Sakalay, and Whalen: A 0.7-Microsecond Ferrite Core Memory, IBM Journal of Research and Development, vol. 5, No. 3, pp. 174–182. July 1961.

    Article  Google Scholar 

  • Smith D. O.: Proposal for Magnetic Domain-Wall Storage and Logic, Transactions IRE, vol. EC-10, No. 4, pp. 708–711. Dec. 1961.

    Google Scholar 

  • Leacraft, and Melan: Characteristics of a High-Speed Multipath Core for a Coincident-Current Memory, Transactions IRE, vol. EC-11, No. 3, pp. 405–409. June 1962.

    Google Scholar 

  • Freeman J. D.: New Idea in Counting — Incrementally Magnetized Cores, Electronics, pp. 40–43. June 15, 1962.

    Google Scholar 

  • Shawbender, Wentworth, Li, Hotchkiss, and Rajchman: Laminated Ferrite Memory, AFIPS Conference Proceedings, vol. 24, pp. 77–90. Fall Joint Computer Conference, 1963.

    Google Scholar 

General References on Magnetic Devices

  • Rajchman J. A.: Magnetics for Computers — A Survey of the State-of-the-Art, RCA Review, vol. 20, pp. 92–95. March 1959.

    Google Scholar 

  • Looney D. H.: Recent Advances in Magnetic Devices for Computers, Journal of Applied Physics, vol. 30, No. 4, pp. 38S–42S. Apr. 1959.

    Article  Google Scholar 

  • Meyerhoff A. J. ed.: Digital Applications of Magnetic Devices. New York: John Wiley and Sons. 1960.

    Google Scholar 

  • Rajchman J. A.: Computer Memories — A Survey of the State-of-the-Art, Proceedings IRE, vol. 49, No. 1, pp. 104–127. Jan. 1961.

    Article  Google Scholar 

  • Haynes J. L.: Logic Circuits Using Square-Loop Magnetic Devices — A Survey, Transactions IRE, vol. EC-10, No. 2, pp. 191–203. June 1961.

    Google Scholar 

  • Bennion, Crane, and Engelbart: A Bibliographical Sketch of All-Magnetic Logic Schemes, Transactions IRE, vol. EC-10, No. 2, pp. 203–206. June 1961.

    Google Scholar 

  • Looney D. H.: Magnetic Devices for Digital Computers, Datamation, vol. 7, No. 8, pp. 51–55. Aug. 1961.

    Google Scholar 

  • Yovits M. ed.: Large Capacity Memory Techniques for Computing Systems, New York: Mcmillan. 1962.

    MATH  Google Scholar 

  • Rajchman J. A.: Memories in Present and Future Generations of Computers. IEEE Spectrum, pp. 90–95. Nov. 1965.

    Google Scholar 

Superconducting Elements

  • Buck D. A.: The Cryotron — A Superconductive Computer Component, Proceedings IRE, vol. 44, No. 4, pp. 482–493. Apr. 1956.

    Article  Google Scholar 

  • Crowe J. W.: Trapped-Flux Superconducting Memory, IBM Journal of Research and Development, vol. 1, No. 4, pp. 294–303. Oct. 1957.

    Article  Google Scholar 

  • Crittenden, Cooper, and Schmidlin: The Persistor — A Superconducting Memory Element, Proceedings IRE, vol. 48, No. 7, pp. 1233–1246. July 1960.

    Article  Google Scholar 

  • Newhouse, Bremer, and Edwards: An Improved Film Cryotron and Its Applications to Digital Computers, Proceedings IRE, vol. 48, No. 8, pp. 1395–1404. Aug. 1960.

    Article  Google Scholar 

  • Slade A. E.: Cryotron Characteristics and Circuit Applications, Proceedings IRE, vol. 48, No. 9, pp. 1569–1576. Sept. 1960.

    Article  Google Scholar 

  • Cohen M. L.: Thin Film Cryotrons, Proceedings IRE, vol. 48, No. 9, pp. 1576–1582. Sept. 1960.

    Article  Google Scholar 

  • Edwards, Newhouse, and Bremer: Analysis of a Crossed Film Cryotron Shift Register Transactions IRE, vol. EC-10, No. 2, pp. 285–287. June 1961.

    Google Scholar 

  • Burns, Alphonse, and Leck: Coincident-Current Superconductive Memory, Transactions IRE, vol. EC-10, No. 3, pp. 438–446. Sept. 1961.

    Google Scholar 

  • Stewart, Owen, Lucas and Vail: Persistent Current Memory Circuit, Proceedings IRE, vol. 49, No. 11, pp. 1681–1682. Nov. 1961.

    Google Scholar 

  • Slade A. E.: A Cryotron Memory Cell, Proceedings IRE, vol. 50, No. 1, pp. 81–82. Jan. 1962.

    Google Scholar 

  • Brenneman A. E.: The In-Line Cryotron, Proceedings IEEE, vol. 51, No. 3, pp. 442–449. March 1963.

    Article  Google Scholar 

  • Harman M. G.: A New Form of Cryotron Logic Circuitry, Transactions IEEE, vol. EC-12, No. 5, pp. 568–570. Oct. 1963.

    Google Scholar 

  • Fruin, and Newhouse: A New Crossed-Film Cryotron Structure with Superimposed Controls, Proceedings IEEE, vol. 51, No. 12, pp. 1732–1736. Dec. 1963.

    Article  Google Scholar 

  • Ahrons, and Burns: Superconductive Memories, Computer Design, pp. 12–19. Jan. 1964.

    Google Scholar 

  • Porter S. N.: A New Configuration for Faster Cryotron Circuits, Transactions IEEE, vol. EC-13, No. 1, pp. 56–57. Feb. 1964.

    Google Scholar 

  • Caswell H. L.: Thin-Film Superconducting Devices, IEEE Spectrum, pp. 84–99. May 1964.

    Google Scholar 

  • Burns L. L. et al.: Cryoelectric Random Access Memory, Rome Air Development Center, Technical Documentary Report, RADC-TDR-64–376. Nov. 1964.

    Google Scholar 

Tunnel Diode

  • Goto E., et al.: Esaki Diode High-Speed Logical Circuits, Transactions IRE, vol. EC-9, pp. 25–29. March 1960.

    Google Scholar 

  • Chow W. F.: Tunnel Diode Digital Circuits, Transactions IRE, vol. EC-9, pp. 295–301. Sept. 1960.

    Google Scholar 

  • Bergman R. H.: Tunnel Diode Logic Circuits, Transactions IRE, vol. EC-9, pp. 430–438. Dec. 1960.

    Google Scholar 

  • Sims, Beck, and Kamm: A Survey of Tunnel-Diode Digital Techniques, Proceedings IRE, vol. 49, No. 1, pp. 136–146. Jan. 1961.

    Article  Google Scholar 

  • Yourke, Butler, and Strohm: Esaki Diode Not-Or Logic Circuits, Transactions IRE, vol. EC-10, No. 2, pp. 183–190. June 1961.

    Google Scholar 

  • One-Tunnel-Diode Flip-Flop, Proceedings IRE, Correspondence in March, June, Sept., Nov. 1961, and Feb. 1962.

    Google Scholar 

  • Axelrod, Farber, and Rosenheim: Some New High-Speed Tunnel-Diode Logic Circuits, IBM Journal of Research and Development, vol. 6, No. 2, pp. 158–169. Apr. 1962.

    Article  Google Scholar 

  • Renton, and Rabinovici: Tunnel Diode Full Binary Adder, Transactions IRE, vol. EC-11, No. 2, pp. 213–217. Apr. 1962.

    Google Scholar 

  • Rabinovici B.: Tunnel Diode Shift Register, Proceedings IRE, vol. 50, No. 4, p. 473, Apr. 1962.

    Google Scholar 

  • Carr, and Milnes: Bias Controlled Tunnel-Pair Logic Circuits, Transactions IRE, vol. EC-11, No. 6, pp. 773–779. Dec. 1962.

    Google Scholar 

  • Crawford, Pricer, and Zasio: An Improved Tunnel Diode Memory System, IBM Journal of Research and Development, pp. 199–206. July 1963.

    Google Scholar 

  • Series Coupled Tunnel Diode Memory, Computer Design, pp. 8–11. Nov. 1963.

    Google Scholar 

  • Cooperman M.: 300 Mc Tunnel Diode Logic Circuits, Transactions IEEE, vol. EC-13, No. 1, pp. 18–26. Feb. 1964.

    Google Scholar 

  • Sear B. E.: Design of Modular 250 Mc Circuits, Computer Design, pp. 20–25. Apr. 1964.

    Google Scholar 

  • Crawford, Moore, Parisi, Picciano, and Pricer: Design Considerations for a 25-Nanosecond Tunnel Diode Memory, AFIPS Conference Proceedings, vol. 27, part 1, pp. 627–636. Fall Joint Computer Conference, 1965.

    Google Scholar 

Miscellaneous Devices

  • Anderson J. R.: Ferroelectric Elements for Digital Computers and Switching Systems, Elec. Engineering, vol. 71, pp. 916–922. Oct. 1952.

    Google Scholar 

  • Moll, Tannenbaum, Goldey, and Holonyak: PNPN Transistor Switches, Proceedings IRE, vol. 44, No. 9, pp. 1174–1182. Sept. 1956.

    Article  Google Scholar 

  • Anderson J. R.: A New Type of Ferroelectric Shift Register, Transactions IRE, vol. EC-5, No. 4, pp. 184–191. Dec. 1956.

    Google Scholar 

  • Bray T. E.: An Electro-Optical Shift Register, Transactions IRE, vol. EC-8, No. 2, pp. 113–117. June 1959.

    Google Scholar 

  • Worther, and Rediker: The Cryosar — A New Low-Temperature Computer Element, Proceedings IRE, vol. 47, No. 7, pp. 1207–1213. July 1959.

    Article  Google Scholar 

  • Solid State Products Inc., A Survey of Some Basic Trigistor Circuits, Bulletin D 410–02. July 1959.

    Google Scholar 

  • Melngailis I.: The Cryosistor — A New Low-Temperature Three-Terminal Switch, Proceedings IRE, vol. 49, No. 1, pp. 352–354. Jan. 1961.

    Article  Google Scholar 

  • Izui H.: The Silicon Cryosar, Proceedings IRE, vol. 49, No. 8, pp. 1313–1314. Aug. 1961.

    Article  Google Scholar 

  • Melngailis, and Milnes: The Cryosistor, Proceedings IRE, vol. 49, No. 11, pp. 1616–1622. Nov. 1961.

    Article  Google Scholar 

  • Pettus, and Young: Magnetoresistive Effect as a Possible Memory Device, Proceedings IRE, vol. 49, No. 12, pp. 1943–1944. Dec. 1961.

    Google Scholar 

  • Johnston R. C.: Cryosar Memory Design, Transactions IRE, vol. EC-10, No. 4, pp. 712–717. Dec. 1961.

    Google Scholar 

  • Melngailis, and Rediker: The Madistor — A Magnetically Controlled Plasma Device, Proceedings IRE, vol. 50, No. 12, pp. 2428–2435. Dec. 1962.

    Article  Google Scholar 

  • Gerritsen H. J.: Operation of a Memory Element Based on the Maser Principle Proceedings IEEE, vol. 51, No. 6, pp. 934–935. June 1963.

    Google Scholar 

  • Teszner, and Gicquel: Gridistor — A New Field-Effect Device, Proceedings IEEE, vol. 52, No. 12, pp. 1502–1513. Dec. 1964.

    Article  Google Scholar 

  • Biard, Bonin, Matzen, and Merryman: Optoelectronics as Applied to Functional Electronic Blocks, Proceedings IEEE, vol. 52, No. 12, pp. 1529–1536. Dec. 1964.

    Article  Google Scholar 

  • Bhatia M. K.: Electro-Optics Generate and Position Characters, Electrical Design News. Jan. 1965.

    Google Scholar 

  • Reiman, and Kosonocky: Progress in Optical Computer Research, IEEE Spectrum, pp. 181–195. March 1965.

    Google Scholar 

  • Chang, Dillon, and Gianola: Magneto-Optical Variable Memory, etc., Journal of Applied Physics, vol. 36, pp. 1110–1111. March 1965.

    Article  Google Scholar 

  • Hawkins, and Nave: Large Signal and Transient Characteristics of Electrochemical Amplifiers, Proceedings IEEE, vol. 53, No. 11, pp. 1707–1713. Nov. 1965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Wien

About this chapter

Cite this chapter

Gschwind, H.W. (1967). Unusual Computer Components. In: Design of Digital Computers. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3369-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3369-9_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-3370-5

  • Online ISBN: 978-3-7091-3369-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics