Coupled Thermoelasticity

  • G. Lebon
  • P. Perzyna
Part of the International Centre for Mechanical Sciences book series (CISM, volume 262)


In this chapter, the variational principles of elasticity and heat conduction are extended to the initial boundary value problem of fully coupled thermoelasticity. A great variety of criteria have been published. However, due to a lack of time, only the most significative formulations of Iesan1,2, Nickell — Sackman,3 Biot,4–7 Lebon-Lambermont8,9 and Parkus10 will be examined.


Variational Principle Heat Conduction Problem Admissible Function Couple Thermoelasticity Complementary Energy Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iesan, D., Principes variationnels dans la théorie de la thermoélasticité, Ann. St. Univ. Al.I.Cuza Iasi, 12, 439, 1966.MATHGoogle Scholar
  2. 2.
    Iesan, D., On some reciprocity theorems and variational theorems in linear dynamic theories of continuum mechanics, Mem. Acc. Sciences Torino, serie 4, n° 17, 1974.Google Scholar
  3. 3.
    Nickell, R. and Sackman, J., Variational principles for linear coupled thermoelasticity, Quart. Appl. Math., 26, 11, 1968.MathSciNetMATHGoogle Scholar
  4. 4.
    Biot, M., Thermoelasticity and irreversible thermodynamics, J. AppZ. Phys., 27, 240, 1956.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Biot, M., Linear thermodynamics and the mechanics of solids, Proc. Third U.S. Nat. Congress Appl. Mec., 1, 1958.Google Scholar
  6. 6.
    Biot, M., Variational principles in heat transfer, Oxford Math. Mono., Oxford, 1970.MATHGoogle Scholar
  7. 7.
    Biot, M., Non-linear thermoelasticity, irreversible thermodynamics and elastic instability, Indiana Univ. Math. J., 23, 309, 1973.MATHCrossRefGoogle Scholar
  8. 8.
    Lebon, G. and Lambermont, J., Some variational principles pertaining to non-stationary heat conduction and coupled thermoelasticity, Acta Mech., 15, 121, 1972.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lebon, G., Une nouvelle formulation variationnelle du problème de la thermoélasticité, Proc. of A.I.M.E.T.A., 1, 249, 1972.Google Scholar
  10. 10.
    Parkus, H., Variational principles in thermo- and magneto-elasticity, C.I.S.M. Lectures, N°58, Springer-Verlag, Berlin, 1970.Google Scholar
  11. 11.
    Green, A.E. and Lindsay, K., Thermoelasticity, J. of Elastiticy, 2, 1, 1972.MATHCrossRefGoogle Scholar
  12. 12.
    Rusu, E., On some theorems in a generalized theory of linear thermoelasticity, Bul. Inst. Pol. Iasi, 20, 75, 1974.MathSciNetGoogle Scholar
  13. 13.
    Rusu, E., A reciprocity theorem and a variational theorem for coupled mechanical and thermoelectric fields, 21, 83, 1975.Google Scholar
  14. 14.
    Rafalski, P., Lagrangian formulation of dynamic thermoelastic problem, Bull. Ac. Pol. Sci., 16, 25, 1968.MATHGoogle Scholar
  15. 15.
    Rafalski, P., The lagrangian formulation of the dynamic thermoelastic problem for mixed boundary conditions, in Proceedings of vibrations problems, Warsaw, 1, 9, 1968.Google Scholar
  16. 16.
    Rafalski, P., A variational principle for the coupled thermoelastic problem, Int. J. Engng. Sci., 6, 465, 1968.MATHCrossRefGoogle Scholar
  17. 17.
    Biot, M., Variational thermodynamics of viscous compressible heat conducting fluids, Quart. Appl. Math., 4, 323, 1977.MathSciNetGoogle Scholar
  18. 18.
    Biot, M., New chemical thermodynamics of open systems, thermobaric potential, a new concept. Bull. Class. Sci. Acad. Belgique, 62, 239, 1976.MathSciNetADSGoogle Scholar
  19. 19.
    Biot, M., Variational lagrangian thermodynamics of evolution of collective chemical systems, Chem. Phys., 29, 97, 1978.MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Hermann, G., On variational principles in thermoelasticity and heat conduction, Quart. Appl. Math., 21, 151, 1963.MathSciNetGoogle Scholar
  21. 21.
    Hermann, G., On a complementary energy principle in linear thermoelasticity, J. Aero-space Sci., 25, 660, 1958.Google Scholar
  22. 22.
    Parkus, H., Uber eine Erweiterung der Hamilton’schen Prinzipes auf thermoelastische Vorgänge, Federhofer-Girkmann Festschrift, Wien, 1950.Google Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • G. Lebon
    • 1
  • P. Perzyna
    • 2
  1. 1.University of LiegeBelgium
  2. 2.Polish Academy of SciencesPoland

Personalised recommendations