Variational Principles in Classical Mechanics and in Elasticity

  • G. Lebon
  • P. Perzyna
Part of the International Centre for Mechanical Sciences book series (CISM, volume 262)


Consider a material system (either a system of discrete points or a rigid body) with N degrees of freedom and submitted to holonomic constraints.


Variational Principle Classical Mechanic Trial Function Strain Energy Function Displacement Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, D. and Smith, C., When is Hamilton’s principle an extremum principle, A.I.A.A. Journal, 12, 1573, 1974.ADSMATHGoogle Scholar
  2. 2.
    Bailey, C.D., The method of Ritz applied to the equation of Hamilton, comp. Meth. in Appl. Mech. and Eng., 7, 135, 1976.ADSCrossRefGoogle Scholar
  3. 3.
    Bailey, C.D., Application of Hamilton’s law of varying action, Journal, 13, 1154, 1975.ADSMATHGoogle Scholar
  4. 4.
    Bailey, C.D., A new look at Hamilton’s principle, Found. of Phys., 5, 433, 1975.ADSCrossRefGoogle Scholar
  5. 5.
    Trefftz, E., Zur Theorie der Stabilität des elastischen Gleichgewichts, Zeit. Ang. Math. Mech., 13, 160, 1933.MATHCrossRefGoogle Scholar
  6. 6.
    Koiter, W., On the concept of stability of equilibrium for continuum bodies, Proc. Kon. Ned. Ak. Wet., B66, 173, 1963.Google Scholar
  7. 7.
    Koiter, W., Lecture notes on elastic stability, C.I.S.M., Udine, 1971.Google Scholar
  8. 8.
    Timoshenko, S. and. Gere, J., Theory of elastic stability, Mac Graw Hill, New-York, 1961.Google Scholar
  9. 9.
    Pearson, C.E., Theoretical elasticity, Harvard Univ. Press, Cambridge, 1959.Google Scholar
  10. 10.
    Reissner, E., On a variational theorem in elasticity, J. Math. Phys., 29, 90, 1950.MathSciNetMATHGoogle Scholar
  11. 11.
    Washizu, K., Variational methods in elasticity and plasticity, Pergamon, New-York, 1968.MATHGoogle Scholar
  12. 12.
    Hill, R., Mathematical plasticity, Oxford Univ. Press, Oxford, 1950.MATHGoogle Scholar
  13. 13.
    Prager, W. and Hodge, P., Theory of perfectly plastic solids, Wiley, New-York, 1951.MATHGoogle Scholar
  14. 14.
    Lippmann, H., Extremum and variational principles in mechanics, C.I.S.M. Lecture n°54, Springer Verlag, Berlin, 1970.Google Scholar
  15. 15.
    Koiter, W., On the complementary energy theorem in nonlinear elasticity theory, in: Trends in applications of pure mathematics to mechanics, 6, Fichera, Ed., Pitman Pb., London, 1976.Google Scholar
  16. 16.
    Nemat-Nasser, S., General principles in nonlinear and linear elasticity with applications, in: Mechanics Today, vol. 1, Nemat Nasser, Eds., Pergamon, New-York, 1972.Google Scholar
  17. 17.
    Stumpf, H., Generating functionals and extremum principles in nonlinear elasticity with applications to nonlinear plate and shallow shell theory, in I.U.T.A.M. — I.M.U. Symposium on applications of the methods of functional analysis to problems of mechanics, Lecture Notes in Mathematics, 503, Springer-Verlag Berlin, 1976.Google Scholar
  18. 18.
    Stumpf, H., Dual extremum principles and error boands in nonlinear elasticity theory, J. of Elasticity, 8, 425, 1978.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Fung, Y., Foundations of solid mechanics, Prentice Hall, New-York, 1965.Google Scholar
  20. 20.
    Gurtin, M., Variational principles for linear elastodynamics, Arch. Rat. Mech. Anal., 16, 34, 1964.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hlavacek, I., Variational formulation of the Cauchy problem for equations with operator coefficients, Aplik. Mkth., 16, 46, 1971.MathSciNetMATHGoogle Scholar
  22. 22.
    Bailey, C., Hamilton, Ritz and elastodynamics, J. Appl. Mech., 98, 684, 1976.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • G. Lebon
    • 1
  • P. Perzyna
    • 2
  1. 1.University of LiegeBelgium
  2. 2.Polish Academy of SciencesPoland

Personalised recommendations