Advertisement

Basic Concepts of the Calculus of Variation

  • G. Lebon
  • P. Perzyna
Part of the International Centre for Mechanical Sciences book series (CISM, volume 262)

Abstract

Let u(x) be a continuously differentiable function of the independent real variable x defined on the interval x2 ≤ x ≤ x1 Denote by ux its first order derivative.

Keywords

Basic Concept Variational Principle Trial Function Weighted Residual Natural Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gelfand, I. and Fomin, S., Calculus of Variations, Prentice Hall, London, 1963.Google Scholar
  2. 2.
    Finlayson, B., The Method of Weighted Residuals and Variational Principles, Acad. Press, New-York, 1972.MATHGoogle Scholar
  3. 3.
    Schechter, R., The Variational Method in Engineering, Mc Graw Hill, New-York, 1967.MATHGoogle Scholar
  4. 4.
    Napolitano, L., The Finite element Methods in Fluid Mechanics, C.I.S.M. Lecture course, Udine, 1972.Google Scholar
  5. 5.
    Lee, L. and Reynolds, W.C., A Variational Method for Investigating the Stability of Parallel Flows, Tech. Report, Dpt. of Mechanical Engineering, Stantford Univ., December 1964.Google Scholar
  6. 6.
    Wiener, J., A uniqueness theorem for the coupled thermoelastic problem, Quat. Appl. Math., 1, 15, 1957.Google Scholar
  7. 7.
    Ionescu, V. and Casimir, Problem of linear coupled thermoelasticity, uniqueness theorems, Bull. Acad. Pol. Sc., 12,12, 1964.Google Scholar
  8. 8.
    Mikhlin, R., Variational Methods in Mathematical Physics, Mac Millan, New-York, 1964.MATHGoogle Scholar
  9. 9.
    Courant, R. and Hilbert, D., Methods of Mathematical Physics, vol.1, Interscience, New-York, 1953.Google Scholar
  10. 10.
    Vainberg, M., Variational Methods for the Study of Non-linear Operators, Holden-Day, San Francisco, 1964.Google Scholar
  11. 11.
    Oden, J. and Reddy, J.N., Variational methods in theoretical mechanics, Springer-Verlag, Berlin, 1976.MATHCrossRefGoogle Scholar
  12. 12.
    Serrin, J., Mathematical principles of classical fluid mechanics, in Handbuch der Physik, Bd VIII/1, Flügge, S., Ed., Springer Verlag, Berlin, 1969.Google Scholar
  13. 13.
    Lebon, G., Thermodynamique des Phénomènes Irréversibles, E.L.E., Liège, 1979.Google Scholar
  14. 14.
    Ziegler, H., Some extremum principles in irreversible thermodynamics, in Progress in Solid Mechanics, vol. IV, Sneddon, I. and Hill, R., Eds., North-Holland, Amsterdam, 1963.Google Scholar
  15. 15.
    Zienkiewicz, O. and Cheung, Y., The Finite Element Method in Structural and Continuum Mechanics, Mc Graw Hill, New-York, 1967.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • G. Lebon
    • 1
  • P. Perzyna
    • 2
  1. 1.University of LiegeBelgium
  2. 2.Polish Academy of SciencesPoland

Personalised recommendations