CSF β-endorphin, HVA and 5-HIAA of dementia of the Alzheimer type and Binswanger’s disease in the elderly

  • S. Lee
  • T. Chiba
  • T. Kitahama
  • R. Kaieda
  • M. Hagiwara
  • A. Nagazumi
  • A. Terashi
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 30)


Cerebrospinal fluid (CSF) concentration of β-endorphin (β- Ep), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) was measured in 15 patients with dementia of the Alzheimer type (DAT) and in 16 patients suspected of having Binswanger’s disease (BD) by MRI, which sometimes resembles DAT clinically. These were classified into three stages according to severity of dementia, Stage 1 (mild dementia)-Stage 3 (severe dementia). CSF levels of HVA decreased significantly in severe dementia, but the level of 5-HIAA did not correlate with dementia severity in both dementia groups. β-Ep levels did not differ significantly between any stages of DAT, and among controls. β-Ep levels, however, in BD Stage 1 (27.5 ± 5.9 pg/ml) were significantly higher (p < 0.05), but level in Stage 3 (6.7 ± 2.0) was significantly lower (p < 0.001) than in the controls (19.2 ± 4.5). These results suggest that CSF β-Ep may depend on the cause of dementia rather than severity of dementia, and could possibly distinguish the closely resembling BD from true DAT.


Alzheimer Type Severe Dementia Homovanillic Acid Mild Dementia Dementia Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almay BG, Johansson F, von Knorring L, Terenius L, Wahlström A (1978) Endorphins in chronic pain. 1. Differences in CSF endorphin levels between organic and psychogenic pain syndromes. Pain 5:153–162PubMedCrossRefGoogle Scholar
  2. American Psychiatric Association (1987) Diagnostic and statistical manual of mental disorders, 3rd edn (revised). Washington, DCGoogle Scholar
  3. Bareggi SR, Franceschi M, Bonini L, Zecca L, Smirne S (1982) Decreased CSF concentrations of homovanillic acid and y-aminobutyric acid in Alzheimer’s disease: age or disease-related modifications? Arch Neurol 39: 709–712PubMedCrossRefGoogle Scholar
  4. Biemond A (1970) On Binswanger’s subcortical arteriosclerotic encephalopathy and possibility of its clinical recognition. Psychiat Neurol Neurochir 73:413–417PubMedGoogle Scholar
  5. Binswanger O (1894) Die Abgrenzung der allgemeinen progressiven Paralyse. Berl Klin Wochenschr 31:1103–1105, 1137–1139, 1180–1186Google Scholar
  6. Bourre JM, Chanez C, Dumont O, Flexor MA (1982) Alteration of 5′-nucleotidase and Na+, K+-ATPase in central and peripheral nervous tissue from dysmyelinating mutants (jimpy, quaking, Trembler, shiverer, and mld). Comparison with CNPase in the developing sciatic nerve from Trembler. J Neurochem 38: 643–649PubMedCrossRefGoogle Scholar
  7. Brismar T (1983) Neuropathy-functional abnormalities in the BB rat. Metabolism 32 [Suppl 1]:112–117PubMedCrossRefGoogle Scholar
  8. Bulat M (1977) On the cerebral origin of 5-hydroxyindoleacetic acid in the lumbar cerebrospinal fluid. Brain Res 122:388–391PubMedCrossRefGoogle Scholar
  9. Bulat M, Lackovic Z, Jakupcevic M (1974) 5-Hydroxyindoleacetic acid in the lumbar fluid: a specific indicator of spinal cord injury. Science 185:527–528PubMedCrossRefGoogle Scholar
  10. Caplan LR, Schoene WC (1978) Clinical features of subcortical arteriosclerotic encephalopathy (Binswanger’s disease). Neurology 28:1206–1215PubMedCrossRefGoogle Scholar
  11. Chiba T (1988) Studies of β-endorphin and methionin-enkephalin in cerebral vascular disease. Its evaluation and clinical significance of periodic changes. Nippon Ika Daigaku Zasshi 55:46–53Google Scholar
  12. Clement-Jones V, McLoughlin L, Tomlin S, Besser GM, Rees LH, Wen HL (1980) Increased β-endorphin but not met-enkephalin levels in human cerebrospinal fluid after acupuncture for recurrent pain. Lancet ii: 946–949CrossRefGoogle Scholar
  13. Erkinjuntti T, Sipponen JT, Iivanainen M, Ketonen L, Sulkava R, Sepponen RE (1984) Cerebral NMR and CT imaging in dementia. J Comput Assist Tomogr 8:614–618PubMedCrossRefGoogle Scholar
  14. Facchinetti F, Nappi G, Petraglia F, Martignoni E, Sinforiani E, Genazzani AR (1984) Central ACTH deficit in degenerative and vascular dementia. Life Sci 35 :1691–1697PubMedCrossRefGoogle Scholar
  15. Facchinetti F, Petraglia G, Nappi G, Martignoni E, Antoni G, Parrini D, Genazzani AR (1983) Different patterns of central and peripheral βEP, βLPH and ACTH throughout life. Peptides 4: 469–474PubMedCrossRefGoogle Scholar
  16. Folstein MF, Folstein SE, McHugh PR (1975)“Mini-Mental State” A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  17. Frances B, Moisand C, Meunier J-C (1985) Na+ ions and Gpp(NH)p selectively inhibit agonist interactions at µ- and k-opioid receptor sites in rabbit and Guineapig cerebellum membranes. Eur J Pharmacol 117:223–232PubMedCrossRefGoogle Scholar
  18. Furui T, Satoh K, Asano Y, Shimosawa S, Hasuo M, Yaksh TL (1984) Increase of β-endorphin levels in cerebrospinal fluid but not in plasma in patients with cerebral infarction. J Neurosurg 61: 748–751PubMedCrossRefGoogle Scholar
  19. George AE, de Leon MJ, Kalnin A, Rosner L, Goodgold A, Chase N (1986) Leukoencephalopathy in normal and pathologic aging. 2. MRI of brain lucencies. AJNR 7:567–570PubMedGoogle Scholar
  20. Grandison L, Guidotti A (1977) Stimulation of food intake by muscimol and beta endorphin. Neuropharmacology 16:533–536PubMedCrossRefGoogle Scholar
  21. Hachinski VC, Iliff LD, Zilhka M, Du Boulay GH, McAllister VL, Marshall J, Ross Russell RW, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32: 632–637PubMedCrossRefGoogle Scholar
  22. Izquierdo I, Netto CA (1985) The brain β-endorphin system and behavior: the modulation of consecutively and simultaneously processed memories. Behav Neural Biol 44:249–265PubMedCrossRefGoogle Scholar
  23. Jellinger K, Neumayer E (1964) Progressive subcorticale vasculäre Encephalopathie Binswanger. Eine klinisch-neuropathologische Studie. Arch Psychiatr Nervenkr 205:523–554PubMedCrossRefGoogle Scholar
  24. Janota I (1981) Dementia, deep white matter damage and hypertension: ‘Binswanger’s disease’. Psychol Med 11: 39–48PubMedCrossRefGoogle Scholar
  25. Kaiya H, Tanaka T, Takeuchi K, Morita K, Adachi S, Shirakawa H, Ueki H, Namba M (1983) Decreased level of β-endorphin-like immunoreactivity in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Life Sci 33:1039–1043PubMedCrossRefGoogle Scholar
  26. Kinkel WR, Jacobs L, Polachini I, Bates V, Heffner RR Jr (1985) Subcortical arteriosclerotic encephalopathy (Binswanger’s disease). Computed tomographic, nuclear magnetic resonance, and clinical correlations. Arch Neurol 42:951–959PubMedCrossRefGoogle Scholar
  27. McKhan G, Drachman D, Folstein M, Katzman R, Price D, Stadlan E (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34: 939–944CrossRefGoogle Scholar
  28. Nappi G, Facchinetti F, Bono G, Petraglia F, Sinforiani E, Genazzani AR (1986) CSF and plasma levels of pro-opiomelanocortin-related peptides in reversible ischemic attacks and strokes. J Neurol Neurosurg Psychiatry 49:17–21PubMedCrossRefGoogle Scholar
  29. Olszewski J (1965) Subcortical arteriosclerotic encephalopathy. Review of the literature on the so-called Binswanger’s disease and presentation of two cases. World Neurol 3:359–374Google Scholar
  30. Raskind MA, Peskind ER, Lampe TH, Risse SC, Taborsky GJ Jr, Dorsa D (1986) Cerebrospinal fluid vasopressin, oxytocin, somatostatin, and β-endorphin in Alzheimer’s disease. Arch Gen Psychiatry 43:382–388PubMedCrossRefGoogle Scholar
  31. Rezek DL, Morris JC, Fulling KH, Gado MH (1987) Periventricular white matter lucencies in senile dementia of Alzheimer type and in normal aging. Neurology 37:1365–1368PubMedCrossRefGoogle Scholar
  32. Rosenberg GA, Kornfeld M, Stovring J, Bicknell JM (1979) Subcortical arterisclerotic encephalopathy (Binswanger). Computerized tomography. Neurology 29:1102–1106PubMedCrossRefGoogle Scholar
  33. Soininen H, MacDonald E, Rekonnen M, Riekkinen PJ (1981) Homovanillic acid and 5-hydroxyindoleacetic acid levels in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Acta Neurol Scand 64:101–107PubMedCrossRefGoogle Scholar
  34. Steingart A, Hacinski VC, Lau C, Fox AJ, Fox H, Lee D, Inzitari D, Merskey H (1987) Cognitive and neurologic findings in demented patients with diffuse white matter lucencies on computed tomographic scan (Leuko-Araiosis). Arch Neurol 44:36–39PubMedCrossRefGoogle Scholar
  35. Sulkava R, Erkinjuntti T, Laatikainen T (1985) CSF β-endorphin and β-lipotropin in Alzheimer’s disease and multi-infarct dementia. Neurology 35:1057–1058PubMedCrossRefGoogle Scholar
  36. Todorov A, Go RC, Constantinidis J, Elston R (1975) Specificity of the clinical diagnosis of dementia. J Neurol Sci 26: 81–98PubMedCrossRefGoogle Scholar
  37. Tseng LF, Wei ET, Loh HH, Li CH (1980) β-Endorphin: central sites of analgesia, catalepsy and body temperature changes in rats. J Pharm Exp 214: 328–332Google Scholar
  38. Wade JP, Mirsen TR, Hachinski VC, Fisman M, Lau C, Merskey H (1987) The clinical diagnosis of Alzheimer’s disease. Arch Neurol 44: 24–29PubMedCrossRefGoogle Scholar
  39. Wardlaw SL, Stark RI, Baxi L, Frantz AG (1979) Plasma β-endorphin and β-lipotropin in the human fetus at delivery: correlation with arterial pH and po 2. J Clin Endocrinol Metab 49: 888–891PubMedCrossRefGoogle Scholar
  40. Yasunari K, Kohno M, Kanayama Y, Kono Y, Amatsu K, Takeda T, Sato K, Kotsugi N (1988) Changes of plasma levels of β-endorphin-like immunoreactivity after acute clonidine administration in patients with essential hypertension. Horm Metabol Res 17:324–325CrossRefGoogle Scholar
  41. Zeumer H, Schonsky B, Sturm KW (1980) Predominant white matter involvement in subcortical arteriosclerotic encephalopathy (Binswanger disease). J Comput Assist Tomogr 4:14–19PubMedCrossRefGoogle Scholar
  42. Zimmerman RD, Flemming CA, Lee BCP, Saint-Louis LA, Deck MDF (1986) Periventricular hyperintensity as seen by magnetic resonance. Prevalence and significance. AJR 146:443–450PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • S. Lee
    • 1
    • 2
  • T. Chiba
    • 1
  • T. Kitahama
    • 1
  • R. Kaieda
    • 1
  • M. Hagiwara
    • 1
  • A. Nagazumi
    • 1
  • A. Terashi
    • 1
  1. 1.The Second Department of Internal MedicineNippon Medical SchoolTokyoJapan
  2. 2.The Second Department of Internal MedicineNippon Medical SchoolTokyo 102Japan

Personalised recommendations