Skip to main content

Subcellular distribution of acetylcholinesterase in Alzheimer’s disease: abnormal localization and solubilization

  • Conference paper
Neurotransmitter and Dementia

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 30))

  • 47 Accesses

Summary

AChE activity was detected mainly in membrane-bound fractions in the frontal cortex of autopsied control or Alzheimer brain as well as rat cerebral cortex. However, the distribution of AChE among various membrane fractions was different between control and Alzheimer brains. The highest specific activity was detected in the fraction enriched with senile plaque, which was obtained from the Alzheimer brain by sonication, solubilization with detergent and centrifugation on a sucrose density gradient. The senile plaque enriched fraction was incubated with purified collagenase or protease and centrifuged at 100,000 g for 60 min. More than 50% of AChE activity was detected in the supernatant fraction. AChE in the supernatant solution showed a property of G4 isozyme. AChE might probably be anchored to the senile plaque through its collagen tail and be solubilized with collagenase or protease, producing a G4 isozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor α1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52:487–501

    Article  PubMed  CAS  Google Scholar 

  • Allsop D, Landon M, Kidd M (1983) The isolation and amino acid composition of senile plaque core protein. Brain Res 259:348–352

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Perry EK, Perry RH, Wilson ID, Bober MJ, Blessed G, Tomlinson BE (1985) Blood acetyl- and butyrylcholinesterase in senile dementia of Alzheimer type. J Neurol Sci 70:1–12

    Article  PubMed  CAS  Google Scholar 

  • Brzin M, Sketelj J, Klinar B (1983) Cholinesterases. In: Lajtha A (ed) Handbook of neurochemistry, vol 4. Plenum Press, New York, pp 251–292

    Google Scholar 

  • Candy JM, Klinowski J, Perry RH, Perry EK, Fairbairn A, Oakley AE, Carpenter TA, Atack JR, Blessed G, Edwardson JA (1986) Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet i:354 –357

    Article  Google Scholar 

  • Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii:1403

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Andrews V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Friede RL (1965) Enzyme histochemical studies of senile plaques. Neuropathol Exp Neurol 24:477–491

    Article  CAS  Google Scholar 

  • Geula C, Mesulam M (1988) Enzymatic properties of cholinesterases in normal human brain and Alzheimer’s disease. Soc Neurosci Abstr 14:155

    Google Scholar 

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain. An electronmicroscopic study of all fragments derived by homogenisation and centrifugation. J Anat 96:79–88

    PubMed  CAS  Google Scholar 

  • Hammond P, Brimijoin S (1988) Acetylcholinesterase in Huntington’s and Alzheimer’s diseases: simultaneous enzyme assay and immunoassay of multiple brain regions. J Neurochem 50:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Kitaguchi N, Takahashi Y, Tokushima Y, Shiojiri S, Ito H (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331:530–532

    Article  PubMed  CAS  Google Scholar 

  • Koshimura K, Kato T, Tohyama I, Nakamura S, Kameyama M (1986) Qualitative abnormalities of choline acetyltransferase in Alzheimer type dementia. J Neurol Sci 76:143–150

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Martin RG, Ames BN (1961) A method for determining the sedimentation behavior of enzymes — Application to protein mixtures. J Biol Chem 236:1372–1379

    PubMed  CAS  Google Scholar 

  • Massoulie J, Bon S (1982) The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Ann Rev Neurosci 5:57–106

    Article  PubMed  CAS  Google Scholar 

  • McIntosh CHS, Plummer DT (1976) The subcellular localization of acetylcholinesterase and its molecular forms in pig cerebral cortex. J Neurochem 27:449–457

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Geula C, Moran MA (1987) Anatomy of cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann Neurol 22:683–691

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Moran MA (1987) Cholinesterases within neurofibrillary tangles related to age and Alzheimer’s disease. Ann Neurol 22:223–228

    Article  PubMed  CAS  Google Scholar 

  • Nagata H, Mimori Y, Nakamura S, Kameyama M (1984) Regional and subcellular distribution in mammalian brain of the enzymes producing adenosine. J Neurochem 42:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S (1976) Effect of sodium deoxycholate on 5’-nucleotidase. Biochim Biophys Acta 426:339–347

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Yamao S, Ito J, Kameyama M (1979) Purification and properties of 2’-nucleotidase from mammalian brain. Biochim Biophys Acta 568:30–38

    Article  PubMed  CAS  Google Scholar 

  • Nakano S, Kato T, Nakamura S, Kameyama M (1986) Acetylcholinesterase activity in cerebrospinal fluid of patients with Alzheimer’s disease and senile dementia. J Neurol Sci 75:213–223

    Article  PubMed  CAS  Google Scholar 

  • Perry EK (1980) The cholinergic system in old age and Alzheimer’s disease. Age Ageing 9:1–8

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy tissue. J Neurol Sci 34:247–265

    Article  PubMed  CAS  Google Scholar 

  • Reisberg B (1986) Dementia: a systematic approach to identifying reversible causes. Geriatrics 41 (4):30–46

    PubMed  CAS  Google Scholar 

  • Small DH, Simpson RJ (1988) Acetylcholinesterase undergoes autolysis to generate trypsin-like activity. Neurosci Lett 89:223–228

    Article  PubMed  CAS  Google Scholar 

  • Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria. J Cell Biol 32:415–438

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Nakamura S, Ueda K, Kameyama M, Shiojiri S, Takahashi Y, Kitaguchi N, Ito H (1988) Three types of amyloid precursor mRNA in human brain: their differential expression in Alzheimer’s disease. Biochem Biophys Res Commun 157:472–479

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP, Michaelsson IA, Kirkland JA (1964) The separation of synaptic vesicles from nerve-ending particles (synaptosomes). Biochem J 90:293–303

    PubMed  CAS  Google Scholar 

  • Younkin SG, Goodridge B, Katz J, Lockett G, Nafziger D, Usik MF, Younkin LH (1986) Molecular forms of acetylcholinesterase in Alzheimer’s disease. Fed Proc 45:2982–2988

    PubMed  CAS  Google Scholar 

  • Younkin SG, Rosenstein C, Collins PL, Rosenbérry TL (1982) Cellular localization of the molecular forms of acetylcholinesterase in rat diaphragm. J Biol Chem 257:13630–13637

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Nakamura, S., Kawashima, S., Nakano, S., Tsuji, T., Araki, W. (1990). Subcellular distribution of acetylcholinesterase in Alzheimer’s disease: abnormal localization and solubilization. In: Gottfries, C.G., Nakamura, S. (eds) Neurotransmitter and Dementia. Journal of Neural Transmission, vol 30. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3345-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3345-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82190-9

  • Online ISBN: 978-3-7091-3345-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics