Diffuse Fatty Change of White Matter

  • Reinhard L. Friede


The interpretation of diffuse fatty change of the white matter of newborns has been the subject of much controversy for more than a century, and the listing of this tissue alteration among the lesions of asphyctic and traumatic birth is open to challenge. Its description at this point of the text is merely a matter of concern for its overlap with the periventricular infarcts described in Chapter 4. Virchow (1867) described diffuse fatty change of the white matter of newborns under the title “Congenital Encephalitis and Myelitis”. He considered it the result of fatty metamorphosis of glia cells of the white matter of brain and of the tracts of spinal cord, with a general sparing of gray matter. His study was made during an epidemic of smallpox, and he attributed fatty change to an infective process transmitted from the mother to the infant. The interpretation of Virchow’s observations became embroiled in controversy from the very start, as other investigators noticed the near constant occurrence of fatty change in newborns. Hayem (1868) observed fatty change in all of 12 infants studied, but Virchow (1868, 1883) replied that it was often absent, particularly in stillborns and in infants who had not died upon birth.


White Matter Fiber Tract Glia Cell Fiber System Fatty Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Friede, R. L.: Control of myelin formation by axon caliber (With a model of the control mechanism). J. comp. Neurol. 144: 233–252, 1972.PubMedCrossRefGoogle Scholar
  2. Gilles, F. H., Murphy, S. F.: Perinatal telencephalic leucoencephalopathy. J. Neurol. Neurosurg. Psychiat. 32: 404–413, 1969.PubMedCrossRefGoogle Scholar
  3. Hayem, G.: Etudes sur les diverses formes d’encéphalitis (Anatomie et Physiologie pathologiques). Thesis, Doctorate Medicine, Paris 1968.Google Scholar
  4. Jastrowitz, M.: Studien über die Encephalitis und Myelitis des ersten Kindesalters. Arch. Psychiat. 3: 162–213, 1871.CrossRefGoogle Scholar
  5. Jellinger, K., Seitelberger, F., Kozik, M.: Perivascular accumulation of lipids in the infant human brain. Acta Neuropath. 19: 331–342, 1971.PubMedCrossRefGoogle Scholar
  6. Larroche, J. C., Amakawa, H.: Glia of myelination and fat deposit during early myelogenesis. Biol. Neonat. 22: 421–435, 1973.CrossRefGoogle Scholar
  7. Leech, R. W., Alvord, E. C., Jr.: Glial fatty metamorphosis: An abnormal response of premyelin glia frequently accompanying periventricular leukomalacia. Amer. J. Path. 74: 603–612, 1974.PubMedGoogle Scholar
  8. Leviton, A., Gilles, F. H.: Astrocytosis without globules in infant cerebral white matter. An epidemiologic study. J. Neurol. Sci. 22: 329–340, 1974.PubMedCrossRefGoogle Scholar
  9. Merzbacher, L.: Untersuchungen über die Morphologie und Biologic der Abräumzellen im Zentralnervensystem. Histol. Histopath. Arb. Großhirnrinde 3: 1–142, 1910.Google Scholar
  10. Mickel, H. S., Gilles, F. H.: Changes in glial cells during human telencephalic myelinogenesis. Brain 93: 337–346, 1970.PubMedCrossRefGoogle Scholar
  11. Mossakowski, M. J., Long, D. M., Myers, R. E., et al.: Early histochemical changes in perinatal asphyxia. J. Neuropath. exp. Neurol. 27: 500–516, 1968.CrossRefGoogle Scholar
  12. Roback, H. N., Scherer, J. J.: Ober die feinere Morphologie des frühkindlichen Hirnes unter besonderer Berücksichtigung der Gliaentwicklung. Virchow Arch. 294: 365–413, 1935.CrossRefGoogle Scholar
  13. Rydberg, E.: Cerebral injury in newborn children consequent on birth injury. Acta path. scand., Suppl. 10: 1–247, 1932.Google Scholar
  14. Sarnat, H. B., Adelman, L. S.: Perinatal sudanophilic leukodystrophy. Amer. J. Dis. Child. 125: 281–289, 1973.PubMedGoogle Scholar
  15. Schonbach, J., Hu, K. H., Friede, R. L.: Cellular and chemical changes during myelination: Histologic, autoradiographic, histochemical and biochemical data on myelination in the pyramidal tract and corpus callosum of rat. J. comp. Neurol. 134: 21–38, 1968.PubMedCrossRefGoogle Scholar
  16. Siegmund, H.: Geburtsschädigungen des kindlichen Gehirns und ihre Folgen. Münch. med. Wschr. 70: 137–139, 1923.Google Scholar
  17. Siegmund, H.: Die geburtstraumatischen Veränderungen des Zentralnervensystems einschließlich der Encephalitis congenita Virchow. Handbuch der Speziellen Pathol. Anat. Histol. XIII13: 239–287, 1955.Google Scholar
  18. Staemmler, M.: Ober den Befund von Fettkörnchenzellen im Gehirn neugeborener Tiere. Münch. med. Wschr. 70: 1430–1431, 1928.Google Scholar
  19. Sumi, S. M., Alvord, E. C., Parer, J., Eng, M., Ueland, K.: Accumulation of sudanophilic lipids in the cerebral white matter of premature primates. J. Neuropath. exp. Neurol. 31: 183, 1972.Google Scholar
  20. Tuthill, C. R.: Fat in the infant brain in relation to myelin, blood vessels and glia. Arch. Path. 25: 336–346, 1938.Google Scholar
  21. Virchow, R.: Zur pathologischen Anatomie des Gehirns: 1. Congenitale Encephalitis und Myelitis. Virchow Arch. 38: 129–142, 1867.CrossRefGoogle Scholar
  22. Virchow, R.: Ober interstitielle Encephalitis. Virchow Arch. 44: 472–476, 1868.CrossRefGoogle Scholar
  23. Virchow, R.: Encephalitis congenita. Berl. klin. Wschr. 20: 705–709, 1883.Google Scholar
  24. Wohlwill, F.: Zur Frage der sogenannten Encephalitis congenita (Virchow). Z. Neurol. 68: 360–415, 1921.Google Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • Reinhard L. Friede
    • 1
    • 2
  1. 1.Case Western Reserve UniversityClevelandUSA
  2. 2.University of ZurichSwitzerland

Personalised recommendations