Dysplasias of Cerebellar Cortex

  • Reinhard L. Friede


The following remarks amplify the basic aspects of normal cerebellar cortical development described in Chapter 1 and may help the understanding of developmental derangements in cortical architecture. Labelling with tritiated thymidine has shown that the Purkinje cells and the cells of the cerebellar nuclei originate from the division of precursors in the rhombic lip much earlier than the granule cells, basket cells and stellate cells which derive from the division of cells in the superficial granular layer of the cortex. Altman (1969) and Das and Nornes (1972) determined the time of origin of various other types of cortical neurons and added data on regional variation in maturation. In the rat, the Purkinje cells form on the 15th and 16th day of gestation, the interstitial nerve cells on the 15th through 18th day, the marginal cells on the 16th day and the Golgi cells on the 17th through 19th day. Cells intermediate between Golgi and granule cells arise on the 21st day. The earliest stock of granule cells, basket cells and stellate cells appears near birth in the nodulus and flocculus. In other portions of the cerebellar cortex the formation of these cells occurs entirely during the postnatal period. Regional differences in maturation are superimposed on this general schedule of cell types. The lingula and the nodule of the vermis mature before the tuber, the clive and culmen, and all show earlier maturation in the depth of the fissures than at the top of the sulci.


Purkinje Cell Granule Cell Molecular Layer Cerebellar Cortex Granular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, J.: Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J. comp. Neurol. 136: 269–293, 1969.PubMedCrossRefGoogle Scholar
  2. Altman, J.: Experimental reorganization of the cerebellar cortex. III. Regeneration of the external germinal layer and granule cell ectopia. J. comp. Neurol. 149: 153–180, 1973.PubMedCrossRefGoogle Scholar
  3. Altman, J.: Experimental reorganization of the cerebellar cortex. IV. Parallel fiber reorientation following regeneration of the external germinal layer. J. comp. Neurol. 149: 181–192, 1973.PubMedCrossRefGoogle Scholar
  4. Altman, J., Anderson, W. J.: Experimental reorganization of the cerebellar cortex. II. Effects of elimination of most microneurons with prolonged X-irradiation started at four days. J. comp. Neurol. 149: 123–152, 1973.PubMedCrossRefGoogle Scholar
  5. Altman, J., Wright, K. A.: Reconstitution of the external granular layer of the cerebellar cortex in infant rats after low-level X-irradiation. Anat. Rec. 163: 453–472, 1969.PubMedCrossRefGoogle Scholar
  6. Bielschowsky, M.: Über spätinfantile familiäre amaurotische Idiotie mit Kleinhirnsymptomen. Dtsch. Z. Nervenheilk. 50: 7–29, 1913.Google Scholar
  7. Bielschowsky, M.: Zur Histopathologie und Pathogenese der amaurotischen Idiotie mit besonderer Berücksichtigung der zerebellären Veränderungen. J. Psychol. Neurol. 26: 123–244, 1920.Google Scholar
  8. Brun, A.: Zur Kenntnis der Bildungsfehler des Kleinhirns. Schweiz. Arch. Neurol. Psychiat. 1: 61–123; 2: 48–105; 3: 13–88, 1917/18.Google Scholar
  9. Cook, T., Holt, S., Yates, P. O.: Diffuse hypertrophy of the cerebellum. J. Neurol. Neurosurg. Psychiat. 25: 218–221, 1962.PubMedCrossRefGoogle Scholar
  10. Crome, L.: Pachygyria. J. Path. Bact. 71: 335–352, 1956.PubMedCrossRefGoogle Scholar
  11. Das, G. D., Nornes, H. O.: Neurogenesis in the cerebellum of the rat: An autoradiographic study. Z. Anat. Entwickl.-Gesch. 138: 155–165, 1972.CrossRefGoogle Scholar
  12. Deganello and Spangaro: Cited from Vogt and Astwazaturow.Google Scholar
  13. Ebels, E. J.: Studies on ectopic granule cells in the cerebellar cortex—with a hypothesis as to their aetiology and pathogenesis. Acta neuropath. (Berl.) 21: 117–127, 1972.CrossRefGoogle Scholar
  14. Friede, R. L.: Arrested cerebellar development: a type of cerebellar degeneration in amaurotic idiocy. J. Neurol. Neurosurg. Psychiat. 27: 41–45, 1964.PubMedCrossRefGoogle Scholar
  15. Friede, R. L.: Further clinical and histochemical data on arrested cerebellar development. Neurology (Minneap.) 14: 1054–1057, 1964.CrossRefGoogle Scholar
  16. Gilden, D. H., Friedman, H. M., Nathanson, N.: Tamiami virus induced cerebellar heterotopia. J. Neuropath. exp. Neurol. 33: 29–41, 1974.PubMedCrossRefGoogle Scholar
  17. Hallervorden, J.: Über die Harmartome (Ganglioneurome) des Kleinhirns. Dtsch. Z. Nervenheilk. 179: 531–563, 1959.Google Scholar
  18. Herndon, R. M., Margolis, G., Kilham, L.: The synaptic organization of the malformed cerebellum induced by perinatal infection with the feline panleukopenia virus (PLV). I. Elements forming the cerebellar glomeruli. J. Neuropath. exp. Neurol. 30: 196–205, 1971.PubMedCrossRefGoogle Scholar
  19. Herringham, W. P., Andrews, F. W.: Two cases of cerebellar disease in cats, with staggering. St. Barth. Hosp. Rep. 24: 241, 1888.Google Scholar
  20. Hicks, S. P.: Acute necrosis and malformation of developing mammalian brain caused by X-ray. Proc. Soc. exp. Biol. Med. 75: 458–489, 1950.Google Scholar
  21. Hirano, I., Shibuya, C., Hayashi, K.: Induction of a cerebellar disorder with cycasin in newborn mice and hamsters. Proc. Soc. exp. Biol. Med. 131: 593–669, 1969.Google Scholar
  22. Jelgersma, G.: Drei Fälle von Cerebellar-Atrophie bei der Katze; nebst Bemerkungen über das cerebro-cerebellare Verbindungssystem. J. Psychol. Neurol. (Lpz.) 23: 105–134, 1917.Google Scholar
  23. Jervis, G. A.: Early familial cerebellar degeneration. J. nerv. ment. Dis. 111: 398–407, 1950.PubMedGoogle Scholar
  24. Kilham, L., Margolis, G.: Viral etiology of spontaneous ataxia of cats. Amer. J. Path. 48: 991–1011, 1966.PubMedGoogle Scholar
  25. Kilham, L., Margolis, G.: Spontaneous hepatitis and cerebellar “hypoplasia” in suckling rats due to congenital infections with rat virus. Amer. J. Path. 49: 457–475, 1966.PubMedGoogle Scholar
  26. Lhermitte, J., Duclos, P.: Sur un ganglioneurome diffus du cortex du cervelet. Bull. Assoc. franç. Cancer 9: 99–107, 1920.Google Scholar
  27. Mareš, V., Lodin, Z.: The cellular kinetics of the developing mouse cerebellum. II. The function of the external granular layer in the process of gyrifaction. Brain Res. 23: 343–352, 1970.PubMedCrossRefGoogle Scholar
  28. Margolis, G., Kilham, L., Johnson, R. H.: The paraviruses and replicating cells. Insights into the pathogenesis of cerebellar hypoplasia. Lab. Invest. 17: 465–475, 1966.Google Scholar
  29. Meschede, F.: Heterotopie grauer Hirnsubstanz im Markstamme der Hemisphären des kleinen Gehirns. Drei Beobachtungen. Virchows Arch. 56: 82–96, 1872.CrossRefGoogle Scholar
  30. Nathanson, N., Cole, G. A., van der Loos, H.: Heterotopic cerebellar granule cells following administration of cyclophosphamide to suckling rats. Brain Res. 15: 532–536, 1969.PubMedCrossRefGoogle Scholar
  31. Norman, R. M.: Primary degeneration of the granular layer of the cerebellum: An unusual form of familial cerebellar atrophy occurring in early life. Brain 63: 365–379, 1940.CrossRefGoogle Scholar
  32. Phemister, R. D., Shirely, J. N., Young, S.: The effects of gamma irradiation on the postnatally developing canine cerebellar cortex. J. Neuropath. exp. Neurol. 28: 119–127, 1969.PubMedCrossRefGoogle Scholar
  33. Rorke, L. B., Fogelson, M. H., Riggs, H. E.: Cerebellar heterotopia in infancy. Develop. Med. Child. Neurol. 10: 644–650, 1968.PubMedCrossRefGoogle Scholar
  34. Shimada, M., Langman, J.: Repair of the external granular layer of the hamster cerebellum after prenatal and postnatal administration of methylazoxymethanol. Teratology 3: 119–134, 1970.PubMedCrossRefGoogle Scholar
  35. Sidman, R. L., Lane, P. W., Dickie, M. M.: Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137: 610–612, 1962.PubMedCrossRefGoogle Scholar
  36. Sosa, J. M., Palacios, E., de Sosa, M. S.: Heterotopic cerebellar granule cells inside the plexiform layer. Acta Anat. 80: 91–98, 1971.PubMedCrossRefGoogle Scholar
  37. Ule, G.: Kleinhirnrindenatrophie vom Körnertyp. Dtsch. Z. Nervenheilk. 168: 195–226, 1952.Google Scholar
  38. van Bogaert, L., Radermecker, M. A.: Une dysgénésie cérébelleuse chez un enfant du radium. Rev. Neurol. (Paris) 93: 65–82, 1955.Google Scholar
  39. Vogt, H., Astwazaturow, M.: Über angeborene Kleinhirnerkrankungen mit Beiträgen zur Entwicklungsgeschichte des Kleinhirns. Arch. Psychiat. Nervenkr. 49: 75–203, 1912.CrossRefGoogle Scholar
  40. Westphal, A.: Beitrag zur Lehre von der amaurotischen Idiotie. Arch. Psychiat. Nervenkr. 58: 248–283, 1917.CrossRefGoogle Scholar
  41. Wiest, W. D.: Hallervorden, J.: Migrationshemmungen im Groß- und Kleinhirn. Dtsch. Z. Nervenheilk. 178: 224–238, 1958.Google Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • Reinhard L. Friede
    • 1
    • 2
  1. 1.Case Western Reserve UniversityClevelandUSA
  2. 2.University of ZurichSwitzerland

Personalised recommendations