Hydrocephalus—Basic Concepts and General Pathology

  • Reinhard L. Friede


The term hydrocephalus, in its broadest sense, means an increased amount of fluid in the CSF spaces, particularly in the cerebral ventricles, as opposed to local accumulations of fluid in subdural hygromas, arachnoid cysts, or cavities within the cerebral parenchyma. Enlargement of the cerebral ventricles may result from their distension by increased intraventricular pressure, or from the loss of tissue caused by disease processes destroying nervous parenchyma; it is customary to distinguish “increased pressure hydrocephalus” from “hydrocephalus e vacuo”. It needs to be emphasized from the start that these two mechanisms of ventricular dilation are not mutually exclusive and that they often combine and interact. For example, long-standing distension of the cerebral hemispheres because of increased intraventricular pressure eventually induces tissue damage and superimposed hemispheric atrophy. Conversely, massive destruction of the hemispheres, such as in hydranencephaly (Chapter 11), may result in secondary impairment of CSF circulation, whereby pressure hydrocephalus becomes grafted upon encephaloclastic lesions. In adult brains there may be difficulties in deciding whether a mild ventricular enlargement results from increased pressure or from hemispheric atrophy, particularly if there are no additional clues as to the causative mechanism. This problem usually does not arise for the hydrocephalus in infants and children.


Ventricular Wall Arachnoid Cyst Ependymal Cell General Pathology Cerebral Ventricle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, H.: Kugelförmige Pigmentzellen als Anzeiger der Liquorströmung in den Gehirnventrikeln von Krallenfroschlarven. Z. Naturforsch. (B) 8: 250–258, 1953.Google Scholar
  2. Adams, R. D., Fisher, C. M., Ojemann, R. G., Sweet, W. H.: Normal-pressure hydrocephalus. New End. T. Med. 273: 117–126, 1965.CrossRefGoogle Scholar
  3. Adolph, R. J., Fukusumi, H., Fowler, N. O.: Origin of cerebrospinal fluid pulsations. Amer. J. Physiol. 212: 840–846, 1967.PubMedGoogle Scholar
  4. Alvord, E. C., Jr.: The pathology of hydrocephalus. In: Disorders of the Developing Nervous System (Fields, W. S., Desmond, M. M., eds.), chapter 14. 1961.Google Scholar
  5. Bachs, A., Walker, A. E.: Experimental hydrocephalus. J. Neuropath. exp. Neurol. 7: 283–292. 1953.CrossRefGoogle Scholar
  6. Bakay, L.: Phylogenesis of the perivascular spaces of the brain. Nature (Lond.) 160: 789–790, 1947.CrossRefGoogle Scholar
  7. Bering, E. A., Jr.: Choroid plexus and arterial pulsation of cerebrospinal fluid. Arch. Neurol. Psychiat. 73: 165–172, 1955.Google Scholar
  8. Bering, E. A., Jr.: Circulation of the cerebrospinal fluid. J. Neurosurg. 19: 405–413, 1962.PubMedCrossRefGoogle Scholar
  9. Bering, E. A., Sato, O.: Hydrocephalus: Changes in formation and absorption of cerebral spinal fluid within the cerebral ventricles. J. Neurosurg. 20: 1050–1063, 1963.PubMedCrossRefGoogle Scholar
  10. Brightman, M. W.: Movement within the brain of ferritin injected into the cerebral spinal fluid compartments. In: Brain Edema (Klatzo, I., Seitelberger, F., eds.), pp. 271–284. Wien-New York: Springer 1967.CrossRefGoogle Scholar
  11. Brightman, M. W.: The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. In: Brain Barriers Systems (Lajtha, A., Ford, D. H., eds.). Progr. Brain Res. 29: 19–37, 1967.Google Scholar
  12. Brightman, M. W., Reese, T. S.: Junctions between intimately apposed cell membranes in the vertebrate brain. T. Cell Biol. 40: 648–677, 1969.CrossRefGoogle Scholar
  13. Cathcart, R. S., Worthington, W. C., Jr.: Ciliary movement in the rat cerebral ventricles: Clearing action and directions of currents. J. Neuropath. exp. Neurol. 28: 69–618, 1964.Google Scholar
  14. Cutler, R. W., Deuel, R. K., Barlow, C. F.: Albumin exchange between plasma and cerebrospinal fluid. Arch. Neurol. (Chic.) 17: 261–270, 1967.CrossRefGoogle Scholar
  15. Cutler, R. W., Murray, J. E., Moody, R. A.: Overproduction of cerebrospinal fluid in communicating hydrocephalus. Neurology (Minneap.) 23: 1–6, 1973.CrossRefGoogle Scholar
  16. Dandy, W. E., Blackfan, K. D.: Internal hydrocephalus. Amer. J. Dis. Child. 8: 406–482, 1914.Google Scholar
  17. Davson, H.: Physiology of the Cerebrospinal Fluid. London: Churchill 1967.Google Scholar
  18. Dohrmann, J. G.: The choroid plexus in experimental hydrocephalus. A light and electron microscopic study in normal, hydrocephalic, and shunted dogs. J. Neurosurg. 34: 56–69, 1971.PubMedCrossRefGoogle Scholar
  19. du Boulay, G. H.: Pulsatile movements in the CSF pathways. Brit. J. Radiol. 39: 255–262, 1966.PubMedCrossRefGoogle Scholar
  20. Dyke, G. G., Davidoff, L. M.: An explanation for the ribbing seen in the walls ot dilated cerebral ventricles. Yale J. Biol. Med. 11: 485–487, 1939.PubMedGoogle Scholar
  21. Edvinsson, L., West, K.: Relation between intracranial pressure and ventricular size at various stages of experimental hydrocephalus. Acta Neurol. Scand. 47: 451–457, 1971.PubMedCrossRefGoogle Scholar
  22. Emery, J. E.: Intracranial effects of long standing decompression of the brain in children with hydrocephalus and myelomeningocele. Develop. Med. Child. Neurol. 7: 302–309, 1965.PubMedCrossRefGoogle Scholar
  23. Fishman, R. A., Greer, M.: Experimental obstructive hydrocephalus: changes in the cerebrum. Arch. Neurol. (Chic.) 8: 156–161, 1963.CrossRefGoogle Scholar
  24. Friede, R. L.: Untersuchungen an flimmerndem Ependym in Kultur. Arch. Psychiat. (Berl.) 193: 205–392, 1955.Google Scholar
  25. Friede, R. L.: A quantitative study of myelination in hydrocephalus. J. Neuropath. exp. Neurol. 21: 645–648, 1962.PubMedCrossRefGoogle Scholar
  26. Friede, R. L., Hu, K. H.: A new approach for determining the volume of cerebral extracellular fluid and demonstration of its communication with CSF. J. Physiol. (Lond.) 218: 477–493, 1971.Google Scholar
  27. Granholm, L.: Induced reversibility of ventricular dilation in experimental hydrocephalus. Acta Neurol. Scand. 42: 581–588, 1966.PubMedCrossRefGoogle Scholar
  28. Grundy, H. F.: Circulation of cerebrospinal fluid in the spinal region of the cat. J. Physiol. (Lond.) 163: 457–465, 1962.Google Scholar
  29. Harris, L. S., Roessmann, U., Friede, R. L.: Bursting of cerebral ventricular walls. J. Path. Bact. 96: 33–38, 1968.PubMedCrossRefGoogle Scholar
  30. Hayden, P., Shurtleff, D. B., Foltz, E. L.: Ventricular fluid pressure recordings in hydrocephalic patients. Arch. Neurol. (Chic.) 23: 147–154, 1970.CrossRefGoogle Scholar
  31. Hild, W.: Ependymal cells in tissue culture. Z. Zellforsch. 46: 259–271, 1957.PubMedCrossRefGoogle Scholar
  32. Hochwald, G. M., Lux, W. E., Jr., Sahar, A., Ransohoff, J.: Experimental hydrocephalus. Arch. Neurol. (Chic.) 26: 120–129, 1972.CrossRefGoogle Scholar
  33. Sahar, A., Sadik, A. R., Ransohoff, J.: Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus. Exp. Neurol. 25: 190–199, 1969.PubMedCrossRefGoogle Scholar
  34. Kaufman, B., Sandstrom, P. H., Young, H. F.: Alteration in size and configuration of the sella turcica as the result of prolonged cerebrospinal fluid shunting. Radiology 97: 537–542, 1970.PubMedGoogle Scholar
  35. Kaufman, B., Weiss, M. H., Young, H. F., Nulsen, F. E.: Effects of prolonged cerebrospinal fluid shunting on the skull and brain. J. Neurosurg. 38: 288–297, 1973.PubMedCrossRefGoogle Scholar
  36. Laurence, K. M.: Neurological and intellectual sequelae of hydrocephalus. Arch. Neurol. (Chic.) 20: 73–81, 1969.CrossRefGoogle Scholar
  37. Lorenzo, A. V., Page, L. K., Watters, G. V.: Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain 93: 679–692, 1970.PubMedCrossRefGoogle Scholar
  38. Lux, W. E., Jr., Hochwald, G. M., Sahar, A., Ransohoff, J.: Periventricular water content. Arch. Neurol. (Chic.) 23: 475–479, 1970.CrossRefGoogle Scholar
  39. Milhorat, T. H., Clark, R. G., Hammock, M. K., McGrath, P. P.: Structural, ultrastructural, and permeability changes in the ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch. Neurol. (Chic.) 22: 397–407, 1970.CrossRefGoogle Scholar
  40. Mortensen, O. A., Weed, L. H.: Absorption of isotonic fluids from subarachnoid space. Amer. J. Physiol. 108: 458–468, 1934.Google Scholar
  41. Nulsen, F. E., Spitz, E. B.: Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg. Forum 2: 399–403, 1952.Google Scholar
  42. Ogata, J., Hochwald, G. M., Cravioto, H., Ransohoff, J.: Distribution of intraventricular horseradish peroxidase in normal and hydrocephalic cat brains. J. Neuropath. exp. Neurol. 31: 454–463, 1972.PubMedCrossRefGoogle Scholar
  43. Penfield, W. L., Elridge, A. R.: Hydrocephalus and the atrophy of cerebral compression. In: Cytology and Cellular Pathology of the Nervous System (Penfield, W., ed.), chapter 28. New York: Hoeber 1932.Google Scholar
  44. Rall, D. P., Oppelt, W. W., Patlak, C. S.: Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci. 2: 43–48, 1962.CrossRefGoogle Scholar
  45. Rubin, R. C., Hochwald, G. M., Liwnicz, B., Tien, M., Mizutani, H., Shulman, K.: The effect of severe hydrocephalus on size and number of brain cells. Develop. Med. Child. Neurol. 14, Suppl. 27: 117–120, 1972.Google Scholar
  46. Russell, D. S.: Observations on the Pathology of Hydrocephalus. Med. Res. Council Special Rep. Series No. 265. London: HMSO 1949Google Scholar
  47. Sahar, A., Hochwald, G. M., Ransohoff, J.: Alternate pathway for cerebrospinal fluid absorption in animals with experimental obstructive hydrocephalus. Exp. Neurol. 25: 200–206, 1969.PubMedCrossRefGoogle Scholar
  48. Scammon, R., Hesdorfer, H.: Growth of the human nervous system. Proc. Soc. exp. Biol. 33: 415–421, 1935.Google Scholar
  49. Scarf, J. E.: Nonobstructive hydrocephalus; treatment by endoscopic cauterization of choroid plexus. Long term results. J. Neurosurg. 9: 164–176, 1952.CrossRefGoogle Scholar
  50. Shenkin, H. A., Perry, C. R.: Reversibility of cerebral ventricular dilatation. J. Neurosurg. 3: 234–238, 1946.PubMedCrossRefGoogle Scholar
  51. Van Harreveld, A.: Brain Tissue Electrolytes. Washington, D.C.: Butterworth 1966.Google Scholar
  52. Van Rijssel, J. G.: Circulation of cerebrospinal fluid in carassius gibelio. Arch. Neurol. Psvchiat. (Chic.) 56: 522–541 1946.Google Scholar
  53. Weed, L. H.: Developments of the cerebrospinal spaces in pig and man. Contrib. Embryol. Publ. Carnegie Inst. Washington 5, No. 14, 1917.Google Scholar
  54. Weller, R. O., Wisniewski, H.: Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92: 819–828, 1969.PubMedCrossRefGoogle Scholar
  55. Weller, R. O., Shulman, K., Terry, R. D.: Experimental hydrocephalus in young dogs: Histological and ultrastructural study of the brain tissue damage. J. Neuropath. exp. Neurol. 30: 613–626, 1971.PubMedCrossRefGoogle Scholar
  56. Worthington, W. C., Jr., Cathcart, R. S.: Ependymal cilia: Distribution and activity in the adult human brain. Science 139: 221–222, 1963.PubMedCrossRefGoogle Scholar
  57. Yakovlev, P. I.: Paraplegias in hydrocephalics. Amer. J. ment. Defic. 51: 561–576, 1947.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • Reinhard L. Friede
    • 1
    • 2
  1. 1.Case Western Reserve UniversityClevelandUSA
  2. 2.University of ZurichSwitzerland

Personalised recommendations