Gross and Microscopic Development of the Central Nervous System

  • Reinhard L. Friede


This chapter concerns mainly the gross and microscopic aspects of normal cerebral development during the second half of gestation, that is the period usually encountered by the pathologist. Its purpose is to provide a frame of reference for assessing normalcy in the brain of the fetus and of the newborn, to point out changes of borderline significance, and to establish base lines for the evaluation of gross or microscopic pathologic changes. The chapter does not provide an extensive review of normal embryology of the human central nervous system; developmental principles are cited only to the extent to which they are of help in interpreting abnormal tissue structure, and pertinent data are generally included in the respective chapters of the text.


White Matter Purkinje Cell Sheath Cell Matrix Cell Matrix Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, J.: Autoradiographic and histological studies of postnatal neurogenesis. J. comp. Neurol. 128: 431–474, 1966.CrossRefGoogle Scholar
  2. Angevine, J. B., Jr.: Time of neuron origin in the hippocampal region. Exp. Neurol. Suppl. 2: 1–70, 1965.Google Scholar
  3. Angevine, J. B., Jr.: Time of neuron origin in the diencephalon of the mouse. An autoradioeraphic study. J. comp. Neurol. 139: 129–188, 1970.PubMedCrossRefGoogle Scholar
  4. Angevine, J. B., Sidman, R. L.: Autoradiographic study of cell migrations during histogenesis ot cerebral cortex in the mouse. Nature 192: 766–768, 1961.PubMedCrossRefGoogle Scholar
  5. Angevine, J. B., Sidman, R. L.: Autoradiographic study of histogenesis in the cerebral cortex of the mouse. Anat. Rec. 142: 210–210, 1962.Google Scholar
  6. Banker, B. Q., Larroche, J.-C.: Periventricular leukomalacla or inrancy. Arch. Neurol. 7: 386–410. 1962.PubMedCrossRefGoogle Scholar
  7. Barbe, A.: Recherches sur l’embryologie du système nerveux central de l’homme. vans: Masson & Cie. 1938.Google Scholar
  8. Bates, I. J., Netsky, M. G.: Developmental anomalies of the horns of the lateral ventricles. T. Neuropath. exp. Neurol. 14: 316–325, 1955.CrossRefGoogle Scholar
  9. Bérard-Badier, M., Colmant, H-J., Jacob, H., Solcher, H.: Über die Spindel- und Rundzell dysgenesien im Dendatumvlies und ihre Genese. Acta Neuropath. 5: 243–251, 1965.PubMedCrossRefGoogle Scholar
  10. Bergel, A.: Über ein tumorähnliches Knötchen der Seitenwand des Rückenmarkes bel einem menschlichen Embryo von 16,5 größter Länge. Z. Neur. 116: 687–691, 1928.Google Scholar
  11. Berliner, K.: Beiträge zur Histologie und Entwicklungsgeschichte des Kleinhirns. Arch. mikr. Anat. 66: 220–270, 1905.CrossRefGoogle Scholar
  12. Berry, M., Rogers, A. W.: The migration ot neuroblasts in the deveioping cereoral cortex. J. Anat. 99: 691–711, 1965.PubMedGoogle Scholar
  13. Biach, P.: Zur normalen und pathologischen Anatomie der äußeren Körnerschicht des Klein hirns. Arb. neurol. Inst. Univ. Wien 18: 13–30, 1909–1910.)Google Scholar
  14. Brack, M.: Perinatal telencephalic leucoencephalopathy in chimpanzees kran trogiuuy Les). Acta Neuropath. (Berlin) 25: 307–312, 1973.CrossRefGoogle Scholar
  15. Brun A.: Zur Kenntnis der Bildungsfehler des Kleinhirns. Schweiz. Arch. Neurol. Psychiat. 1: 61–123: 2: 48–105; 3: 13–88, 1917–1918.Google Scholar
  16. Brun A.: The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance in congenital cortical malformations. Acta Path. Microbiol. Scand., Suppl. 179. 1965.Google Scholar
  17. Calkins, L. A., Scammon, R. E.: The growth of the spinal axis of the human body in prenatal life. Proc. Soc. exp. Biol. Med. 24: 300–303, 1927.Google Scholar
  18. Calkins, L. A., The growth of the individual vertebrae of the human spine in prenatal life. Anat. Rec. 52: 6–7, 1932.Google Scholar
  19. Cravioto, H.: The role of Schwann cells in the development of human peripheral nerves. An electron microscopic study. J. Ultrastruct. Res. 12: 634–651, 1965.PubMedCrossRefGoogle Scholar
  20. Davidoff, L. M.: Coarctation of the walls of the lateral angles of the lateral cerebral ventricles. J. Neurosurg. 3: 250–256, 1946.PubMedCrossRefGoogle Scholar
  21. Dekaban, A.: Human thalamus. II. Development of the human thalamic nuclei. J. comp. Neurol. 100: 63–97, 1954.PubMedCrossRefGoogle Scholar
  22. Dunn, H. L.: The growth of the central nervous system in the human fetus as expressed by granhic analvsis and empirical formulae. J. comp. Neurol. 33: 405–491, 1921.CrossRefGoogle Scholar
  23. Dunn, H. L., Ellenberger, C., Hanaway, J., Netzky, M. G. Embryogenesis of the inferior olivary nucleus in the rat: a radioautographic study and a re-evaluation of the rhombic lip. J. comp. Neurol. 137: 71–79, 1969.CrossRefGoogle Scholar
  24. Ellis, R. S.: Norms for some structural changes in the human cerebellum trom birth to old age. J. comp. Neurol. 32: 1–35, 1920.CrossRefGoogle Scholar
  25. Fenichel, M. D., Bazelon, M.: Studies on neuromelanin. II. Melanin in the brainstems of infants and children. Neurology 18: 817–820, 1968.PubMedCrossRefGoogle Scholar
  26. Fleschsig, P.: Die Leitungsbahnen im Gehirn und Rückenmark des Menschen. Leipzig: Engelmann 1876.Google Scholar
  27. Foley, J. M., Baxter, D.: On the nature of pigment granules in the cells of the locus coeruleus and substantia nigra. J. Neuropath. exp. Neurol. 17: 586–598, 1958.PubMedCrossRefGoogle Scholar
  28. Friede, R. L.: A histochemical study of DPN-diaphorase in human white matter; with some notes on myelination. J. Neurochem. 8: 17–30, 1961.PubMedCrossRefGoogle Scholar
  29. Friede, R. L.: Control of myelin formation by axon caliber (with a model of the control mechanism). J. comp. Neurol. 144: 233–252, 1972.PubMedCrossRefGoogle Scholar
  30. Friede, R. L.: Dating the development of human cerebellum. Acta Neuropath. (Berl.) 23: 48–58, 1973.CrossRefGoogle Scholar
  31. Friede, R. L., Samorajski, T.: Myelin formation in the sciatic nerve of rat. A quantitative electron microscopic, histochemical and radioautographic study. J. Neuropath. exp. Neurol. 27: 546–571, 1968.PubMedCrossRefGoogle Scholar
  32. Geren, B. B.: The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp. Cell Res. 7: 558–562, 1954.CrossRefGoogle Scholar
  33. Gilles, F. H., Murphy, S. E.: Perinatal telencephalic leucoencephalopathy. J. Neurol. Neurosurg. Psychiat. 32: 404–413, 1969.PubMedCrossRefGoogle Scholar
  34. Hanaway, J., McConnell, J. A., Netsky, M. G.: Histogenesis of the substantia nigra, ventral tegmental area of Tsai and interpeduncular nucleus: an autoradiographic study in the mesencephalon in the rat. J. comp. Neurol. 142: 59–73, 1971.PubMedCrossRefGoogle Scholar
  35. Haymaker, W., Margoles, C., Pentschew, A., Jacob, H., Lindenberg, R., Sáenz Arroyo, L., Stochdorph, O., Stowens, D.: Pathology of kernicterus and posticteric encephalopathy. Presentation of 87 cases, with a consideration of pathogenesis and etiology. In: Kernicterus and its Importance in Cerebral Palsy, pp. 21–228. Springfield, Ill.: Ch. C Thomas 1961.Google Scholar
  36. Hesdorffer, H., Scammon, R. E.: Growth of human nervous system. Proc. Soc. exp. Biol. 33: 415–421, 1935.Google Scholar
  37. Hicks, S. P., D’Amato, C. J.: Cell migrations to the isocortex in the rat. Anat. Rec. 160: 619–634, 1968.PubMedCrossRefGoogle Scholar
  38. Hinds, J. W.: Autoradiographic study of histogenesis in the olfactory bulb and accessory olfactory bulb in the mouse. Anat. Rec. 154: 358–359, 1966.Google Scholar
  39. Howard, E., Granoff, D. M., Bujnovszky, P.: DNA, RNA, and cholesterol increase in cerebrum and cerebellum during development of human fetus. Brain Res. 14: 697–706, 1969.PubMedCrossRefGoogle Scholar
  40. Jellinger, K.: Persistent matrix cell nests in human cerebellar nuclei. Neuropädiatrie 5: 28–33, 1974.PubMedCrossRefGoogle Scholar
  41. Kantero, R.-L., Tiisala, R.: Growth of head circumference from birth to 10 years. Acta Paed. Scand., Suppl 220: 27–32, 1971.Google Scholar
  42. Lapham, L. W.: The tetraploid DNA content of normal human Purkinje cells and its development during the perinatal period. Proc. Vth Internat. Congr. Neuropath. Zurich. Excerpta Med. Found. 1966, pp. 445–449.Google Scholar
  43. Larroche, J. C.: Quelques aspects anatomiques du development cerebral. Biol. Neonat. 4: 126–153, 1962.CrossRefGoogle Scholar
  44. Lassek, A. M., Rasmussen, G. L.: A quantitative study of the newborn and adult spinal cords of man. J. comp. Neurol. 69: 371–379, 1938.CrossRefGoogle Scholar
  45. Lassek, A. M., Rasmussen, G. L.: A regional volumetric study of the gray and white matter of the human prenatal spinal cord. J. comp. Neurol. 70: 137–151, 1939.CrossRefGoogle Scholar
  46. Lucas Keene, M. F., Hewer, E. E.: Some observations on myelination in the human central nervous system. J. Anat. 66: 1–13, 1931.Google Scholar
  47. McFarland, D. E., Friede, R. L.: Number of fibers per sheath cell and internodal length in cat cranial nerves. J. Anat. 109: 169–176, 1971.PubMedGoogle Scholar
  48. Martinez, A. J., Friede, R. L.: Changes in nerve cell bodies during the myelination of their axons.. comp. Neurol. 138: 329–338, 1970.CrossRefGoogle Scholar
  49. Matthews, M. A., Duncan, D.: A quantitative study of morphological changes accompanying the initiation and progress of myelin production in the dorsal funiculus of the rat spinal cord. J. comp. Neurol. 142: 1–22, 1971.PubMedCrossRefGoogle Scholar
  50. Miale, I. L., Sidman, R. L.: An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4: 277–296, 1971.CrossRefGoogle Scholar
  51. Mikhailets, V. V., 1952: Quoted in: The Human Brain in Figures and Tables (Blinkov, S. M., Glezer, I. I.), p. 334. New York: Plenum Press 1968.Google Scholar
  52. Morel, F., Wildi, E.: Les ventricules cérébraux dans la démence précoce. Mschr. Psychiat. Neurol. 127: 1–10, 1954.CrossRefGoogle Scholar
  53. Murofushi, K.: Symmetrischer Pseudokalk in Stammganglien und Großhirnmark mit diskreter Leukencephalopathie bei Downschem Syndrom. Neuropädiatrie 1: 103–108, 1974.CrossRefGoogle Scholar
  54. Nellhaus, G.: Head circumference from birth to eighteen years. Practical composite international and interracial graphs. Pediatrics 41: 106–114, 1968.PubMedGoogle Scholar
  55. O’Rahilly, R., Gardner, E.: The timing and sequence of events in the development of the human nervous system during the embryonic period proper. Z. Anat. Entwickl.-Gesch. 134: 1–12, 1971.CrossRefGoogle Scholar
  56. Peters, A., Muir, A. R.: The relationship between axons and Schwann cells during development of peripheral nerves in the rat. Quart. J. exp. Physiol. 44: 117–130, 1959.PubMedGoogle Scholar
  57. Pryse-Davies, J., Beard, R. W.: A necropsy study of brain swelling in the newborn with special reference to cerebellar herniation. J. Path. 109: 51–73, 1973.PubMedCrossRefGoogle Scholar
  58. Raaf, J., Kernohan, J. W.: A study of the external granular layer in the cerebellum. Amer. J. Anat. 75: 151–172, 1944.CrossRefGoogle Scholar
  59. Rakić, P.: Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron-microscopic study in macacus rhesus. J. comp. Neurol. 141: 283–312, 1971.PubMedCrossRefGoogle Scholar
  60. Rakić Mode of cell migration to the superficial layers of fetal monkey neocortex. J. comp. Neurol. 145: 61–84, 1972.CrossRefGoogle Scholar
  61. Rakić Sidman, R. L.: Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwickl.-Gesch. 129: 53–82, 1969.CrossRefGoogle Scholar
  62. Rakić Sidman, R. L.: Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J. comp. Neurol. 139: 473–500, 1970.PubMedCrossRefGoogle Scholar
  63. Reid, J. D.: Ascending nerve roots. J. Neurol. Neurosurg. Psychiat. 23: 148–155, 1960.PubMedCrossRefGoogle Scholar
  64. Richter, E.: Die Entwicklung des Globus pallidus und des Corpus subthalamicum. Monogr. Neurol. Psychiat. (Berl.) 108: 1–131, 1965.Google Scholar
  65. Riggs, H. E., Rorke, L. B.: Myelination of the Brain in the Newborn. Philadelphia: Lippincott 1969.Google Scholar
  66. Roback, H. N., Scherer, J. J.: Über die feinere Morphologie des frühkindlichen Hirnes unter besonderer Berücksichtigung der Gliaentwicklung. Virchow Arch. path. Anat. 294: 365–413, 1935.Google Scholar
  67. Rydberg, E.: Cerebral injury in new-born children consequent on birth trauma; with an inquiry into the normal and pathological anatomy of the neuroglia. Acta Path. Microbiol. Scand., Suppl. 10: 1–247, 1932.Google Scholar
  68. Samorajski, T., Friede, R. L.: A quantitative electron microscopic study of myelination in the pyramidal tract of rat. J. comp. Neurol. 134: 323–338, 1968.PubMedCrossRefGoogle Scholar
  69. Scammon, R. E.: Growth and Development of the Child. Part II, Anatomy and Physiology. The central nervous system. In: White House Conference on Child Health and Protection, pp. 176–190. New York-London: The Century Co. 1933.Google Scholar
  70. Scammon, R. E. Dunn, H. L.: On the growth of the human cerebellum in early life. Proc. Soc. exp. Biol. Med. 21: 217–221, 1924.Google Scholar
  71. Schonbach, J., Hu, K. H., Friede, R. L.: Cellular and chemical changes during myelination. Histologic, autoradiographic and biochemical data on myelination in the pyramidal tract and corpus callosum of rat. J. comp. Neurol. 134: 21–38, 1968.PubMedCrossRefGoogle Scholar
  72. Schwidde, J. T.: Incidence of cavum septi pellucidi and cavum vergae in 1,032 human brains. Arch. Neurol. Psychiat. 67: 625–632, 1952.Google Scholar
  73. Sidman, R. L., Angevine, J. B., Jr.: Autoradiographic ar alysis of time of origin of nuclear versus cortical components of mouse telecephalon. Anat. Rec. 142: 326–327, 1962.Google Scholar
  74. Silver, H. K., Diemer, W. C.: Graphs of the head circumference of the normal infant. J. Pediat. 33: 167–171, 1948.PubMedCrossRefGoogle Scholar
  75. Solcher, H.: Zur Neuroanatomie und Neuropathologie der Frühfetalzeit. Monogr. Neurol. Psychiat. (Berl.) 127: 1–78, 1968.Google Scholar
  76. Spence, A. M., Gilles, F. H.: Underpigmentation of the substantia nigra in chronic disease in children. Neurology 21: 386–390, 1971.PubMedCrossRefGoogle Scholar
  77. Taber, E.: Histogenesis of brain stem neurons studied autoradiographically with thymidine-H3in the mouse. Anat. Rec. 145: 291–291, 1963.Google Scholar
  78. Taber, E.: Histogenesis of brain stem neurons studied autoradiographically with thymidine-H3in the mouse. Anat. Rec. 148: 344–344, 1964.Google Scholar
  79. Taber Pierce, E.: Histogenesis of the nuclei griseum pontis, corporis pontobulbaris and reticularis tegmenti ponds (Bechterew) in the mouse. An autoradiographic study. J. comp. Neurol. 126: 219–239, 1966.CrossRefGoogle Scholar
  80. Taber, Pierce, E.: Histogenesis of the dorsal and ventral cochlear nuclei in the mouse. Neurol. 131: 27–54, 1967.Google Scholar
  81. Uzman, L. L.: The histogenesis of the mouse cerebellum as studied by thymidine uptake. J. comp. Neurol. 114: 137–159, 1960.PubMedCrossRefGoogle Scholar
  82. Westergaard, E.: The Lateral Cerebral Ventricles and Ventricular Walls. Odense: Andelsbogtrykkeriet 1970.Google Scholar
  83. Wilmer, H. A.: Changes in structural components of the human body from six lunar months to maturity. Proc. Soc. exp. Biol. Med. 43: 545–547, 1940.Google Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • Reinhard L. Friede
    • 1
    • 2
  1. 1.Case Western Reserve UniversityClevelandUSA
  2. 2.University of ZurichSwitzerland

Personalised recommendations