Skip to main content

Antidepressiva mit neuartigen Wirkmechanismen

  • Chapter
Neuro-Psychopharmaka
  • 47 Accesses

Zusammenfassung

Angesichts der zentralen funktionellen Bedeutung für die neuronale Informationsvermittlung ist es nicht verwunderlich, daß die pharmakologische Beeinflussung der synaptischen Neurotransmission im Brennpunkt des Interesses bei der Entwicklung von Antidepressiva steht. Überraschend ist jedoch, daß die Forschung jahrzehntelang auf die Beeinflussung der präsynaptischen Komponente der Neurotransmission fixiert war und den postsynaptischen Aspekt (Beeinflussung der Effektorzellreaktion) völlig unberücksichtigt ließ. Im folgenden sollen daher Ansätze für die Entwicklung neuer und verbesserter Antidepressiva, die auf der pharmakologischen Manipulation der intraneuronalen Signaltransduktion und -amplifikation im postsynaptischen Effektorneuron basieren, aufgezeigt werden. Die Suche nach Antidepressiva mit neuartigem Wirkmechanismus ist kein Selbstzweck der pharmakologischen Forschung; über Rückschlüsse aus den Wirkmechanismen solcher Substanzen eröffnet sich die Chance, zuneuen Einsichten in die Pathoneurobiochemie der affektiven Erkrankungen zu gelangen, die letztlich zur Entwicklung verbesserter Therapiemöglichkeiten beitragen. Gerade weil Hypothesen zur Ätiologie affektiver Erkrankungen auf das engste mit der Kenntnis und Interpretation der Wirkmechanismen der Therapiemaßnahmen verknüpft sind und nur weil konkurrierende Paradigmen Voraussetzungen für einen Erkenntnisfortschritt aus der allgemein empfundenen Stagnation schaffen, können Pharmaka mit neuartigem Wirkmechanismus ein wissenschaftliches Instrument sein, um neue Erkenntnisse über die biologischen Grundlagen affektiver Erkrankungen zu erschließen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abdulla YH, Hamadah K (1970)31,51-Cyclic adenosine monophosphate in depression and mania. Lancet i: 378–381

    Google Scholar 

  • Aldenhoff JB (1989) Imbalance of neuronal excitability as a cause of psychic disorder. Pharmacopsychiatry 22: 227–240

    Article  PubMed  CAS  Google Scholar 

  • Avissar S, Schreiber G, Danon A, Belmaker RH (1988) Lithium inhibits adrenergic and cholinergie increase in GTP binding in rat cortex. Nature 331: 440–442

    Article  PubMed  CAS  Google Scholar 

  • Baraban JM, Worley PF, Snyder SH (1989) Second messenger systems and psychoactive drug action; focus on the phosphoinositide system and lithium. Am J Psychiatry 146: 1251–1260

    PubMed  CAS  Google Scholar 

  • Bennie EH, Chakravarti SK, Jarman CMB, Khan K, Master D, Murray GH, Meya U, Soni SD, Shaw SH, White A (1988) A double-blind dose-finding study of rolipram in patients with major depressive disorder. Hum Psychopharmacol 3: 275–280

    Article  Google Scholar 

  • Berridge MJ (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360

    PubMed  CAS  Google Scholar 

  • Bertolino A, Grippa D, Di Dio S, Fichte K, Musmeci G, Poro V, Papisardo V, Sastre-Y-Hernandez M (1988) Rolipram versus imipramine in inpatients with major, „minor“ or atypical depressive disorder: a double-blind double-dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol 3: 245–253

    Article  CAS  Google Scholar 

  • Bobon D, Breulet M, Gerard-Vanderhove MA, Guiot-Goffioul F, Plomteux G, Sastre-Y-Hernandez M, Schratzer M, Troisfontaines B, Von Frenckell R, Wachtel H (1988) Is phosphodiesterase inhibition a new mechanism of antidepressant action? A double-blind double-dummy study between rolipram and desipramine in hospitalized major and/or endogenous depression. Eur Arch Psychiatry Neurol Sci 238: 2–6

    Article  PubMed  CAS  Google Scholar 

  • Codina J, Hildebrandt J, Sunyer T, Sekura RD, Manclark CR, Iyengar R, Birnbaumer L (1984) Mechanisms in the vectorial receptoradenylate cyclase signal transduction. Adv Cyclic Nucleotide Protein Phosphorylation Res 17: 111–125

    PubMed  CAS  Google Scholar 

  • Colonna L, Petit M, LE Ine JP (1979) Bromocriptine in affective disorders. J Affect Disord 1: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113: 1237–1264

    Article  PubMed  CAS  Google Scholar 

  • Curtius HC, Niederwiesera, Levine RA, Lovenberg W, Woggon B, Angst J (1983) Successfull treatment of depression with tetrahydrobiopterin. Lancet is 657–658

    Google Scholar 

  • De Camilli P, Greengard P (1986) Synapsin I: a synaptic vesicle-associated neuronal phosphoprotein. Biochem Pharmacol 24: 4249–4257

    Google Scholar 

  • Dousa T, Hechter O (1970) Lithium and brain adenyl cyclase. Lancet is 834–835

    Google Scholar 

  • Ebstein RP, Oppenheim G, Ebstein BS, Amiri Z, Stessman J (1986) The cyclic AMP second messenger system in man: the effect of heredity, hormones, drugs, aluminum, age and disease on signal amplification. Prog Neuropsychopharmacol Biol Psychiatry 10: 323–353

    Article  PubMed  CAS  Google Scholar 

  • Eckmann F, Fichte K, Meya U, Sastre-Y-Hernan DEZ M (1988) Rolipram in major depression: results of a double-blind comparative study with amitriptyline. Curr Ther Res 43: 291–295

    Google Scholar 

  • exstein i, tallman J, Smith CC, Goodwin FK (1979) Changes in lymphocyte beta-adrenergic receptors in depression and mania. Psychiatry Res 1: 191–197

    Article  Google Scholar 

  • FrancÉS H, Puech AJ, Simon P (1978) Profil psychopharmacologique de l’isoprénaline et du salbutamol. J Pharmacol (Paris) 9: 25–34

    Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-l-phosphatase from bovine brain. J Biol Chem 225: 10896–10901

    Google Scholar 

  • Hebenstreit GF, Fellerer K, Fichte K, Fischer G, Geyer N, Meya U, Sastre-Y-Hernandez M, Schony W, Schratzer M, Saukop W, Trampitsch E, Varosanec S, Zawada E, ZÖchling R(1989) Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry 22: 156–160

    Article  PubMed  CAS  Google Scholar 

  • Horowski R, Sastre-Y-Hernandez M (1985) Clini-cal effects of the neurotropic selective cAMP phosphodiesterase inhibitor rolipram in depressed patients: global evaluation of the preliminary reports. Curr Ther Res 38: 23–29

    Google Scholar 

  • Janowsky DS, Risch SC (1984) Cholinomimetic and anticholinergic drugs used to investigate an acetylcholine hypothesis of affective disorders and stress. Drug Dev Res 4: 125–142

    Article  CAS  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet ii: 632–635

    Google Scholar 

  • Kaspar S, Moises HW, Beckmann H (1981) The anticholinergic biperiden in depressive disorders. Pharmacopsychiatry 14: 195–198

    Article  Google Scholar 

  • Kehr W, Debus G, Neumeister R (1985) Effects of rolipram, a novel antidepressant, on mono-amine metabolism in rat brain. J Neural Transm 63: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylationdephosphorylation of enzymes. Annu Rev Biochem 48: 923–959

    Article  PubMed  CAS  Google Scholar 

  • Lachman HM, Papolos DF (1989) Abnormal signal transduction: a hypothetical model for bipolar affective disorder. Life Sci 45: 1413–1426

    Article  PubMed  CAS  Google Scholar 

  • Laux G, Becker T, KÜHne G, Lesch KP, Riederer P, Beckmann H (1988) Clinical and biochemical effects of the selective phosphodiesterase inhibitor rolipram in depressed inpatients controlled by determination of plasma level. Pharmacopsychiatry 21: 378–379

    Article  PubMed  CAS  Google Scholar 

  • Lecrubier Y, Puech Aj, Jouvent R, Simon P, WidLÖcher D (1980) A beta adrenergic stimulant (salbutamol) versus clomipramine in depression: a controlled study. Br J Psychiatry 136: 354–358

    Article  PubMed  CAS  Google Scholar 

  • Levin RM, Weiss B (1976) Mechanism by which psychotrop drugs inhibit adenosine cyclic 3’, 5’-monophosphate phosphodiesterase of brain. Mol Pharmacol 12: 581–589

    PubMed  CAS  Google Scholar 

  • Morgenroth VH, Hegstrand LR, Rom RH, Green-Gard P (1975) Evidence for involvement of proteinkinase in the activation by adenosine 3’,5’-monophosphate of brain tyrosine 3monooxygenase. J Biol Chem 250: 1946–1948

    PubMed  CAS  Google Scholar 

  • Mom A, Geisler A (1987) Mode of action of lithium on the catalytic unit of adenylate cyclase from rat brain. Pharmacol Toxicol 60: 241–248

    Article  Google Scholar 

  • namura s, zorn SH, Enna SJ (1987) Selective interaction of tricyclic antidepressants with a subclass of rat brain cholinergic muscarinic receptors. Life Sci 40: 1751–1760

    Article  Google Scholar 

  • Newman ME, Belmaker RH (1987) Effects of lithium in vitro and ex vivo on components of the adenylate cyclase system in membranes from the cerebral cortex of the rat. Neuro-pharmacology 26: 211–217

    CAS  Google Scholar 

  • Newman ME, Klein E, Birmaher B, Feinsod M, Belmaker RH (1983) Lithium at therapeutic concentrations inhibits human brain noradrenaline-sensitive cAMP accumulation. Brain Res 278: 380–381

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693–698

    Article  PubMed  CAS  Google Scholar 

  • Nuutila J, Kaakkola S, MannisTÖ PT (1987) Poten-tiation of central effects of L-DOPA by an inhibitor of catechol-O-methyltransferase. J Neural Transm 70: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Kawasaki H, Imajoh S, Suzuki K (1987) Tissue-specific expression of three distinct types of rabbit protein kinase C. Nature 325: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Onali P, Olianas MC (1989) Involvement of adenylate cyclase inhibition in dopamine autoreceptor regulation of tyrosine hydroxylase in rat nucleus accumbens. Neurosci Lett 102: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Ossofsky HJ (1976) Affective and atopic disorders and cyclic AMP. Compr Psychiatry 17: 335–346

    Article  PubMed  CAS  Google Scholar 

  • Pandey G, Dysken MW, Garver DL (1979) Betaadrenergic receptor function in affective illness. Am J Psychiatry 136: 675–678

    PubMed  CAS  Google Scholar 

  • Post RM, Gerner RH, Carman JS, Gillin JC, Jimerson DC, Goodwin FK, Bunney WE (1978) Effects of a dopamine agonist piribedil in depressed patients: relationship of pretreatment homovanillic acid to antidepressant response. Arch Gen Psychiatry 35: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Przegalinski E, Bigajska K (1983) Antidepressant properties of some phosphodiesterase inhibitors. Pol J Pharmacol Pharm 35: 233–240

    PubMed  CAS  Google Scholar 

  • Rowlands MWD, Silverstone T, Cookson JC (1989) A double-blind placebo-controlled study of rolipram in depressed in-patients. J Psychopharmacol 3: 169–174

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122: 509–522

    PubMed  CAS  Google Scholar 

  • Schultz JE, Schmidt BH (1986) Rolipram, a stereospecific inhibitor of calmodulin-independent phosphodiesterase, causes (3-adrenoceptor subsensitivity in rat cerebral cortex. Naunyn Schmiedebergs Arch Pharmacol 333: 23–30

    Article  PubMed  CAS  Google Scholar 

  • ScuvÉe-Moreau J, Giesbers J, Dresse A (1987) Ef-fect of rolipram, a phosphodiesterase inhibitor and potential antidepressant, on the firing rate of central monoaminergic neurons in the rat. Arch Int Pharmacodyn 288: 43–49

    PubMed  Google Scholar 

  • Seamon KB, Padgett W, Daly JAN/ (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and intact cells. Proc Natl Acad Sci USA 78: 3363–3367

    Article  PubMed  CAS  Google Scholar 

  • >Shopsin B, Gershon S (1978) Dopamine receptor stimulation in the treatment of depression: piribedil ET-495. Neuropsychobiology 4: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Yamamura HJ (1977) Antidepressant and the muscarinic acetylcholine receptor. Arch Gen Psychiatry 34: 236–239

    Article  PubMed  CAS  Google Scholar 

  • Stone EA (1983) Problems with current catecholamine hypotheses of antidepressant agents: speculations leading to a new hypothesis. Behav Brain Sci 6: 535–577

    Article  Google Scholar 

  • Strada SJ, Thompson WJ (1978) Multiple forms of cyclic nucleotide phosphodiesterases: anomalies or biological regulators? Adv Cyclic Nucleotide Res 9: 265–283

    PubMed  CAS  Google Scholar 

  • Strada SJ, Martin MW, Thompson WJ (1984) Ge-neral properties of multiple molecular forms of cyclic nucleotide phosphodiesterase in the nervous system. Adv Cyclic Nucleotide Protein Phosphorylation Res 16: 13–29

    PubMed  CAS  Google Scholar 

  • Wachtel H(1982) Characteristic behavioral alterations in rats induced by rolipram and other selective adenosine cyclic 31,5’-monophosphate phosphodiesterase inhibitors. Psychopharmacology 77: 309–316

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H (1983) Potential antidepressant activity of rolipram and other selective cyclic adenosine 3’,5’-monophosphate phosphodiesterase inhibitors. Neuropharmacology 22: 367–372

    Article  Google Scholar 

  • Wachtel H (1988) Defective second messenger function in the etiology of endogenous depression: novel therapeutic approaches. In: Briley M, Pillion G (eds) New concepts in depression. Macmillan, London, pp 227–293

    Google Scholar 

  • Wachtel H (1990a) Dysbalance of neuronal second messenger function in the aetiology of affective disorders: a pathophysiological concept hypothesising defects beyond first messenger receptors. J Neural Transm 75: 2129

    Google Scholar 

  • Wachtel H (1990b) The second-messenger dysbalance hypothesis of affective disorders. Pharmacopsychiatry 23: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H, LÖschmann PA (1986) Effects of forskolin and cyclic nucleotides in animal models predictive of antidepressant activity: interactions with rolipram. Psychopharmacology 90: 430–435

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H, Schneider HH (1986) Rolipram, a novel antidepressant drug, reverses the hypothermia and hypokinesia of monoamine-depleted mice by an action beyond postsynaptic monoamine receptors. Neuropharmacology 25: 1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Costa E (1968) Regional and subcellular distribution of adenyl cyclase and 3’,5’-cyclic nucleotide phosphodiesterase activity in brain and pineal gland. Biochem Pharmacol 17: 2107–2116

    Article  PubMed  CAS  Google Scholar 

  • WidlÖcher D, Lecrubier Y, Jouvent R, Puech Aj, Simon P(1977) Antidepressant effect of salbutamol. Lancet ii: 767–768

    Google Scholar 

  • Williams RH, Little SA, Beug AG, Ensinck JW (1971) Cyclic nucleotide phosphodiesterase activity in man, monkey and rat. Metabolism 20: 743–748

    Article  PubMed  CAS  Google Scholar 

  • Zeller E, Stief Jj, Pflug B, Sastre-Y-Hernandez M(1984) Results of a phase II study of the antidepressant effect of rolipram. Pharmacopsychiatry 17: 188–190

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam JD, Berwish N, Potter L, Rickets K (1987) Open trial of gepirone in the treatment of major depressive disorder. Curr Ther Res 41: 185–193

    Google Scholar 

  • Anderson IM, Cowen, PJ, Grahame-Smith DG (1990) The effects of gepirone on neuroendocrine function and temperature in humans. Psychopharmacology 100: 498–503

    Article  PubMed  CAS  Google Scholar 

  • Beneke M, Kummel B, Roed IS, Spechtmeyer H(1988) Treatment of anxiety neurosis with ipsapirone. Psychopharmacology 96: S 353

    Article  Google Scholar 

  • Cervo L, Samanin R (1987) Potential antidepressant properties of 8-hydroxy-2-(di-n-propylamino)tetralin, a selective serotoninlA receptor agonist. Eur J Pharmacol 144: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Cervo L, Grignaschi G, Samanin R (1988) 8-Hydroxy-2-(di-n-propylamino)tetralin, a selective serotoninlA receptor agonist, reduces the immobility of rats in the forced swimming test by acting on the nucleus raphe dorsalis. Eur J Pharmacol 158: 53–59

    Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorder. Br J Psychiatry 113: 1237–1264

    Article  PubMed  CAS  Google Scholar 

  • Cou JM, Kurtz NM, Robinson DS, Lancaster SP, Copp JE (1988) A 5-HTIA ligand with both antidepressant and anxiolytic properties. Psychopharmacol Bull 24: 164–167

    Google Scholar 

  • DE Montigny C, Blier P, Chaput Y (1990) Electrophysiological investigation of the effects of antidepressant treatments on serotonin receptors. In: Paoletri R et al. (eds) Serotonin: from cell biology to pharmacology and therapeutics. Kluwer, Dordrecht, pp 499–504

    Google Scholar 

  • De Vry J, Glaser T, Schuurman T, Schreiber R, Traber J(1991) 5-HTIA receptors in anxiety. In: BRILEY M, FILE SE (eds) New concepts in anxie- ty. MacMillan, London, pp 94–129

    Google Scholar 

  • De Vry J, Schreiber R, Glaser T, Traber J (1992) Behavioral pharmacology of 5-HTIA agonists: animal models of anxiety and depression. In: Stahl SMet al. (eds) Serotonin lA receptors in depression and anxiety. Raven Press, New York, pp 55–81

    Google Scholar 

  • Dourish Ct, Ahlenius S, Hutson PH (1987) Brain 5-HTIA receptors. Ellis Horwood Ltd, Chichester

    Google Scholar 

  • Giral PH, Martin P, Soubrie PH, Simon P (1988) Reversal of helpless behaviour in rats by putative 5-HTIA agonists. Biol Psychiatry 23: 237242

    Google Scholar 

  • Glaser T, Greuel JM, De Vry J (1993) 5-HTIARezeptoren als Angriffspunkt für neuartige Anxiolytika. In: Riederer P, Laux G, PÖldinger W (Hrsg) Neuro-Psychopharmaka, Bd 2. Springer, Wien New York (im Druck)

    Google Scholar 

  • Goldberg HL, Finnerty RJ (1979) The comparative efficacy of buspirone and diazepam in the treatment of anxiety. Am J Psychiatry 1369: 1184

    Google Scholar 

  • Goodwin GM(1989) The effects of antidepressant treatments and lithium upon 5-HTIA receptor function. Prog Neuropsychopharmacol Biol Psychiatry 13: 445–451

    Google Scholar 

  • Graeff FG, Audi EA, Almeida SS, Graefe EO, Hunziker MHL (1990) Behavioral effects of 5-HT receptor ligands in the aversive brain stimula-tion, elevated plus-maze and learned helplessness tests. Neurosci Biobehav Rev 14: 501–506

    Article  PubMed  CAS  Google Scholar 

  • Hand TH, Marek DC, Seiden J, Seiden S (1989) Antidepressant-like effects of the 5-HTIA agonists buspirone, gepirone, 8-OH-DPAT and 5-MEODMT in rats on the DRL 72 sec schedule; differential blockade by methysergide and purported 5-HTIA antagonists. Soc Neurosci Abstr 15: 12–82

    Google Scholar 

  • Haskins JT, Moyer JA, Andree TH, Mum EA, Abou-Gharbia M (1989) Preclinical profile of the pyrimidinylpiperazinyl imide compound WY-47, 846: a potential anxiolytic. Drug Dev Res 18: 29–45

    Article  CAS  Google Scholar 

  • Heller AH, Beneke M, KÜmmel B, Spencer D, Kurtz NM (1990) Ipsapirone: evidence for efficacy in depression. Psychopharmacol Bull 26: 219–222

    PubMed  CAS  Google Scholar 

  • Hensler J, Frazer A (1989) Effect of chronic antidepressant treatments on serotoninlA (5HT1A) receptor density and responsiveness. Soc Neurosci Abstr 15: 675

    Google Scholar 

  • Kennett GA, Dourish, CT, Curzon G (1987) Antidepressant-like action of 5-HTIA agonists and conventional antidepressants in an animal model of depression. Eur J Pharmacol 134: 265–274

    Article  PubMed  CAS  Google Scholar 

  • larsson LG, Renyi L, Boss SB, Svensson B, AngebymÖller K (1990) Different effects on the responses of functional pre-and postsynaptic 5-HTIA receptors by repeated treatment of rats with the 5-HTIA receptor agonist 8-OH-DPAT. Neuropharmacology 29: 85–91

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Mayer S Hoh A, Disselkamp-Tietze J, Rupprecht R, Schmidtke A, Osterheider M, Beckmann H (1989) 5-Hydroxytryptamine-1A (5-HTIA) receptor function in affective disorders. Pharmacopsychiatry 22: 205

    Google Scholar 

  • Luau I, Wieland S (1990) Chronic infusion of tandospirone and imipramine alters serotonin-mediated behaviors. Second IUPAR Satellite Meeting on Serotonin (Abstracts, p 122 )

    Google Scholar 

  • Luscombe GP, Martin KF, Hutchins LJ, Gosden J, Buckeye WR (1988) Involvement of 5-HTIA receptors in the antidepressant-like effect of 8-OH-DPAT in a putative model of depression in mice. Br J Pharmacol 95: 784 P

    Google Scholar 

  • Maj J, Deren A, Golembiowska K, Moryl E(1989) Some central effects of ipsapirone, a new anxiolytic drug. International Symposium on Serotonin: From Cell Biology to Pharma- cology and Therapeutics, Florence (Abstracts,p 183 )

    Google Scholar 

  • Martin KF, Heal DJ, Bucket WR (1990) Down-regulation of 5-HTIA autoreceptors: a predictor of antidepressant activity? Second IUPHAR Satellite Meeting on Serotonin (Abstracts, p 105 )

    Google Scholar 

  • Mcmonagle-Strucko K, Fanelli RJ (1990) Auto-radiographic distribution of 5-HT1A receptor binding sites following sub-chronic treatment with ipsapirone. Soc Neurosci Abstr 16: 13–22

    Google Scholar 

  • Mongeau R, Welner S, Quirion R, DE Montigny C, Chaput Y, Suranyi-Carotte BE (1989) Modulation of 5-HTIA binding site affinity by MAO inhibition. Soc Neurosci Abstr 15: 674

    Google Scholar 

  • Newman ME, Lerer B (1988) Chronic electroconvulsive shock and desimipramine reduce the degree of inhibition by 5-HT and carbachol of forskolin-stimulated adenylate cyclase in rat hippocampal membranes. Eur J Pharmacol 148: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki J, Sato A, Asakura M, Tsukamoto T, Imafuku J, Matsui H, Ino M, Kubota H, Osada K, Nakanishi J, Adachi J, Shibata M, Ogawa Y, Hasegawa K (1990) Interaction of neuroleptics and antidepressants with 5-HTIA receptors labeled by [3H18–0H-DPAT in the rat brain. 17th CINP, Meeting (Abstract book 1, p 99 )

    Google Scholar 

  • Perrault G, Morel E, Claustre Y, Sanger DJ, Zw-Kovic B(1989) Involvement of dopaminergic mechanism in the antidepressant-like effect of 8-OH-DPAT in the forced swimming test in mice. J Psychopharmacol 3: 69 P

    Google Scholar 

  • Piercey MF, Tian Y, Lum JT, Hoffmann WE, Collins RJ, Cooper MM, Moore KE (1990) Region-specific tolerance to the 5-HTIA agonist ipsapirone. Soc Neurosci Abstr 16: 1323

    Google Scholar 

  • Schechter LE, Bolanos FJ, Gozlan H, Lanfumey L, Hay-Dahmane S, Laporte AM, fattaccini CM, Hamon M (1990) Modulations of central sero- tonergic neurotransmission by chronic ipsapi- rone in the rat. J Pharmacol Exp Ther 255: 1335–1347

    PubMed  CAS  Google Scholar 

  • Schuurman T, Van Der Sfaay FJ, Traber(1992) Tierstudien. In: Riederer P, Laux G, Poldinger W (Hrsg) Neuro-Psychopharmaka, Bd 1. Springer, Wien New York, S 67–82

    Google Scholar 

  • Schweizer EE, Rickels K (1991) Serotonergic anxiolytics: a review of their clinical efficacy. In: Rodgers RJ, Cooper SJ (eds) 5HTIA agonists, 5-HT3 antagonists and benzodiazepines: their comparative behavioural pharmacology. Wiley, Chichester, pp 365–376

    Google Scholar 

  • Sleight AJ, Marsden CA, Palfreyman MG, Mir AK, Lovenberg W (1988) Chronic MAO A and MAO B inhibition decreases the 5-HTIA receptor-mediated inhibition of forskolin-stimulated adenylate cyclase. Eur J Pharmacol 154: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Suranyi-Cadotte BE, Bodnoff SR, Welner SA(1990) Antidepressant-anxiolytic interactions: involvement of the benzodiazepine-GABA and serotonin systems. Prog Neuropsychopharmacol Biol Psychiatry 14: 633–654

    Google Scholar 

  • Tatarczynska E, Ciiojnacka-Wojc1k E (1989) Ef fects of 8-OH-DPAT and ipsapirone in the tests used for evaluation of the antidepressant action. Pol J Pharmacol 41: 321–330

    CAS  Google Scholar 

  • Van Der Heyden JAM, Zethof TJJ, Olivier B (1990) The effects of serotonergic drugs in a behavioural model of depression. Psychopharmacology 101: S 223

    Google Scholar 

  • Varrault GP, Leviel V, Bockaert J (1991) 5-HTIA sensitive adenylyl cyclase of rodent hippocampal neurons. Effects of antidepressant treatments and chronic stimulation with agonists. J Pharmacol Exp Ther 257: 433–438

    PubMed  CAS  Google Scholar 

  • Wieland S, Lucki I (1990) Antidepressant-like activity of 5-HTIA agonists measured with the forced swim test. Psychopharmacology 101: 407–504

    Article  Google Scholar 

  • Yokota N (1989) Characteristics of [3H]8-hydroxy-2-(dipropylamino)tetralin binding sites in the rat brain and the effects of antidepressive and antimanic treatments. Hiroshima Daigaku Igaku Zasshi 37: 123–136

    CAS  Google Scholar 

  • Aronson TA, Shukla S (1989) Long-term continuation of antidepressant treatment: a comparison study. J Clin Psychiatry 50: 285–289

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Tohen M (1988) Is there a longterm protective effect of mood-altering agents in unipolar depressive disorder? Psychopharmacol Ser 5: 130–139

    PubMed  CAS  Google Scholar 

  • Bunney WE (1978) Psychopharmacology of the switch process in affective illness. In: Lipton MA, Dimasclo A, Kill AM KF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 1249–1259

    Google Scholar 

  • Coppen A, Montgomery SA, Gupta RK, Bailey JE (1976) A double-blind comparison of lithium carbonate and maprotiline in the prophylaxis of the affective disorders. Br J Psychiatry 128: 479–485

    Article  PubMed  CAS  Google Scholar 

  • Coppen A, Ghose K, Rao R, Bailey J, Peet M(1978) Mianserin and lithium in the prophylaxis of depression. Br J Psychiatry 133: 206–210

    Article  PubMed  CAS  Google Scholar 

  • Davidson J, Raft D (1984) Use of phenelzine in continuation therapy. Neuropsychobiology 11: 191–194

    Article  PubMed  CAS  Google Scholar 

  • Fabre LF JR, Feighner JP (1983) Long-term therapy for depression with trazodone. J Clin Psychiatry 44: 17–21

    PubMed  Google Scholar 

  • Frank E, Kupfer DJ, Perel JM, Cornes C, Jarrett DB, Mallinger AG, Thase ME, Mceachran AB, Grochocinski VJ (1990) Three-year outcomes for maintenance therapies in recurrent depression. Arch Gen Psychiatry 47: 1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Georgotas A, Mccue RE (1989) Relapse of depressed patients after effective continuation therapy. J Affect Disord 17: 159–164

    Article  PubMed  CAS  Google Scholar 

  • Giller E JR, Bialos D, Harkness L, Jatlow P, Waldo M(1985) Long-term amitriptyline in chronic depression. Hillside J Clin Psychiatry 7: 16–33

    PubMed  Google Scholar 

  • Glen AIM, Johnson AL, Shepherd M (1984) Continuation therapy with lithium and amitriptyline in unipolar depressive illness: a randomized, double-blind, controlled trial. Psychol Med 14: 37–50

    Article  PubMed  CAS  Google Scholar 

  • Greil W, Van Calker D (1983) Lithium: Grundlagen und Therapie. In: Langer G, Heimann H (Hrsg) Psychopharmaka. Springer, Wien New York, S 162–202

    Google Scholar 

  • Greil W, Scholderle M (1986) Rezidivprophylaxe affektiver Psychosen mit Lithium. In: Mulleroerlinghausen B, Greil W (HrSg) Die Lithi-umtherapie. Nutzen, Risiken, Alternativen. Springer, Berlin Heidelberg New York Tokyo, S 138–163

    Chapter  Google Scholar 

  • Guelfi JD, Dreyfus JF, Pichot P (1987) Fluvoxamine and imipramine: results of a long-term controlled trial. Int Clin Psychopharmacol 2: 103–109

    Article  PubMed  CAS  Google Scholar 

  • Harrison W, Rabkin J, Stewart JW, Mcgrath PJ, Tricamo E, Quitkin F (1986) Phenelzine for chronic depression: a study of continuation treatment. J Clin Psychiatry 47: 346–349

    PubMed  CAS  Google Scholar 

  • Kane JM, Quitkin FM, Rifkin A, Ramos-lorenzi JR, Nayak DD, Howard A(1982) Lithium carbonate and imipramine in the prophylaxis of unipolar and bipolar-II illness: a prospective, placebo-controlled comparison. Arch Gen Psychiatry 39: 1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Kim HR, Delva NJ, Lawson JS (1990) Prophylactic medication for unipolar depressive illness: the place of lithium carbonate in combination with antidepressant medication. Can J Psychiatry 35: 107–114

    PubMed  CAS  Google Scholar 

  • Kupfer DJ, Perel JM, Frank E (1989) Adequate treatment with imipramine in continuation treatment. J Clin Psychiatry 50: 250–255

    PubMed  CAS  Google Scholar 

  • Lewis JL, Winokur G (1982) The induction of mania. Arch Gen Psychiatry 39: 303–306

    Article  PubMed  CAS  Google Scholar 

  • MÖller HJ (1986) Methodological problems of long-term studies in psychopharmacology. Pharmacopsychiatry 19: 156–160

    Article  Google Scholar 

  • Montgomery SA, Montgomery DB (1992) Prophylactic treatment in recurrent unipolar depression. In: Montgomery SA, Rouillon F (eds) Long-term treatment of depression. Wiley and Sons, Chichester, pp 53–79

    Google Scholar 

  • Prien RF, Kupfer DJ (1986) Continuation drug therapy for major depressive episodes: how long should it be maintained? Am J Psychiatry 143: 18–23

    PubMed  CAS  Google Scholar 

  • Prien RF, Klett J, Caffey EM JR(1973) Lithium carbonate and imipramine in prevention of affective episodes. A comparison in recurrent affective illness. Report of the Veterans Administration and National Institute of Mental Health Collaborative Study Group. Arch Gen Psychiatry 29: 420–425

    Article  PubMed  CAS  Google Scholar 

  • Prien RF, Kupfer DJ, Mansky PA, Small JG, Tuason VB, Voss CB, Johnson WE (1984) Drug therapy in the prevention of recurrences in unipolar and bipolar affective disorders. Report of NIMH Collaborative Study Group comparing lithium carbonate, imipramine, and a lithium carbonate-imi-pramine combination. Arch Gen Psychiatry 41: 1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Quitkin FM, Kane J, Rifkin A, Ramos-Lorenzi JR, Nayak DV (1981) Prophylactic lithium carbonate with and without imipramine for bipolar I patients. A double-blind study. Arch Gen Psychiatry 38: 902–907

    Article  CAS  Google Scholar 

  • Rouillon F, Phillips S, Serrurier D, Ansart E, Gerard MJ (1989) Rechutes de depression unipolaire et efficacite de la maprotiline. Encephale 15: 527–534

    PubMed  CAS  Google Scholar 

  • Scxou M (1986) New developments in long-term preventive therapy. Psychopathology 19 [Suppl 2]: 201–206

    Article  Google Scholar 

  • Shapiro DR, Quitkin FM, Fleiss JL (1989) Response to maintenance therapy in bipolar illness. Effect of index episode. Arch Gen Psychiatry 46: 401–405

    Article  PubMed  CAS  Google Scholar 

  • SchouM, (1990) Lithiumzugabe zu Thymoleptikaals Behandlung therapieresistenter Depressionen. Nervenarzt 60: 200–255

    Google Scholar 

  • SchouM, (1990) lithium als M?glichkeit der Akutbehandlung therapierefrakt?rer Depressionen. In: M?ller H-J (Hrsg) Therapieresistenzunter Antidepressiva-Behandlung. Springer, Berlin Heiderlberg New York Tokyo, S 115–123

    Google Scholar 

  • Spiker DG, Welss JC, Dealy RS, Griffin SJ, Hanin I, Nell JF, Perel JM, Rossi AJ, Soloff PH(1985) The pharmacological treatment of delusional depression. Am J Psychiatry 142: 430–436

    PubMed  CAS  Google Scholar 

  • Woggon B (1987) Pharmakotherapie affektiver Psychosen. In: Kisker KP, Lauter H, Meyer J-E, Str?mgren E(Hrsg) Psychiatrie her Gegenwart, BD 5. Sprubger, Berlin Heidelberg New York, S 273–325

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this chapter

Cite this chapter

Wachtel, H., De Vry, J., Glaser, T., Möller, HJ. (1993). Antidepressiva mit neuartigen Wirkmechanismen. In: Riederer, P., Laux, G., Pöldinger, W. (eds) Neuro-Psychopharmaka. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3317-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3317-0_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-3318-7

  • Online ISBN: 978-3-7091-3317-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics