The Traveling Salesman Problem and its Implications

  • F. Maffioli
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 175)


The aim of this review is to outline the main exact and approximate approaches to the traveling salesman problem (TSP), the various problems arisen from recent work on this subject, the particular cases in which an efficient solution method can be implemented and the connections of the TSP with other topics of combinatorial optimization such as matroids and computational complexity.


Assignment Problem Minimum Span Tree Travel Salesman Problem Travel Salesman Problem Hamiltonian Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Bellmore & G.L. Nemhauser (1968) “The TSP: a survey” Op. Res. 16 pp. 538–558.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    P.M. Camerini, L. Fratta & F. Maffioli “TSP: heuristically guided search and modified gradient techniques” (to appear).Google Scholar
  3. [3]
    N. Christofides (1972) “Bounds for the TSP” Op. Res. 20 pp. 1044–1056.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    N. Christofides & S. Eilon (1972) “Algorithms for large-scale TSPs” Op. Res. Quarterly 23 pp. 511–518.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    G.B. Dantzig, D.R. Fulkerson & S.M. Johnson (1954) “Solution of large-scale TSP” Op. Res. 2 pp. 393–410.MathSciNetCrossRefGoogle Scholar
  6. [6]
    L. Fratta & F. Maffioli (1972) “On the shortest hamiltonian chain of a network” 2nd International Symp. on Network Theory, Herceg Novi (Yu) July 1972.Google Scholar
  7. [7]
    P.C. Gilmore & R.E. Gomory (1964) “Sequencing a one-state-variable machine: a solvable case of the TSP” Op. Res. 12 pp. 655–679.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    P.E. Hart, N.L. Nillson & B. Raphael (1968) “A formal basis for the heuristic determination of minimum cost paths” IEEE Trans. on SCC 4 pp. 100–107.Google Scholar
  9. [9]
    M. Held & R.M. Karp (1970) “The TSP and minimum spanning trees” Op. Res. 18 pp. 1138–1162.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    M. Held & R.M. Karp (1971) “The TSP and minimum spanning trees”: part II“ Math Programm. 1 pp. 6–25.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    R.M. Karp (1972) “Reducibility among combinatorial problems” in Complexity of Computer Computations, Miller & Matcher eds., Plenum Press.Google Scholar
  12. [12]
    P. Krolak, W. Felts & G. Marble (1971) “A man-machine approach toward solving the TSP” Comm. of ACM 14 pp. 327–334.MATHCrossRefGoogle Scholar
  13. [13]
    E.L. Lawler & D.E. Wood (1966) “branch and Bound methods a survey” Op. Res. 14 pp. 699–719.MathSciNetMATHCrossRefGoogle Scholar
  14. [14J.
    E.L. Lawler (1971) “A solvable case of the TSP” Math. Programm. 1 pp. 267–269.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    E.L. Lawler (1971) “Matroids intersection algorithms” ERL Memo M-333 U.C. Berkely.Google Scholar
  16. [16]
    E.L. Lawler (1971) “Matroids with parity conditions: a new class of combinatorial optimization problems” ERL Memo M-334 U.C. Berkeley.Google Scholar
  17. [17]
    S. Lin (1965) “Computer solution of the TSP” B.S.T.J. 44 pp. 2245–2269.MATHGoogle Scholar
  18. [18]
    V.A. Pevepeliche & E.X. Gimadi (1969) “On the problem of finding the minimal hamiltonian circuit on a graph with weighted arcs” Diskret Analyz. 15 pp. 57–65. In russian.Google Scholar
  19. [19]
    I. Pohl (1970) “Heuristic search viewed as path finding in a graph” Artificial Intelligence 1 pp. 193–304.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    I. Pohl (1973) “The avoidance of (relative) catastrophe heuristic competence genuine dynamic weighting and computational issues in heuristic problem solving” 3rd International Joint Conference on Artificial Intelligence, Stanford University, August 1973.Google Scholar
  21. [21]
    M.I. Rubinstein (1971) “On the symmetric TSP” Automatika i Telemekhanika 9 pp. 126–133.Google Scholar
  22. [22]
    R. Spears & N. Christofides “A branch-and-bound algorithm for the TSP” (to appear).Google Scholar
  23. [23]
    L. Zadeh and Chuan Chen. private communication.Google Scholar
  24. [24]
    J.P. Barthés (1973) “Branching methods” (this text).Google Scholar
  25. [25]
    S. Lin & B.W. Kernighan (1971) “A heuristic technique for solving a class of combinatorial optimization problems” Princeton Conference on System Science 1971.Google Scholar
  26. [26]
    E.L. Lawler (1973) “Matroids and greedy algorithm” (this text).Google Scholar
  27. [27]
    E.L. Lawler (1972) “Polynomial bounded and (apparently) non polynomial bounded matroid computation” Memo No. ERL-M332, Electronics Research Laboratory University of California at Berkeley.Google Scholar
  28. [28]
    M.M. Syslo (1973) “ A new solvable case of the TSP” Math. Programm. 4 pp. 347–348.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    P.M. Camerini & F.M. Maffioli (1975) “Bounds for 3-matroid intersection problems” Information Processing letters 3 pp. 81–83.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    K. Helbig Hansen & J. Krarup (1974) “Improvements of the Held-Karp algorithm for the symmetric TSP” Math. Programm. 7 pp. 87–96.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© CISM, Udine 1975

Authors and Affiliations

  • F. Maffioli
    • 1
  1. 1.Istituto di Elettrotecnica ed Elettronica and Centro di Telecomunicazioni Spaziali of CNR Politecnico di MilanoItaly

Personalised recommendations