Skip to main content
  • 23 Accesses

Zusammenfassung

Aus der indischen Volksmedizin hervorgehend wurde als erstes antipsychotisches Medikament Reserpin durch Sen und Bose im Jahre 1931 entdeckt und 1954 durch Kline auch der westlichen Medizin bekannt gemacht (Ref. bei Hornykiewicz 1986). Delay und Deniker erkannten 1952 die antipsychotischen Wirkungen von Chlorpromazin, das eigentlich aus anästhesiologischem Interesse aus dem Antihistaminikum Promethazin für die Erzeugung eines künstlichen Winterschlafs entwickelt worden war. Sie prägten 1955 den Begriff „Neuroleptikum“. Als motorische Effekte beider Substanzen wurden bei der Ratte Katalepsie und beim Menschen von Forschern wie Haase im Jahre 1954 und Degwitz im Jahre 1960 Parkinsonoide beobachtet (Ref. bei Hornykiewicz 1986). Reserpin blockiert die Speicherung von Dopamin, Noradrenalin, Serotonin und auch Histamin in den synaptischen Vesikeln (Übersicht: Shore und Giachetti 1978). Auf der Suche nach neuen morphinartigen Analgetika beobachtete Janssen im Jahre 1961, daß bestimmte Butyrophenone wie Haloperidol beim Tier in der kataleptischen Wirkung dem Chlorpromazin ähneln. Carlsson et al. entdeckten im Jahre 1957, daß sich die Reserpin-induzierte Katalepsie durch 3,4-Dihydroxyphenylalanin (DOPA) antagonisieren lässt. Barbeau und Sourkes sowie Ehringer und Hornykiewicz bestätigten im Jahre 1960 die daraus abgeleitete Hypothese Carlsson’s eines Dopaminmangels bei Morbus Parkinson. Entsprechend konnten Birkmayer und Hornykiewicz 1961 die Wirksamkeit der Substitutionstherapie mit L-DOPA nachweisen (Ref. bei Hornykiewicz 1986). Carlsson und Lindquist beobachteten 1963 unter Chlorpromazin und Haloperidol einen Anstieg des Dopaminmetaboliten Methoxytyramin als Ausdruck einer erhöhten Aktivität dopaminerger Neuronen; daraus leiteten sie die Hypothese ab, daß Neuroleptika Dopaminrezeptoren blockieren. In Verbindung mit den psychotogenen Wirkungen chronisch konsumierten Amphetamins, das u. a. die dopaminerge Neurotransmission fördert, führte die Blockade dopaminerger Rezeptoren durch Neuroleptika zur Formulierung der Dopaminhypothese der Schizophrenien (Carlsson 1978, Snyder et al. 1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Angrist B, Rotrosen J, Gershon S (1980) Differential effects of amphetamine and neuroleptics on negative versus positive symptoms in schizo- phrenia. Psychopharmacology 72: 17–19

    Article  PubMed  CAS  Google Scholar 

  • Arana GW, Ornsteen ML, Kanter F, Friedman HL, Greenblatt DJ, Shader RI (1986) The use of benzodiazepines for psychotic disorders: a literature review and preliminary clinical findings. Psychopharmacol Bull 22: 77–87

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Freeman AS, Chiodo LA, Bunney BS, Rom RH (1987) The electrophysiological and biochemical pharmacology of the mesolimbic and mesocortical dopamine neurons. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 19. Plenum Press, New York, pp 329–374

    Chapter  Google Scholar 

  • Baron JC, Martinot JL, Cambon TI, Boulenger JP, Poirier MF, Gaillard V, Bin J, Huret JD (1989) Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology 99: 463–472

    Article  PubMed  CAS  Google Scholar 

  • Beninger RJ (1983) The role of dopamine in loco-motor activity and learning. Brain Res Rev 6: 173–196

    Article  CAS  Google Scholar 

  • Bischoff S (1986) Mesohippocampal dopamine system: characteristics, functional and clinical implications. In: Isaacson RH, Pribram KH (eds) The hippocampus, vol 3. Plenum Press, New York, pp 1–32

    Google Scholar 

  • Bowers MB, Heninger GR (1981) Cerebrospinal fluid homovanillic acid patterns during neuroleptic treatment. Psychiatry Res 4: 285–290

    Article  PubMed  Google Scholar 

  • Brown WA, Laughren WT (1981) Tolerance to the prolactin-elevating effect of neuroleptics. Psychiatry Res 5: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Brown WA, Laughren T, Chrisholm E, Williams BW (1982) Low serum neuroleptic levels predict relapse in schizophrenic patients. Arch Gen Psychiatry 39: 998–1000

    Article  PubMed  CAS  Google Scholar 

  • Burt DR, Creese I, Snyder SH (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196: 326–328

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1978) Antipsychotic drugs, neurotransmitters and schizophrenia. Am J Psychiatry 135: 164–173

    CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia - implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13: 272–276

    Article  PubMed  CAS  Google Scholar 

  • Chouinard G, Jones BD (1980) Neuroleptic-induced super sensitivity psychosis: clinical and pharmacologic characteristics. Am J Psychiatry 137: 16–19

    PubMed  CAS  Google Scholar 

  • Christensson EG (1989) Pharmacological data of the atypical neuroleptic compound melperone (Buronil). Acta Psychiatr Scand [Suppl 352] 80: 7–15

    Article  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical pharmacological potencies of antischizophrenic drugs. Science 192: 481–483

    Article  PubMed  CAS  Google Scholar 

  • Cross AJ, Waddington JL (1981) Kainic acid lesions dissociate 3H-spiperone and 3H-flupenthixol binding sites in rat striatum. Eur J Pharmacol 71: 327–332

    Article  PubMed  CAS  Google Scholar 

  • Espelin DF, Done AK (1968) Amphetamine poisoning: effectiveness of chlorpromazine. N Engl J Med 278: 1361–1362

    Article  PubMed  CAS  Google Scholar 

  • Ezrin - Waters C, Seeman P (1977) Tolerance to haloperidol catalepsy. Eur J Pharmacol 41: 321–327

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Hall H (1987) No D2 receptor increase in PET study of schizophrenia (letter). Arch Gen Psychiatry 14: 671–672

    Article  Google Scholar 

  • Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Ferrier IN, Johnstone EC, Crow TJ (1984) Clinical effects of apomorphine in schizophrenia. Br J Psychiatry 144: 341–348

    Article  PubMed  CAS  Google Scholar 

  • Friedman E, Wang IW, Butkerait P (1990) Decreased striatal release of acetylcholine following withdrawal from longterm treatment with haloperidol: modulation by cholinergic dopamine-D1 and -D2 mechanisms. Neuropharmacology 29: 537–544

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JM, Litwin LC, Sutton EB, Malick JB (1989) Effects of ICI 169,369, a selective serotonin-2 antagonist, in electrophysiological tests predictive of antipsychotic activity. J Pharmacol Exp Ther 249: 673–680

    PubMed  CAS  Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuro-modulators in the basal ganglia. Trends Neurosci 13: 244–254

    Article  PubMed  CAS  Google Scholar 

  • Grebb JA, Girault JA, Ehrlich M, Greengard P (1990) Chronic treatment of rats with SCH- 23390 or raclopride does not affect the concentrations of DARPP-32 or its mRNA in dopamine-innervated brain regions. J Neurochem 55: 204–207

    Article  PubMed  CAS  Google Scholar 

  • Gunnet JW, Moore KE (1988) Neuroleptics and neuroendocrine function. Ann Rev Pharmacol Toxicol 28: 347–366

    Article  CAS  Google Scholar 

  • Härnryd C, Bjerkenstedt L, Gullberg B, Oxenstierna G, Sedvall G, Wiesel FA (1984) Time course for effects of sulpiride and chlorpromazine on monoamine metabolite and prolactin levels in cerebrospinal fluid from schizophrenic pati- ents. Acta Psychiatr Scand [Suppl] 311: 75–92

    Article  Google Scholar 

  • Hess EJ, Albers LJ, Le H, Creese I (1986) Effects of chronic SCH-23390 on the biochemical and behavioral properties of Dl and D2 dopamine receptors: ptentiated behavioral responses to D2 dopamine agonist after selective Dl dopamine receptor upregulation. J Pharmacol Exp Ther 238: 846–852

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1986) A quarter century of brain dopamine research. In: Woodruff GN, Poat JA, Roberts PJ (eds) Dopaminergic systems and their regulation. Verlag Chemie, Weinheim, pp 3–18

    Google Scholar 

  • HYTTEL J, ARNT J, VAN DEN BERGHE M (1989) Selective dopamine D-1 and D-2 receptor antagonists. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York Tokyo, pp 109–122

    Google Scholar 

  • Janowsky A, Berger SP (1989) Clozapine inhibits 3H-MK-80 1 binding to the glutamate receptor-ion channel complex. Schizophr Res 2: 189–189

    Article  Google Scholar 

  • Jenner P, Marsden CD (1984) Multiple dopamine receptors in brain and the pharmacological action of substituted benzamide drugs. Acta Psychiatr Scand (Suppl) 331: 109–123

    Article  Google Scholar 

  • Kebabian JW (1984) Pharmacological and biochemical characterization of two categories of dopamine receptor. In: Poste G, Crooke ST (eds) Dopamine receptor agonists. Plenum Press, New York, pp 3–22

    Google Scholar 

  • Keck PE, Cohen BM, Baldessarini RJ, Mcelroy SL (1989) Time course of antipsychotic effects of neuroleptic drugs. Am J Psychiatry 146: 1289–1292

    PubMed  Google Scholar 

  • Kornhuber J, Riederer P, Reynolds GP, Beckmann H, Jellinger K, Gabriel E (1989) 3H-spiperone binding in post-mortem brains from schizophrenic patients: relationship to neuroleptic drug treatment, abnormal movements and positive symptoms. J Neural Transm 75: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Liskowsky DR, Potter LT (1987) Dopamine D2 receptors in the striatum and frontal cortex following chronic administration of haloperidol. Neuropharmacology 26: 481–483

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U (1978) Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: evidence for two different me- chanisms of action. Psychopharmacology 56: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Lundberg T, Lindström LH, Hartvig P, Eckernas SV, Ekblom B, Lundqvist H, Fasth KJ, Gullberg P, Langström B (1989) Striatal and frontal cortex binding of 11C-labelled clozapine visualized by positron emission tomography (PET) in drug-free schizophrenics and healthy volunteers. Psychopharmacology 99: 8–12

    Article  PubMed  CAS  Google Scholar 

  • Makanjuola ROA, Ashcroft GW (1982) Behavioural effects of electrolytic and 6-hydroxydopamine lesions of the accumbens and caudateputamen nuclei. Psychopharmacology 76: 333–340

    Article  CAS  Google Scholar 

  • Manchanda R, Hirsch SR (1986) Does propranolol have an antipsychotic effect? A placebo-controlled study in acute schizophrenia. Br J Psychiatry 148: 701–709

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (1980) Relevance of dopamine auto-receptors for clinical psychiatry: preclinical and clinical studies. Schizophr Bull 6: 456–475

    PubMed  CAS  Google Scholar 

  • Meltzer HY (1990) Clozapine: mechanism of action in relation to its clinical advantages. In: Kales A, Stefants CN, Talbott JA (eds) Recent advances in schizophrenia. Springer, Berlin Heidelberg New York Tokyo, pp 237–256

    Chapter  Google Scholar 

  • Meso l ien F, Suy E, Pietquin M, Burton P, Heylen S, Gelders Y (1989) Therapeutic effect and safety of increasing doses of risperidone (R 64766) in psychotic patients. Psychopharmacology 99: 445–449

    Article  Google Scholar 

  • Miller R (1984) Major psychosis and dopamine: controversial features and some suggestions. Psychol Med 14: 779–789

    Article  PubMed  CAS  Google Scholar 

  • Morley MJ, Bradshaw CM, Szaiadi E (1984) The effect of pimozide on variable-interval performance: a test of the “anhedonia” hypothesis of the mode of action of neuroleptics. Psycho-pharmacology 84: 531–536

    CAS  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Nilsson LJG, Carlsson A (1982) Dopamine receptor agonist with apparent selectivity for auto-receptors: a new principle for antipsychotic action? Trends Pharmacol Sci 3: 322–325

    Article  CAS  Google Scholar 

  • O’Boyle KM, Pugh M, Waddington JL (1984) Stereotypy induced by the D2 agonist RU-242 13 is blocked by the D2 antagonist Ro-22–2586 and the DI antagonist SCH-23390. Br J Pharmacol 82: 242–242

    Google Scholar 

  • Parashos SA, Barone P, Tucci I, Chase TN (1987) Attenuation of DI antagonist-induced Dl-receptor upregulation by concomitant D2-receptor blockade. Life Sci 41: 2279–2284

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin, adrenergic and histamine receptors to clinical potency. Am J Psychiatry 137: 1518–1522

    PubMed  CAS  Google Scholar 

  • Peselow E, Angrist B, Sudilovsky A, Corwin J, Siekierski J, Trent F, Rotrosen J (1987) Double-blind controlled trials of cholecystokinin octapeptide in neuroleptic-refractory schizophrenia. Psychopharmacology 91: 80–84

    Article  PubMed  CAS  Google Scholar 

  • Pickar D, Labarca R, Doran AR, Wolkowitz OM, Roy A, Breier A, Linnoila M, Paul SM (1986) Longitudinal measurement of plasma homovanillic acid levels in schizophrenic patients: correlation with psychosis and response to neuroleptic treatment. Arch Gen Psychiatry 43: 669–676

    Article  PubMed  CAS  Google Scholar 

  • Pimoule C, Schoemaker H, Reynolds GP, Langer SZ (1985) 3H-SCH 23390 labeled Dl dopamine receptors are unchanged in schizophrenia and Parkinson’s disease. Eur J Pharmacol 114: 235–237

    Article  PubMed  CAS  Google Scholar 

  • Richelson E (1984) Neuroleptic affinities for human brain receptors and their use in predicting adverse effects. J Clin Psychiatry 45: 331–336

    PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Hall MD, Kelly E, Fleminger S, Kilpatrick G, Jenner P, Marsden CD (1985) Mesolimbic dopamine function is not altered during continuous chronic treatment of rats with typical and atypical neuroleptic drugs. J Neural Transm 62: 249–266

    Article  PubMed  CAS  Google Scholar 

  • Ruther E (1978) Interaction of neuroleptics clozapine and haloperidol. In: Deniker P, Radoncothomas C, Villeneuve A (eds) Neuro-psychopharmacology, vol 2. Pergamon Press, New York, pp 1099–1106

    Google Scholar 

  • Saiamone JD (1986) Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology 88: 18–23

    Article  Google Scholar 

  • Schwarcz R, Creese I, Coyle JT, Snyder SH (1978) Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum. Nature 271: 766–768

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Tedesco JL, Lee T, Chau-Wong M, Muller P, Bowles J, Whittaker PM, Mcmanus C, Tittler M, Weinreich P, Friend WC, Brown GM (1978) Dopamine receptors in the central nervous system. Fed Proc 37: 130–136

    CAS  Google Scholar 

  • Seeman P, Ulpian C, Bergeron C, Riederer P, Jellinger K, Gabriel E, Reynolds GP, Tourtellotte WW (1984) Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Science 225: 728–731

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Grigoriadis D, George SR, Watanabe M, Ulpian C (1986) Functional states of dopamine receptors. In: Woodruff GN, Poat JA, Roberts PJ (eds) Dopaminergic systems and their regu- lation. Verlag Chemie, Weinheim, pp 97–109

    Google Scholar 

  • Shore PA, Giachern A (1978) Reserpine: basic and clinical pharmacology. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 10. Plenum Press, New York, pp 197–219

    Chapter  Google Scholar 

  • Singh MM, Kay SR, Opler LA (1987) Anticholinergic-neuroleptic antagonism in terms of positive and negative symptoms of schizophrenia: implications for psychobiological sub-typing. Psychol Med 17: 39–48

    Article  PubMed  CAS  Google Scholar 

  • Skarsfeldt T (1988) Effect of chronic treatment with SCH23390 and haloperidol on spontaneous activity of dopamine neurons in SNC and VTA in rats. Eur J Pharmacol 145: 239–213

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Banerjee SP, Yamamura HI, Greenberg D (1974) Drugs, neurotransmitters and schizophrenia: phenothiazines, amphetamines and enzymes synthesizing psychotomimetic drugs in schizophrenia research. Science 184: 1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Guan HC, O’Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HHM, Niznik HB (1991) Cloning of the gene for a human dopamine D5-receptor with higher affinity for dopamine than D1. Nature 350: 614–619

    Article  PubMed  CAS  Google Scholar 

  • Tiedke PI, Bischoff C, Schmidt WJ (1990) MK-801-induced stereotypy and its antagonism by neuroleptic drugs. J Neural Transm 81: 173–182

    Article  Google Scholar 

  • Walters JR, Bergstrom DA, Carlson JH, Chase TN, Braun AR (1987) D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science 236: 719–722

    Article  PubMed  CAS  Google Scholar 

  • Wazer DE, Rotrosen J, Stanley M (1982) The benzamides: evidence for action on dopamine receptors, shortcomings of current models. In: Rotrosen J, Stanley M (eds) The benzamides: pharmacology, neurobiology and clinical aspects. Raven Press, New York, pp 83–95

    Google Scholar 

  • Wiedemann K, Benkert O, Holsboer F (1990) BHT920 — A novel dopamine autoreceptor agonist in the treatment of patients with schizophrenia. Pharmacopsychiatry 23: 50–55

    Article  PubMed  CAS  Google Scholar 

  • Wiesel FA, Farde L, Nordstrom AL, Sedvall G (1990) Die Bedeutung der D1 und D2 Dopaminre- zeptor-Blockade für die antipsychotische Wir- kung von Neuroleptika. Eine PET-Studie an schizophrenen Patienten. In: Muller-Oerling-Hausen B, Moller HJ, Ruther E (Hrsg) Thioxanthene in der neuroleptischen Behandlung. Springer, Berlin Heidelberg New York Tokyo, S 13–20

    Google Scholar 

  • Wilkins JN, Marder SR, Van Putten T, Midha KK, Mintz J, Setoda D, May PRA (1987) Circulating prolactin predicts risk of exacerbation in patients on depot fluphenazine. Psychopharmacol Bull 23: 522–525

    Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 5: 39–87

    Article  Google Scholar 

  • Wolkin A, Barouche F, Wou AF, Rotrosen J, Fowler JS, Shiue CY, Cooper TB, Brodie JD (1989) Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry 146: 905–908

    PubMed  CAS  Google Scholar 

  • Wong DF, Wagner HN Jr, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broiissolle EP, Ravart HT, Wilson AA, Toung JKT, Malat J, Williams JA, O’Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug naive schizophrenics. Science 234: 1558–1563

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Fritze, J. (1992). Neurobiochemie, Wirkungsmechanismen. In: Riederer, P., Laux, G., Pöldinger, W. (eds) Neuro-Psychopharmaka Ein Therapie-Handbuch. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3282-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3282-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-3283-8

  • Online ISBN: 978-3-7091-3282-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics