Advertisement

The Use of Carbon-13 Nuclear Magnetic Resonance Spectroscopy in Natural Products Chemistry

  • F. W. Wehrli
  • T. Nishida
Part of the Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 36)

Abstract

Since the late 1950’s when proton n. m. r. spectroscopy was first used in organic natural products studies the technique has increasingly contributed to the rapid advancement of this important area of chemistry. Although the potential utility of 13C n. m. r. was recognized very early, essentially no application of 13C n. m. r. appeared in the literature prior to 1966 and 95% of the existing data are less than five years old. The initially slow growth had its cause in inadequate instrumentation, insufficient sensitivity being the main obstacle. This situation drastically changed with the advent and commercial availability of broadband excitation and Fourier transform methods, giving natural-abundance 13C n. m. r. and its numerous chemical applications a tremendous impetus. Today 13C spectra can be recorded on sample quantities down to the submilligram level, which until recently even withstood proton n. m. r.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectrum Nuclear Magnetic Resonance Study Indole Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Highit, R. J., and E. A. SoKoloski: Structural Investigations of Natural Products by Newer Methods of Nmr Spectroscopy. Fortschr. Chem. org. Naturstoffe 32, 119 (1975).Google Scholar
  2. 2.
    Wenkert, E., J. S. Bindra, C.-J. Chang, D. W. Cochran, and F. M. Scheli.: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. Alkaloids, Accounts Chem. Res. 7, 46 (1974).CrossRefGoogle Scholar
  3. 3.
    Wenkert, E., B. L. Buckwalter, I. R. Burfitt, M. J. GA fC, H. E. Gottlieb, E. W. Hagaman, F. M. Schell, and P. M. Wovkulich: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. In: Topics in Carbon-13 N.M.R. Spectroscopy, Vol. 2, p. 81 ( G. C. Levy, Ed.). New York: Wiley-Interscience. 1976.Google Scholar
  4. 4.
    Tanabe, M.: Nmr with Stable Isotopes in Biosynthetic Studies. In “Specialist Periodical Reports, Biosynthesis”. The Chemical Society (London) 2 (1973), 3, 247 (1975): 4, 204 (1976).CrossRefGoogle Scholar
  5. 5.
    ScarT, A. I.: Biosynthesis of Natural Products. Science 184, 760 (1974).CrossRefGoogle Scholar
  6. 6.
    Sequin, ti., and A. 1. Scorn: Carbon-13 as a Label in Biosynthetic Studies. Science 101 (1974).Google Scholar
  7. 7.
    Mc InnÉS, A. G., and J. L. C. Wright: Use of Carhon-13 Magnetic Resonance Spectroscopy for Biosynthetic Investigations. A.count Chem. Res. 8, 313 (1975).CrossRefGoogle Scholar
  8. 8.
    Simpson, T. J.: Carbon-I3 Nuclear Magnetic Resonance in Biosynthetic Studies. Chem. Soc. Reviews 4, 497 (1975).CrossRefGoogle Scholar
  9. 9.
    Mcinnes, A. G., J. A. Walter, J. L. C. Wright, and L. C. Vining: 13C Nmr Biosynthetic Studies. In: Topics in Carbon-13 Nmr Spectroscopy, Vol. 2 ( G. C. Levy, Ed.). New York: Wiley-Interscience. 1976.Google Scholar
  10. 10.
    Wehrli, F. W., and T. Wirthlin: “Interpretation of Carbon-13 Nmr Spectra”. London: Heyden. 1976.Google Scholar
  11. 11.
    Freeman, R., and H. D. W. Hill: Fourier Transform Study of Nmr Spin-Lattice Relaxation by Progressive Saturation. J. Chem. Phys. 54, 3367 (1971), Birdsall, B., N. J. M. Birdsall, and J. Feeney: Simplified 13C Spectral Assignments Using a Graphical Method to Present L3C Spectra Recorded Under Conditions of Proton Off-resonance Spin Decoupling. J. C. S. Chem. Commun. ( London ) 1972, 316.Google Scholar
  12. 12.
    Hagaman, E. W.: Pattern Recognition of Geminal Proton Nonequivalence and Second-Order Coupling in 13C Single-frequency Off-resonance Decoupled Spectra. Assignment Criteria and Structure Elucidation. Org. Magn. Res. 8, 389 (1976).CrossRefGoogle Scholar
  13. 13.
    Newmark, R. A., and J. R. Hill: Virtual Coupling in Carbon-13 Nmr Spectra with Off-resonance Continuous Wave Proton Spin Decoupling. J. Amer. Chem. Soc. 95, 4435 (1973).CrossRefGoogle Scholar
  14. 14.
    Jikeli, G., W. Herrig, and H. GÜNther: Assignment of 13C Nuclear Magnetic Resonance Signals. Fingerprints in Off-Resonance L3C, {I It Nuclear Magnetic Double Resonance Spectra. J. Amer. Chem. Soc. 96, 323 (1974).CrossRefGoogle Scholar
  15. 15.
    Fiore. H., and H. Sauter: Off-Resonance Decoupling in Abx Spin Systems. J. Magn. Res. 18, 527 (1975).Google Scholar
  16. 16.
    Ller, L., A. Kumar, and R. R. Ernst: Two-dimensional Carbon-13 Nmr Spectroscopy. J. Chem. Phys. 63, 5490 (1975).CrossRefGoogle Scholar
  17. 17.
    Bodenhausr.N, G., R. Freeman, and G. A. Morris: A Simple Pulse Sequence for Selective Excitation in Fourier Transform Nmr..1. Magn. Res. 23, 171 (1976).Google Scholar
  18. 18.
    Freeman, R., G. A. Morris. and M. J. T. Robinson: Proton-coupled Carbon-13 Nuclear Magnetic Resonance Spectra from Individual Carbon Sites in a Molecule: The Rotameric Equilibrium in Menthone. J. C. S. Chen. Commun. ( London ) 1976, 754.Google Scholar
  19. 19.
    Gei,I, U., and W. Von Philipsborn: Vicinal C, H Spin Coupling in Substituted Alkenes. Stereochemical Significance and Structural Effects. Org. Magn. Res. 7, 617 (1975).CrossRefGoogle Scholar
  20. 20.
    Philipsborn, W. Von: Application of Double Resonance and Fourier Transform Nmr Spectroscopy in Organic Chemistry. Pure and Applied Chemistry 40, 159 (1974).CrossRefGoogle Scholar
  21. 21.
    Nther, H., H. Schmickler, and G. Jikeli: Applications of Carbon-13 Resonance Spectroscopy. V. `Fingerprints“ for the Assignment of Carbon-13 Resonance Signals. J. Magn. Res. 11, 344 (1973).Google Scholar
  22. 22.
    Nuclear Magnetic Resonance Spectroscopy. Benezene-13C. Weigert, F. J J. D. Roberts. J. Amer. Chem. Soc. 89, 2967 (1967).Google Scholar
  23. 23.
    Ref. 10, Chap. 3.Google Scholar
  24. 24.
    Massow, F. Von, and M. A. R. Smith: Indirect Coupling in Asymmetrically. Tri-substituted Benzenes: a Carbon-13 Nuclear Magnetic Resonance. Study J. C. S. Perkin II. 1976, 977.Google Scholar
  25. 25.
    Wehrli, F. W.: Proton-Coupled “C Nuclear Magnetic Resonance Spectra Involving 13C — ‘H Spin-Spin Coupling to Hydroxyl Protons, A Complementary Assignment Aid. J. C. S. Chem. Commun. ( London ) 1975, 663.Google Scholar
  26. 26.
    Kingsbury, C. A., and J. H. Looker: Carbon-13 Spectra of Methoxyflavones. J. Org. Chem. 40, 1120 (1975).CrossRefGoogle Scholar
  27. 27.
    Chang, C.: Carbon-l3-Proton Long-Range Couplings of Phenols. Hydrogen Bonding and Stercospecificity. J. Org. Chem. 41, 1881 (1976).CrossRefGoogle Scholar
  28. 28.
    Pachler, K. G. R., and P. L. Wessels: Selective Population Inversion (Spi). A Pulsed Double Resonance Method in FT Nmr Spectroscopy Equivalent to Indor. J. Magn. Res. 12, 337 (1973).Google Scholar
  29. 29.
    Sorensen, S., R. S. Hansen, and H. Jakobsen: Assignments and Relative Signs of “C-X Coupling Constants in ”C FT Nmr from Selective Population Transfer (Spt). J. Magn. Res. 14, 243 (1974).Google Scholar
  30. 30.
    Nagel, D. W., K. G. R. Pachler, P. S. Steyn, R. Vleggaar, and P. L. Wessels: The Chemistry and 13C Nmr Assignments of Oxaline, a Novel Alkaloid from Penicillium oxalicum. Tetrahedron 32, 2625 (1976).CrossRefGoogle Scholar
  31. 31.
    Pachler, K. G. R., P. S. Steyn, R. Vleggaar, P. L. Wessels, and D. B. Scot-I: Carbon-13 Nuclear Magnetic Resonance Assignments and Biosynthesis of Aflatoxin BI and Sterigmatocystin. J. S. C. Perkin 11182 (1976).Google Scholar
  32. 32.
    Walker, T. E., R. E. London, T. W. Whaley, R. Barker, and N. A. Matwiyoff: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of [1-“C] Enriched Monosaccharides. Signal Assignments and Orientational Dependence of Geminal and Vicinal Carbon-Carbon and Carbon-Hydrogen Spin-Spin Coupling Constants. J. Amer. Chem. Soc. 98, 5807 (1976).CrossRefGoogle Scholar
  33. 33.
    Eggert, H., and C. Dierassi: Carbon-13 Nuclear Magnetic Resonance Spectra of Keto Steroids. J. Org. Chem. 38, 3788 (1973).CrossRefGoogle Scholar
  34. 34.
    Feeney, J., P. Partington, and G. C. K. Roberts: The Assignment of Carbon-13 Resonances from Carbonyl Groups in Peptides. J. Magn. Res. 13, 268 (1974).Google Scholar
  35. 35.
    Gorin, P. A. J., and M. Mazurek: Further Studies on the Assignment of Signals in 13C Magnetic Resonance Spectra of Aldoses and Derived Methyl Glycosides. Can. J. Chem. 53, 1212 (1975).CrossRefGoogle Scholar
  36. 36.
    Wahlberg, I., S.-O. Almqvist, T. Nishida, and C. R. Enzell: Carbon-13 Nuclear Magnetic Resonance Spectra of Some Podocarpane Derivatives. Acta Chem. Scand. B29, 1047 (1975).CrossRefGoogle Scholar
  37. 37.
    Joseph-Nathan, P., J. Maves, M. C. Hernandez, and J. N. Shoolery: Proton and Carbon-13 Nuclear Magnetic Resonance Studies of Flavone and Deuterated Analogs. J. Magn. Res. 16, 447 (1974).Google Scholar
  38. 38.
    Wehrli, F. W.: “C Spectral Assignments with the Aid of Spin-Spin Coupling and Spin-Lattice Relaxation Data Involving Labile Protons. Paper presented at the 3rd International Symposium on Nuclear Magnetic Resonance, St. Andrew’s, Scotland, 1975.Google Scholar
  39. 39.
    Kobayashi, M., Y. Tertn, K. Toet, and N. Tsuji: Carbon-13 Nmr Spectra of Juglone, Naphthazarin and their Derivatives. Tetrahedron Letters 1976, 619.Google Scholar
  40. 40.
    Nishida, T.: Unpublished results.Google Scholar
  41. 41.
    Nishida, T., I. Wahlberg. and C. R. Enzell: Carbon-l3 Nuclear Magnetic Resonance Spectra of Some Aromatic Diterpenoids. Org. Magn. Res. 9, 203 (1977).CrossRefGoogle Scholar
  42. 42.
    Ref. 3, p. 104.Google Scholar
  43. 43.
    LcNkinstct, R. E., and M. R. Willcovr, Ill: Contact Shifts in the Nuclear Magnetic Resonance Spectra of isoquinoline and of endo-Norborneol. J. Amer. Chem. Soc. 98, 4250 (1976).CrossRefGoogle Scholar
  44. 44.
    Gansow, O. A., P. A. Loeffler, R. E. Davis, M. R. Willcott, and R. E. Lenkinski: Evidence for Europium-Induced Contact Shifts in Carbon-13 Nuclear Magnetic Resonance Spectra. J. Amer. Chem. Soc. 95, 3390 (1973).CrossRefGoogle Scholar
  45. 45.
    Chadwick, D. J., and D. H. Wilunms: The full Assignment of the Carbon-l3 Nuclear Magnetic Resonance Spectrum of 5a-Cholestan-313-ol with the Aid of the Lanthanide Shift Reagent Yb(dpm)3. J. C. S. Perkin II, 1974, 1903.Google Scholar
  46. 46.
    Almqvist, 5.-O., C. R. Enzell, and F. W. Wehrli: Carbon-13 Nmr Studies of Labdane Diterpenoids. Acta Chem. Scand. B29, 695 (1975).Google Scholar
  47. 47.
    Lyerla, J. R., JR., and G. C. Levy: Carbon-13 Nuclear Spin Relaxation. In:Topics in Carbon-13 Nmr Spectroscopy, Vol. I, Chap. 3 (Levy, G. C., ed.). New York: Wiley-Interscience. 1974.Google Scholar
  48. 48.
    Lyerla, J. R. JR., and D. M. Grant: Carbon-13 Nuclear Spin Relaxation. In: International Reviews in Science. Physical Chemistry Series, Vol. 4, Chap. 5 ( McdowEll, C. A., Ed.). Medical and Technical Publishing, 1972.Google Scholar
  49. 49.
    Wehrli, F. W.: Organic Structure Assignments Using “C-Spin-Relaxation Data. In:Topics in Carbon-13 N.M.R. Spectroscopy, Vol. 2, p. 343 (LEvY, G. C., Ed.). New York: Wiley-Interscience. 1976.Google Scholar
  50. 50.
    Apsimon, J. W., H. Bfierbeck, and J. K. Saunders: Carbon-13 Spin-Lattice Relaxation Times for Selected Steroids. Can. J. Chem. 53, 338 (1975).CrossRefGoogle Scholar
  51. 51.
    Levy, G. C., J. D. Cargioli, and F. A. L. Anet: Carbon-13 Spin-Lattice Relaxation in Benzene and Substituted Aromatic Compounds. J. Amer. Chem. Soc. 95, 1527 (1973).CrossRefGoogle Scholar
  52. 52.
    Berger, S., F. R. Kreis.SL, D. M. Grant, and J. D. Roberts: Determination of Anisotropy of Molecular Motion with ‘3C Spin-Lattice Relaxation Times. J. Amer. Chem. Soc. 97, 1805 (1975).CrossRefGoogle Scholar
  53. 53.
    Becker, R. S., S. Berger, D. K. Dalling, D. M. Grant, and R. J. Pugmire: Carbon-13 Magnetic Resonance Investigation of Retinal Isomers and Related Compounds. J. Amer. Chem. Soc. 96, 7008 (1974).CrossRefGoogle Scholar
  54. 54.
    Rowan Iii, R., and B. D. Sykes: A Carbon-13 Nuclear Magnetic Resonance Study of the Visual Chromophores and Model Compounds. J. Amer. Chem. Soc. 96, 7000 (1974).CrossRefGoogle Scholar
  55. 55.
    See e.g. Ref. 45, p. 373ff.Google Scholar
  56. 56.
    Nishida, f., unpublished data.Google Scholar
  57. 57.
    Czarniecki, M. F., and E. R. Thornton: 13C Spin-Lattice Relaxation in the Neuraminic Acids. Evidence for an Unusual Intramolecular Hydrogen Bonding Network. J. Amer. Chem. Soc. 98, 1023 (1976).CrossRefGoogle Scholar
  58. 58.
    Wehrli, F. W.: 13C Spectral Assignment and Spin-Lattice Relaxation in Medium-Sized Molecules. Advances in Molecular Relaxation Processes 6, 555 (1974).CrossRefGoogle Scholar
  59. 59.
    Echols, R. E., and G. C. Levy: Carbon-13 Nuclear Magnetic Resonance Spectral Analysis Using Spin-Lattice Relaxation Data and Specific Deuteration. Thiamine Hydrochloride. J. Org. Chem. 39, 1321 (1974).CrossRefGoogle Scholar
  60. 60.
    Gribble, G. W., R. B. Nelson, J. L. Johnson, and G. C. Levy: Carbon-13 Fourier Transform Nuclear Magnetic Resonance Spectroscopy of Indolo [2,3-u] quinolizines. Specific Deuteration and Relaxation Methods in Structural Assignments. J. Org. Chem. 40, 3720 (1975).CrossRefGoogle Scholar
  61. 61.
    Norton, R. S., and A. Allerhand: Effect of 13C–14N Dipolar Interactions on Spin-Lattice Relaxation Times and Intensities of Nonprotonated Carbon Resonances. J. Amer. Chem. Soc. 98, 1007 (1976).CrossRefGoogle Scholar
  62. 62.
    Faller, J. W., M. A. Adams, and G. N. LA Mar: The Application of Lanthanide Relaxation Reagents in Cmr. Tetrahedron Letters 1974, 699.Google Scholar
  63. 63.
    Levy, G. C., U. Edlund, and C. E. Holloway: Mechanisms for Interaction between Organic Molecules and Paramagnetic Relaxation Reagents. J. Magn. Res. 24, 375 (1976).Google Scholar
  64. 64.
    Bohlmann, F., R. Zeisberg and E. Klein: 13C-Nmr-Spektren von Monoterpenen. Org. Magn. Res. 7, 426 (1975).CrossRefGoogle Scholar
  65. 65.
    Abraham, R. J., C. M. Holden, P. Loftus, and D. Whittaker: The Nmr Spectra and Conformations of Cyclic Compounds IX — Conformational Studies of Bicyclo[3.1.0]hexane Derivatives by 13C Nmr. Org. Magn. Res. 6, 184 (1974).CrossRefGoogle Scholar
  66. 66.
    Ref. 10, p. 110ff.Google Scholar
  67. 67.
    Nishida, T.: Unpublished data.Google Scholar
  68. 68.
    Wenkert, E., D. W. Cochran, and F. M. Schell: Cmr Spectral Analysis of Tetrahydrocannabinol and its Isomers. Experientia 28, 250 (1972).CrossRefGoogle Scholar
  69. 69.
    Weiner, B. Z., and A. T. Meyer: Unpublished data quoted in the review of Mechoulam, R., N. K. Mccallum, and S. Burstein: Recent Advances in the Chemistry and Biochemistry of Cannabis. Chem. Review 76, 75 (1976).Google Scholar
  70. 70.
    Nishida, T.: To be published. The original assignments given in reference 71 are partly in error.Google Scholar
  71. 71.
    Thomas, A. F., W. Thommen, B. Willhalm, E. W. Hagaman, and E. Wfnkert: Terpenoids Derived from Linalyl Oxide. Part I, The Stereochemistry of the Dava-nones. Hely. Chim. Acta 57, 2055 (1974).CrossRefGoogle Scholar
  72. 72.
    Bock, K., S. R. Jensen, and B. J. Nielsen: Secogalioside, an Iridoid Glucside from Galium album Mill, and 13C Nmr Spectra of some Seco-Iridoid Glucosides. Acta Chem. Scand. B30, 743 (1976).CrossRefGoogle Scholar
  73. 73.
    Kubo, 1., 1. Miura, and K. Nakanishi: The Structure of Xylomollin, a Secoiridoid Hemiacetal Acetal. J. Amer. Chem. Soc. 98, 6704 (1976).CrossRefGoogle Scholar
  74. 74.
    Thomas, A. F., M. Ozainne, F. Naf. and G. Lukacs: 10-Epijunenol, A New cisEudesmane Sesquiterpenoid. Tetrahedron 32, 2261 (1976).CrossRefGoogle Scholar
  75. 75.
    Nakanishi, K., R. Crouch, I. Miura, X. Dominguez, A. Zamudis, and R. Villarreal: Structure of a Sesquiterpene, Cuauthemone, and Its Derivative. Application of Partially Relaxed Fourier Transform 13C Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 96, 609 (1974).CrossRefGoogle Scholar
  76. 76.
    CoxoN, D. T., K. R. Price, B. Howard. S. F. Osman, E. B. Kalan, and R. M. Zacharius: Two New Vetispirane Derivatives: Stress Metabolites from Potato (Solanum tuberosum) Tubers. Tetrahedron Letters 2921 (1974).Google Scholar
  77. 77.
    Stoessl, A., J. B. Stothers, and E. W. B. Ward: The Structures of Some Stress Metabolites from Solanum melongena. Can. J. Chem. 53, 3351 (1975).CrossRefGoogle Scholar
  78. 78.
    Magnussen, G., and S. Thor6N: Fungal Extractives. VI. Structure of Lactaral, a New Sesquiterpene Furan-3-aldehyde from Lactarius, by Spectroscopic Methods. Tetrahedron 30, 1431 (1974).CrossRefGoogle Scholar
  79. 79.
    Flamm, B. L., J. A. Pettus, JR., J. J. Sims, J. P. Springer, and J. Clardy: Isolation of Epoxydecompostin from Lepidospartum.cquamatum Gray and its Structure Revision. Tetrahedron Letters 2671 (1976).Google Scholar
  80. 80.
    Siieikh, Y. M., G. Sings’, M. Kaisin, H. Eggert, C. Dierassi, B. Tursch, D. Daloze, and J. C. Braekman: Terpenoids - Lxxi. Chemical Studies of Marine Intertehrates Xiv. Four Representatives of a Novel Sesquiterpene Class The Capnellane Skeleton. Tetrahedron 32, 1171 (1976).CrossRefGoogle Scholar
  81. 81.
    Wei, R.-D., H. K. Schnoes, P. A. Hart. and F. M. Strong: The Structure of PR Toxin, a Mycotoxin from Penicillium roqueforti. Tetrahedron 31, 109 (1975).CrossRefGoogle Scholar
  82. 82.
    Mcgaiiren, W. J., G. A. Ellestad, G. O. Morton, and M. P. Kunstmann: Spectral and Chemical Characterization of Fungal Metabolite LL-N313S. J. Org. Chem. 41, 66 (1976).CrossRefGoogle Scholar
  83. 83.
    Breitenstein, W., and C. Tamm: 13C Nmr Spectroscopy of the Trichothecane Derivatives, Verrucarol, Verrucarins A, and B and Roridins A, D, and H. HeIv. Chim. Acta 58, 1172 (1975).CrossRefGoogle Scholar
  84. 84.
    Ellison, R. A., and F. N. KorsoNis: Carbon-13 Nuclear Magnetic Resonance Assignments in the Trichothecene Mycotoxins. J. Org. Chem. 41, 576 (1976).CrossRefGoogle Scholar
  85. 85.
    Braga DE Oliveira, A., M. DE L. M. Fernandes, O. R. Gottlieb, E. W. Hagaman, and E. Wenkert: Aromatic Sesquiterpenoids from Emmotum niten.s. Phytochemistry 13, 1199 (1974).CrossRefGoogle Scholar
  86. 86.
    Thomas, A. F., and M. Ozainne: The Stereochemistry of the Dihydroagarofurans. Tetrahedron Letters 1717 (1976).Google Scholar
  87. 87.
    Den Hertog, H. J., JR., C. Kruk, D. D. Navanati, and S. Des’: Stereochemistry of Malkangunio] and Stereostructures of Some Other Related Polyalcohols from Cela.orus paniculatus Willd. Tetrahedron Letters 2219 (1974).Google Scholar
  88. 88.
    Herz, W., and R. P. Sharma: Complete Stereochemistry of Tenulin. Carbon-13 Nuclear Magnetic Resonance Spectra of Tenulin Derivatives. J. Org. Chem. 40, 2557 (1975).CrossRefGoogle Scholar
  89. 89.
    Pregosin, P. S., E. W. Randall, and T. B. H. Mcmurry: 15C Fourier Studies. The Configurational Dependence of the Carbon-13 Chemical Shifts in Santonin Derivatives. J. C. S. Perkin I, 299 (1972).Google Scholar
  90. 90.
    Moss, G. P., P. S. Pregosin, and E. W. Randall: Assignments in the Carbon-13 Fourier Spectra of Eudesmanolides. J. C. S. Perkin I, 1525 (1974).Google Scholar
  91. 91.
    Vichnewski, W., 1. K. Shuhama, R. C. Rosanske, and W. Herz: Granilin and Ivasperin from Ambrosia polystachia. 13C Nmr Spectra of Hydroxylated Isoalantones. Phytochemistry 15, 1531 (1976).CrossRefGoogle Scholar
  92. 92.
    Tofu, K., M. Ueyama, I. Horibf, Y. Tamura, and K. Takeda: Carbon-13 N.M.R. Spectra of some Furano-Sesquiterpenes, Major Components of Lindera St ychn folic. Tetrahedron Letters 4583 (1975).Google Scholar
  93. 93.
    Tort, K., 1. Horibe, Y. Tamura, K. Kuriyama, H. Tada, and K. Takeda: Reinvestigation of the Conformation of Laurenobiolide, a Ten-membered Ring Sesquiterpene Lactone, by Variable-Temperature Carbon-13 Nmr Spectroscopy. Evidence for the Presence of Four Conformational Isomers in Solution. Tetrahedron Letters 387 (1976).Google Scholar
  94. 94.
    Herz, W., and R. P. Sharma: A Trans-1.2-cis-4,5-Germacradienolide and Other New Germacranolides from Tithonia Species. J. Org. Chem. 40, 31 I (1975).Google Scholar
  95. 95.
    Herz, W., and R. P. Shharma: Sesquiterpene Lactones of Eupatorium hyssopifolium. A Germacranolide with an Unusual Lipid Ester Side Chain. J. Org. Chem. 41, 1015 (1976).CrossRefGoogle Scholar
  96. 96.
    Bhacca, N. S., R. A. Wiley, N. H. Fischer, and F. W. Wehrli: Carbon-13 and Proton Magnetic Resonance Study of the Structure and Conformation of a New Germacranolide Sesquiterpene Dilactone. J. C. S. Chem. Commun. 614 (1973).Google Scholar
  97. 97.
    Bhacca, N. S., F. W. Wehrli, and N. H. Fischer: Carbon-13 Magnetic Resonance Study of Terpenoids, I. An Application of Heteronuclear Selective Decoupling Experiments to the Spectral Assignments of Non-proton-bearing Carbon-13 Resonances of a Germacranolide, Melampodin. J. Org. Chem. 38, 3618 (1973).Google Scholar
  98. 98.
    Herz, W., and P. S. Kalyanaraman: Acanthospermal A and Acanthospermal B. Two New Melampolides from Acanthospermun Species. J. Org. Chem. 40, 3486 (1975).CrossRefGoogle Scholar
  99. 99.
    Herz, W., and R. P. Sharma: Pycnolide, a seco-Germacradienolide from Liatris pycnostachya, and Other Antitumor Constituents of Liatris Species. J. Org. Chem. 41, 1248 (1976).CrossRefGoogle Scholar
  100. 100.
    Garcia, M., A. J. R. DA Silva, P. M. Baker, B. Gilbert, and J. A. Rabi: Absolute Stereochemistry of Eremanthine. A Schistosomicidal Sesquiterpene Lactone from Eremanthus elaeagnus. Phytochemistry 15, 331 (1976).CrossRefGoogle Scholar
  101. 101.
    Crombie, L., R. W. King, and D. A. Whiting: Carbon-13 Magnetic Resonance Spectra. Synthetic Presqualene Esters, Related Cyclopropanes, and Isoprenoids. J. C. S. Perkin II, 913 (1975).Google Scholar
  102. 102.
    Crombie, L., G. Pettenden, and D. J. Simmonds: Carbon-13 Nuclear Magnetic Resonance Spectra of the Natural Pyrethrins and Related Compounds. J. C. S. Perkin I, 1500 (1975).Google Scholar
  103. 103.
    Uchio, Y., A. Matsuo, M. Nakayama, and S. Hayashi: Vulgarone, A Scsquiterpene Ketone with a New Carbon Skeleton from Chrysanthemum volgare. Tetrahedron Letters 2963 (1976).Google Scholar
  104. 104.
    Aasen. A. J., T. Nishida, C. R. Enzell, and M. Devreux: Tabacco Chemistry 37. The Absolute Configuration of Prenylsolanone, (9S)6,12-Dimethyl-9-isopropyltrideca5E,10E,12-trien-2-one, a Nortunberganoid of Nicotiana tabacum L. Acta Chem. Scand. B30, 178 (1976).Google Scholar
  105. 105.
    Almqvist, S.-O., and C. R. Enzell Carbon-13 Nmr Studies of Labdane Diterpenoids. Acta Chem. Scand. B29, 695 (1975).CrossRefGoogle Scholar
  106. 106.
    Buckwalter, B. L., I. R. Burfitt, A. A. Nagel, E. Wenkert, and F. Naf: 13C-Nmr. Spectroscopy of Naturally Occurring Substances, Xxxv. Labdanic Diterpenes. Heir. Chim. Acta 58, 1567 (1975). The Use of Carbon-13 Nuclear Magnetic Resonance Spectroscopy 201Google Scholar
  107. 107.
    Nishida, T.: Unpublished results.Google Scholar
  108. 108.
    Savona, G., F. Piozzi, J. R. Hanson, and M. Siverns: Structure of Ballotinone, a Diterpenoid from Batiota nigra. J. C. S. Perkin I, 1607 (1976).Google Scholar
  109. 109.
    Smith, C. R., JR.. R. V. Madrigal, D. Weisleder, K. L. Mikolajczak, and R. J. Highet: Potamogetonin, a New Furanoid Diterpene. Structural Assignment by Carbon-13 and Proton Magnetic Resonance. J. Org. Chem. 41, 593 (1976).CrossRefGoogle Scholar
  110. 110.
    Cambie, R. C., L R. Burfitt, T. E. Goodwin, and E. Wenkert: The Structure of Hallos. J. Org. Chem. 40, 3789 (1975).CrossRefGoogle Scholar
  111. 111.
    Kato, T., C. Kabuto, N. Sasaki, M. Tsunagawa, H. Aizawa, K. FwIta, Y. K.TO, and Y. Kitahara: Momilactones, Growth Inhibitors from Rice, Oryza sativa L. Tetrahedron Letters 3861 (1973).Google Scholar
  112. 112.
    Matsuo, A., S. Uto, M. Nakayama, and S. Hayashi: (-)-Thermarol, a New EntPimarane-Class Diterpene Diol. Tetrahedron Letters 2451 (1976).Google Scholar
  113. 113.
    Manchand, P. S., and J. F. Blount: X-Ray Structure and Absolute Stereo-chemistry of Stemolide. Tetrahedron Letters 2489 (1976).Google Scholar
  114. 114.
    Kubo, 1., Y.-W. Lee, V. Balogh-Nair, K. Nakanishi, and A. Chapya: Structure of Ajugarins. J. C. S. Chem. Commun. 949 (1976).Google Scholar
  115. 115.
    Billet, D., M. Durgeat, S. Heitz et A. Ahond: Constituants d’erodia floribunda Baker. I. l’Acide Floribundique, Nouveau Diterpène de Type Clerodane. Tetrahedron Letters 3825 (1975).Google Scholar
  116. 116.
    Hanson. J. R., M. Siverns, F. Plozzl, and G. Savona: The 13C Nuclear Magnetic Resonance Spectra of Kauranoid Diterpenes. J. C. S. Perkin I, 114 (1976).Google Scholar
  117. 117.
    Hanson, J. R., G. Savona, and M. Siverns: L3C Nuclear Magnetic Resonance Spectra and Microbiological Hydroxylation of 7x-and 70-Hydroxy-kaurenolide. J. C. S. Perkin I, 2001 (1974).Google Scholar
  118. 118.
    Ellames, G., and J. R. Hanson: Microbiological Hydroxylation of 3ß,713-Dihydroxykaurenolide. J. C. S. Perkin I, 1666 (1976).Google Scholar
  119. 119.
    Herz, W., and R. P. Sharma: New Hydroxylated ent-kauranoic Acids from Eupatorium album. J. Org. Chem. 41, 1021 (1976).CrossRefGoogle Scholar
  120. 120.
    Wahlberg. L. C. R. Enzell, and J. W. Rowe: Ent-16-Kauren-l9-ol from Coffee. Phytochemistry 14, 1677 (1975).CrossRefGoogle Scholar
  121. 121.
    Yamasaki, K., H. Kohda, T. Kobayashi, R. Kasai, and O. Tanaka: Structures Of Stevia Diterpene-glucosides: Application of 13C Nmr. Tetrahedron Letters 1005 (1976).Google Scholar
  122. 122.
    Carsten-Lichterfelde, C. Von, C. Pascual, and J. Pons: Carbon-13 Nmr Spectra of enl-Beyerane and ent-Beyerane Derivatives. Tetrahedron Letters 3569 (1975).Google Scholar
  123. 123.
    Evans, R., J. R. Hanson, and M. Siverns: t he `C Nuclear Magnetic Resonance Spectra of Some Gibberellins. J. C. S. Perkin I, 1514 (1975).Google Scholar
  124. 124.
    Radeglia, R., G. Adam and P. D. Hung: “C-Nmr-Spektroskopie von GibberellinVerbindungen. Tetrahedron Letters 605 (1976).Google Scholar
  125. 125.
    Yamaguchi, 1., M. Miyamoto, H. Yamane, N. Murofushi, N. Takahashi, and K. Fuji Elucidation of the Structure of Gibberellin A00 from Gibberella fujikuroi: J. C. S. Perkin I, 996 (1975).Google Scholar
  126. 126.
    Polonsky, J., Z. Baskevitch, H. E. Gottlieb, E. W. Hagaman, and E. Wenkert: Carbon-I3 Nuclear Magnetic Resonance Spectral Analysis of Quassinoid Bitter Principles. J. Org. Chem. 40, 2499 (1975).CrossRefGoogle Scholar
  127. 127.
    Minale, L., and R. Riccio: Constituents of the Digestive Gland of the Molluscs of Genus Aplycia - I. Novel Diterpenes from Aplysa depilans. Tetrahedron Letters 2711 (1976).Google Scholar
  128. 128.
    Taylor, D. A. H.: “C Nuclear Magnetic Resonance Spectra of Some Limonoids. Part 1. The Structure of Prom-in, an Extractive from Carapa Procera. J. C. S. Perkin I, 437 (1974).Google Scholar
  129. 129.
    NÄNN7, R., C. Tamm, V. Gullo, and K. Nakanishi: Modification of the Structure of Bussein. J. C. S. Chem. Commun. 563 (1975).Google Scholar
  130. 130.
    Halsall, T. G., and J. A. Troke: The Structures of Three New Meliacins Isolated from Khava anthoteca Heartwood. J. C. S. Perkin 1, 1758 (1975).CrossRefGoogle Scholar
  131. 131.
    OcHI, M., H. KotsUKt, K. Hirotsu, and T. Tokoroyama: Sendanin, a New Limonoid from Melia Azedarach Linn. ear. japonica MaIano. Tetrahedron Letters 2877 (1976).Google Scholar
  132. 132.
    Dreyer, D. L.. R. D. Bennett, and S. C. Basa: Limonoids from Atalantia monophylla, Isolation and Structure. Tetrahedron 32, 2367 (1976).CrossRefGoogle Scholar
  133. 133.
    Zanno, P., 1. Miura, K. Nakanishi, and P. L. Elder: Structure of the Insect Phagorepellent Azadirachtin. Application of Prft/Cwd Carbon-13 Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 97, 1975 (1975).CrossRefGoogle Scholar
  134. 134.
    Borremans, F., M. DE Potter, and D. DE Keukelfire: Carbon-13 Nmr Spectroscopy of Hop Bitter Substances. Org. Magn. Res. 7, 415 (1975).CrossRefGoogle Scholar
  135. 135.
    Radics, L., M. Kaitar-Peredy, S. NozoE, and H. KoBayasi: Carbon-13 Nuclear Magnetic Resonance Spectra of Ophibolins. Tetrahedron Letters 4414 (1975).Google Scholar
  136. 136.
    Knight, S. A.: Carbon-13 Nmr Spectra of Some Tetra-and Pentacyclic Triterpenoids. Org. Magn. Res. 6, 603 (1974).CrossRefGoogle Scholar
  137. 137.
    Jones, A. J., P. F. Alewood, M. Benn, and J. Wong: Funclionalization of the 4a-Methyl Group of Lanostanol via Azidoformate Thermolysis. Tetrahedron Letters 1655 (1976).Google Scholar
  138. 138.
    KtIuong-Huu, F., M. Sangare, V. M. Chari, A. Bekaert, M. Devys, M. Barbier, and G. Lukacs: Carbon-13 Nuclear Magnetic Resonance Spectral Analysis of Cycloartanol and Related Compounds. Tetrahedron Letters 1789 (1975).Google Scholar
  139. 139.
    Radios, L.. M. Kajtar-Peredy, S. Corsano, and L. Standoli: Carbon-13 Nmr Spectra of Some Polycyclic Triterpenoids. Tetrahedron Letters 4287 (1975).Google Scholar
  140. 140.
    Totu, K., S. Seo. A. Shimaoka, and Y. Tomita: Carbon-13 Nmr Spectra of Olean-12-enes. Full Signal Assignments Including Quaternary Carbon Signals Assigned by Use of Indirect 13C, 1H Spin Couplings. Tetrahedron Letters 4227 (1974).Google Scholar
  141. 141.
    Seo, S., Y Tomita, and K. Tort: Carbon-I3 Nmr Spectra of Urs-l2-enes and Application to Structural Assignments of Compounds of Lsodon japonicus Hara Tissue Cultures. Tetrahedron Letters 7 (1975).Google Scholar
  142. 142.
    Seo, S., Y. Tomita, and K. Tori: Biosynthesis of Ursene-type Triterpenes from Sodium[1,2–13C]-Acetate in Tissue Cultures of Lsodon japonicuc Hara and Reassignments of 13C N.m.r. Signals in Urs-12-eves. J. C. S. Chem. Commun. 954 (1975).Google Scholar
  143. 143.
    Tort, K., Y. Yoshimura, S. Seo, K. Sakurawt, Y. Tomita, and H. Ishii: Carbon-13 Nmr Spectra of Saikogenins. Stereochemical Dependence of Hydroxylation Effects upon Carbon-13 Chemical Shifts of Oleanene-Type Triterpenoids. Tetrahedron Letters 4163 (1976).Google Scholar
  144. 144.
    foRI, K., S. Seo, Y. Yoshimura, M. Nakamura, Y. Tomita, and H. IsItm1: Carbon-13 Nmr Spectra of Saikosaponins A, C, D and F, Isolated from Buplearum falcatum L. Tetrahedron Letters 4167 (1976).Google Scholar
  145. 145.
    Nakanishi, K., V. P. Gullo, I. Miura, T. R. Govindachari, and N, Viswanath.AN: Structure of two Triterpenes. Application of Partially Relaxed Fourier Transform LsC Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 95, 6473 (1973).CrossRefGoogle Scholar
  146. 146.
    Eggert, H., C. L. Van Antwerp, N. S. Bracca, and C. Djerassi: Carbon-13 Nuclear Magnetic Resonance Spectra of Hydroxy Steroids. J. Org. Chem. 41, 71 and 4051 (1976).Google Scholar
  147. 147.
    Blunt. J. W.: Carbon-13 Nmr Spectra of 6(1-Substituted 5x-cholestan-313.5-diols: y-and S-Effects. Aust. J. Chem. 28, 1017 (1975).CrossRefGoogle Scholar
  148. 148.
    Cushley, R. J., and J. D. FtuPenko: 13C Fourier Transfor N.M.R. Xiii. Reassignment of the 13C Spectrum of Ergosterol. Org. Magn. Res. 8, 308 (1976).CrossRefGoogle Scholar
  149. 149.
    Abraham, R. J., and J. R. MoNasterios: 13C Nuclear Magnetic Resonance Spectra of some Ergosta-dienes and -trienes. J. C. S. Perkin II, 662 (1974).Google Scholar
  150. 150.
    Hanson, J. R., and M. Siverns: 13C Nuclear Magnetic Resonance Spectra of Some Steroidal Unsaturated Ketones. J. C. S. Perkin I, 1956 (1975).Google Scholar
  151. 151.
    Letourneux, Y., Q. Khuong-Huu, M. Gut, and G. Lukacs: Identification of C-22 Epimers in Steroids by Carbon-13 Nuclear Magnetic Resonance Spectroscopy. J. Org. Chem. 40, 1674 (1975).CrossRefGoogle Scholar
  152. 152.
    Anderson, W. G., C. Y. Byon, M. Gut, and F. H. Bissett: 13C Nmr Studies of the Four 20,22-Epoxy-cholesterols and the Two 20(22)-Dehydrocholesterols. Tetrahedron Letters 2193 (1976).Google Scholar
  153. 153.
    Bannai, K., M. Morisaki, and N. Ikekawa: Studies on Steroids. Part. 37. Synthesis of the Four Stereoisomers of 20.22-Epoxycholesterol. J. C. S. Perkin 1, 2116 (1976).Google Scholar
  154. 154.
    Lori, K., H. IsHH, Z. W. WoLkowsKI, C. Chachaty, M. SangarÉ. F. Piriou, and G. Lukacs: Carbon-13 Nuclear Magnetic Resonance Spectra of Cardenolide. Tetrahedron Letters 1077 (1973).Google Scholar
  155. 155.
    Wray, V., and S. Lang: Fourier Transform’ 3C Nuclear Magnetic Resonance Studies of Steroids. II. Derivatives of l7ß-(2.5-Dihydro-5-oxo-3-furyl)-313,5a,6-triandrostane. Tetrahedron 31, 2815 (1975).CrossRefGoogle Scholar
  156. 156.
    Eggert, H., and C. Djerassc “C Nmr Spectra of Sapogenins. Tetrahedron Letters 3635 (1975).Google Scholar
  157. 157.
    Oisif, M., Z. Djarmati, and S. W. Pelletier: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Polycyclic S-Lactones. J. Org. Chem. 41, 1219 (1976).CrossRefGoogle Scholar
  158. 158.
    Shriver, J., E. W. Abrahamson, and G. D. Mateescu: The Structure of Visual Pigments. I. Carbon-13 Nuclear Magnetic Resonance Spectroscopy of N-all-transRetinylidene propylimine and Its Protonated Species. J. Amer. Chem. Soc. 90, 2407 (1976).Google Scholar
  159. 159.
    Inoue, Y., A. Takahashi, Y. TokitÔ, R. CHÔIÔ, and Y. MtYoshi: Carbon-13 Nmr Spectra of Retinal-1 and Its Related Compounds. Org. Magn. Res. 6, 487 (1974).CrossRefGoogle Scholar
  160. 160.
    Englert, G.: A 13C-Nmr study of cis-trans Isomeric Vitamin A, Carotenoids and Related Compounds. Helv. Chim. Acta 58, 2367 (1975).CrossRefGoogle Scholar
  161. 161.
    FtscHLt, A., and H. Mayer: Carotinoidsynthesen über Sulfone: Synthese von (3-Carotin. Hell/. Chim. Acta 58, 1584 (1975).CrossRefGoogle Scholar
  162. 162.
    Geli, U., W. Eschenmoser, and C. H. Eugster: Strukturbestimmung von OMethylazafrinmethylester durch 13C-Nmr-Spektroskopie. Helv. Chim. Acta 58, 2044 (1975).CrossRefGoogle Scholar
  163. 163.
    Baranyai, M., J. Szabolcs, G. Toni, and L. Radios: Determination of the Geometrical Configuration of the Polyene Chain of Mono cis C,0 Carotenoids - I. A 13C Nmr Study of Mono cis Zeaxantins and Mono cis Capsorubins. Tetrahedron 32, 867 (1976).CrossRefGoogle Scholar
  164. 164.
    Barlow, L., and G. Pattenden: Synthesis of Poly-Z-isomers of 2,6,11,15-Tetramethylhexadeca-2,6,8,10,14-pentaene, a C,0 Analogue of Phytoene. Re-examination of the Stereochemistry of a New Isomer of Phytoene from Rhodospirillum rubrum. J. C. S. Perkin I, 1029 (1976).Google Scholar
  165. 165.
    Wenkert, E., D. W. Cocsiran, E. W. Hagaman, F. M. Schell, N. Neuss, A. S. Katner, P. Potier, C. Kan, M. Plat, M. Koch, H. Mehrt, J. Poisson, N. Kunesch, and Y. Rolland: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. Xix. Aspidosperma Alkaloids. J. Amer. Chem. Soc. 95, 4990 (1973).CrossRefGoogle Scholar
  166. 166.
    Ahond, A.. M.-N. Janot, N. Langlois, G. Lukacs, P. Potier, P. Rasoanaivo, M. SangarÉ, N. Neuss, M. Plat, J. LE Men, E. W. Hagaman, and E. Wenkert: On the Structure of Vindolinine. J. Amer. Chem. Soc. 96, 633 (1974).CrossRefGoogle Scholar
  167. 167.
    Damak, M., A. Abond, and P. Potier: Révision de la Structure de la Mélobaline. Tetrahedron Letters 167 (1976).Google Scholar
  168. 168.
    Rasoanaivo, P., and G. Lukacs: Revision of the Structure of the Bisindole Alkaloid 14’,15’-Dihydro-Pycnanthine. A Carbon-13 Nuclear Magnetic Resonance Study. J. Org. Chem. 41, 376 (1976).CrossRefGoogle Scholar
  169. 169.
    Wenkert, E., C. J. Chang, H. P. S. Chawla, D. W. Cochran, E. W. Hagaman, J. C. King, and K. OwTo: General Methods of Synthesis of Indole Alkaloids. l4. Short Routes of Construction of Yohimboid and Ajmalicinoid Alkaloid Systems and Their 13C Nuclear Magnetic Resonance Spectral Analysis. J. Amer. Chem. Soc. 98, 3645 (1976).CrossRefGoogle Scholar
  170. 170.
    KocH, M. C., M. M. Plat, N. PRÉAux, H. E. Gottlieb, E. W. Hagaman, F. M. Schell, and E. Wenkert: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. Xxxiii. The Ochrofuanines and Emetine. J. Ore. Chem. 40, 2836 (1975).CrossRefGoogle Scholar
  171. 171.
    Merlini, L., R. Mondelli, G. Nasini, F. W. Wehrli, E. W. Hagaman, and E. Wenkert: 13C Nmr. Analysis of the Roxburghines. HeIv. Chim. Acta 59, 2254 (1976).CrossRefGoogle Scholar
  172. 172.
    Damak, M., A. Ahond, P. Potier, and M.-M. Janot: Structure d’un Alcaloide Indolique Ancien: la Geissoschizine, Tetrahedron Letters 4731 (1976).Google Scholar
  173. 173.
    Hutchinson, C. R., M.-T. S. Hsia, A. H. Heckendorf, and G. J. O’Loughlin: A Biomimetic Synthesis of the Camptothecin Chromophore. J. Org. Chem. 41, 3493 (1976).CrossRefGoogle Scholar
  174. 174.
    Hofheinz, AV., P. Schonholzer, and K. Bfrnauer: Überführung des (-)-Tabersonins in ein Indola[2,3-b]chinolizin, eine bemerkenswerte molekulare Umwandlung. Hely. Chim. Acta 59, 1213 (1976).CrossRefGoogle Scholar
  175. 175.
    LÉvY, J., C. Pierron, G. Lukacs, G. Massiot, and J. LE Men: Méthylène-Indolines, Indolénines et Indoléniums. XI. Nouveau Réarrangement de la Chloro-I6 Déhydro-1 Tabersonine. Tetrahedron Letters 669 (1976).Google Scholar
  176. 176.
    Khuong-Huu, F., M. Cesatuo, J. Guilhem, and R. Goutarel: Alcaloides Indoliques. Cii. Deux Nouveaux Types d’Alcaloides lndoliques, l’lbophyllidinc, Dérivé du Nor-21(+)pandolane et 1-Iboxyphylline, Dérivé de l’Abeo-21(20-i-19)(+)pandolane, Retirés des Feuilles de Tabernanthe ihoya Baillon et de T. subsessilis Stapf. Tetrahedron 32, 2539 (1976).CrossRefGoogle Scholar
  177. 177.
    Srinivasan, P. R., and R. L. Lighter: 13C Nmr Spectral Studies of Arecoline, Hordenine, Strychnine and Brucine. Org. Magn. Res. 8, 198 (1976).CrossRefGoogle Scholar
  178. 175.
    Neuss, N., H. E. Boaz, J. L. Occ’oLowITz, E. Wenkert, E. M. Schell, P. Potier, C. Kan, N. M. Plat, and M. Plat: The Structure of Vincarodine. Hely. Chico. Acta 56, 2660 (1973).CrossRefGoogle Scholar
  179. 179.
    Bombardllli, E., A. BoNati, B. Gabetta, E. M. Martinew, and G. MusttcH: The Structure of Cuanzine. Tetrahedron 30, 4141 (1974).CrossRefGoogle Scholar
  180. 180.
    Lt. Men, J., M. J. IloizEY, G. Lukacs, L. LE Men-Olivier, and J. Ltvs: Structure de la l’andine. Alcaloide Hexacyclique du Type 9’-Vincadilformine. Tetrahedron Letters 3119 (1974).Google Scholar
  181. 181.
    Kan-Kan, C., G. Massiot, A. Ahond, B. C. Das, H.-P. Husson, and P. Potier: Structure and Biogenetic-type Synthesis of Andran_inine: an Indole Alkaloid of a New Type. J. C. S. Chem. Commun. 164 (1974).Google Scholar
  182. 182.
    Langlois, Y., F. Gueritte, R. Z. Andriamialisoa, N. Langlois, P. Potier, A. Chiaroni, and C. Riche: Réarrangement du Squelette de la Catharanthine. Tetrahedron 32, 945 (1976).CrossRefGoogle Scholar
  183. 183.
    Ahond, A., A.-M. But, P. Potier, E. W. Hagaman, and E. Wenkert: Carbon-l3 Nuclear Magnetic Resonance Analysis of Vobasine-like Indole Alkaloids. J. Org. Cheng. 41, 1878 (1976).CrossRefGoogle Scholar
  184. 184.
    Wenkert, E., D. W. Cochran, H. E. Gottlieb, E. W. Hagaman, R. B. Filho, F. J. D. A. Matos, and M. I. L. M. Madruga: “C-Nmr Spectroscopy of Naturally Occurring Substances. Xlv. Iboga Alkaloids. liely. Chim. Acta 59, 2437 (1976).CrossRefGoogle Scholar
  185. 185.
    Wenkert, E., E. W. Hagaman, N. Kunesch, N. Wang. and B. Zsadon: 13C Nmr Spectroscopy of Naturally Occurring Substances. Xlii. Conformational Analysis of Quebrachamine-like Indole Alkaloids and Related Substances. Hely. Chim. Acta 59, 2711 (1976).Google Scholar
  186. 186.
    Bruneton, J., A. CavÉ, E. W. Hagaman, N. Kunesch, and E. Wenkert: The Carbon-20 Stereochemistry of Pandoline and Epipandoline. Tetrahedron Letters 3567 (1976).Google Scholar
  187. 187.
    Wenkert, E., E. W. Hagaman, B. Lal, G. E. Gutowski, A. S. Katner, J. C. Miller, and N. Neuss: “C-Nmr Spectroscopy of Naturally Occurring Substances. Xxxii. Vincaleucoblastine and Related Alkaloids. Hely. Chim. Acta 58, 1560 (1975).CrossRefGoogle Scholar
  188. 188.
    Dorman. D. E.. and J. W. Paschal: 13C Nmr Spectroscopy: Comparison of the Spectra of Some Dimeric Catharanthus Alkaloids and their Derivatives. Org. Magn. Res. 8, 413 (1976).CrossRefGoogle Scholar
  189. 189.
    Tafur, S. S., J. L. Occolowliz, T. K. Elzey, J. W. Paschal, and D. E. Dorman: Alkaloids of Vinca rosea L. (Catharanthus roseas G. Don). Xxxvii. Structure of Vincathicine. J. Org. Chem. 41, 1001 (1975).CrossRefGoogle Scholar
  190. 190.
    CavÉ, A., J. Bruneton, A. Ahond, A.-M. But, H.-P. Husson, C. Kan, G. Lukacs, and P. Potier: Structure Analysis by 13C Nmr Spectroscopy of Criophylline. A New Dimeric Indole Alkaloid. Tetrahedron Letters 5081 (1973).Google Scholar
  191. 191.
    Das, B. C., J. P. CossoN, G. Lukacs, and P. Potier: Structure Analysis by “C Nmr Spectroscopy of Pleiocorine, a New Bisindole Alkaloid from Alctonia deplanehei van Heurck et Muell. Arg. Tetrahedron Letters 4299 (1974).Google Scholar
  192. 192.
    Damak, M., A. Ahond, H. Doucerain, and C. Riche: Bonafousine, a Novel Dimeric Indole Alkaloid: X-Ray Crystal Structure. J. C. S. Chem. Commun. 510 (1976).Google Scholar
  193. 193.
    Damak, M., C. Poupat, and A. Ahond: B[s[hydrOXy-11-corOnarldmyl]-l2, Nouvel Alcaloide Dimère de Type Ibogane: Elucidation de la Structure par RM“C. Tetrahedron Letters 3531 (1976), ibid. 3760 (1976).Google Scholar
  194. 194.
    Bombardelli, E., A. Bonati, B. Gabetta, E. M. Martinelli, G. Mustich, and B. Daniel]: Structures of Tabernaelegantines A-D and Tabernaelegantinines A and B, New Indole Alkaloids from Tabernaemontana elegans. J. C. S. Perkin I, 1432 (1976).Google Scholar
  195. 195.
    Rolland, Y., N. Kunesch, J. Poisson, E. W. Hagaman, F. M. Schell, and E. Wenkert: Carbon-I3 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances 43. Carbon-13 Nuclear Magnetic Resonance Analysis of BisIndoline Alkaloids of Two Voacanga Species. J. Org. Chem. 41, 3270 (1976).CrossRefGoogle Scholar
  196. 196.
    Bach, N. J., H. E. Boaz, E. C. Kornfeld, C.-J. Chang, H. G. Floss, E. W. Hagaman, and E. Wenkert: Nuclear Magnetic Resonance Spectral Analysis of the Ergot Alkaloids. J. Org. Chem. 39, 1272 (1974).CrossRefGoogle Scholar
  197. 197.
    Zetta, L., and G. Gatti: “C Nmr Spectra of Lysergic Acid Derivatives I. l0-Methoxy-dihydrolysergic Acid Methyl Esters. Tetrahedron 31, 1403 (1975).CrossRefGoogle Scholar
  198. 198.
    Moreland, C. G., A. Philip, and F. I. Carroll: Carbon-I3 Nuclear Magnetic Resonance Spectra of Cinchona Alkaloids. J. Org. Chem. 39, 2413 (1974).CrossRefGoogle Scholar
  199. 199.
    Carroll, F. I., A. Phillips, and M. C. Coleman: Synthesis and Stereochemistry of a Metabolite Resulting from the Biotransformation of Quinidine in Man. Tetrahedron Letters 1757 (1976).Google Scholar
  200. 200.
    Daudon, M., M. H. Mehri, M. M. Plat, E. W. Hagaman, F. M. Schell, and E. Wenkert: Carbon-I3 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. Xxxiv. Monomeric Quinolinic Melodinuc Alkaloids. J. Org. Chem. 40, 2838 (1975).CrossRefGoogle Scholar
  201. 201.
    Daudon, M., M. M. Mehri, M. M. Plat, E. W. Hagaman, and E. Wenkert: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. 48. Dimeric Quinolinic Melodinus Alkaloids. J. Org. Chem. 41, 3275 (1976).CrossRefGoogle Scholar
  202. 202.
    Hughes, D. W., H. L. Holland, and D. B. Maclean: 13C Magnetic Resonance Spectra of Some Isoquinoline Alkaloids and Related Model Compounds. Canad. J. Chem. 54, 2252 (1976).CrossRefGoogle Scholar
  203. 203.
    Kametani, T., K. Fukumoto, M. ‘Tiara, A. U111E, and H. KolzuMI: Conformational Analysis of the Dibenzo [a. g.]-quinolidines by Spectroscopic Methods. J. Org. Chem. 40, 3280 (1975).CrossRefGoogle Scholar
  204. 204.
    Kametani, T., A. U]Iie, M. Iiiara, K. Fukumoto, and S.-T. Lu: Studies on the Syntheses of Heterocyclic Compounds. Part Dcl. Total Synthesis of Corytenchirine. J. C. S. Perkin I, 1218 (1976).Google Scholar
  205. 205.
    Carroll, F. I., C. G. Moreland, G. A. Brine, and J. A. Kepler: Carbon-l3 Nuclear Magnetic Resonance Spectra of Morphine Alkaloids. J. Org. Chem. 41, 996 (1976).CrossRefGoogle Scholar
  206. 206.
    Terte, Y., K. Tow, S. Maeda, and Y. K. Sawa: C-13 Nmr Spectra of Morphine Alkaloids, Codeine, Thebaine, and Sinomenine and Related Compounds. Tetrahedron Letters 2853 (1975).Google Scholar
  207. 207.
    Brine, G. A., D. Prakash, C. K. Hart, D. J. Kotciimar, C. G. Morel And, and F. 1. Carroll: Ring-C Conformation of 6)3-Naltrexol and 6a-Naltrexol. Evidence form Proton and Carbon-l3 Nuclear Magnetic Resonance. J. Org. Chem. 41, 3445 (1976).CrossRefGoogle Scholar
  208. 208.
    Zetta, L., G. Gatti, and C. Fugantc 13C Nuclear Magnetic Resonance Spectra of Amaryllidaceae Alkaloids. J. C. S. Perkin II, 1180 (1973).Google Scholar
  209. 209.
    Crooks, P. A., B. Robinson, and O. Meth-Cohn: The 13C Nuclear Magnetic Resonance Spectra of Physostigmine and Related Compounds. Phytochemistry 15, 1092 (1976).CrossRefGoogle Scholar
  210. 210.
    StMeral, L., and G. E. Maciel: Carbon-13 Chemical Shifts of Sonic Cholineric Neural Transmission Agents. Org. Mage. Res. 6, 226 (1974).CrossRefGoogle Scholar
  211. 211.
    Lodnasmaa, M., P. M. Wovkulich, and E. Wenkert: Structures of Some Knightta deplanchei Alkaloids. J. Org. Chem. 40, 3694 (1975).CrossRefGoogle Scholar
  212. 212.
    Nakashima, T. T., P. O. Singer, L. M. Browne, and W. A. Aver: Carbon-l3 Nuclear Magnetic Resonance Studies of Some Lycopodium Alkaloids. Canad. J. Chem. 53, 1936 (1975).CrossRefGoogle Scholar
  213. 213.
    Van Eijk, J. L., M. H. Radema, and C. Versluts: New Quinolizìdine Alkaloids from Cadia purpurea. Tetrahedron Letters 2053 (1976).Google Scholar
  214. 214.
    Baxter, R. L., L. Crombie, D. J. Simmonds, and D. A. Whiting: Structures of Cathedulin-2 and Catheduline-8. New Sesquiterpene Alkaloids from Catlin edulis. J. C. S. Chem. Commun. 465 (1976).Google Scholar
  215. 215.
    Leboeuf, M., M. HamonniÈRE, A. Cave, H. E. Gottlieb, N. Kunesch, and E. Wenkert: The Structure of Polyalthenol, an Lndo]osesquiterpene. Tetrahedron Letters 3559 (1976).Google Scholar
  216. 216.
    Hart, N. K., S. R. Johns, J. A. Lamberton, H. Scares, and R. I. Willing: New Alkaloids of the eat-kaurene Type from Anopterus Species (Escalloniaceae). 1. The Structure and Reactions of Anopterine. Aust. J. Chem. 29, 1295 (1976).CrossRefGoogle Scholar
  217. 217.
    Hart, N. K., S. R. Johns, J. A. Lamberton, 11. Scares, and R. I. Willing: New Alkaloids of the ent-kaurene Type from Anopteruc Species. 11. The Structure of the Minor Alkaloids. Aust. J. Chem. 29, 1319 (1976).CrossRefGoogle Scholar
  218. 218.
    Pelletier, S. W., and Z. Diarmati: Carbon-13 Nuclear Magnetic Resonance: Aconitine-Type Diterpenoid Alkaloids from Aconitum and Delphinium species. J. Amer. Chem. Soc. 98, 2626 (1976).CrossRefGoogle Scholar
  219. 219.
    Pelletier, S. W., N. V. Moos’, A. J. Jones, and M. H. Benn: The Structure of Alkaloid A from Delphinium bicolor Nutt. Tetrahedron Letters 3025 (1976).Google Scholar
  220. 220.
    Pelletier, S. W., N. V. Mods’, Z. Djarman, I. V. Migovig, and J. K. Thakkar: The Structures of Staphidine, Staphinine and Staphimine, Three Novel Bis-Diterpene Alkaloids from Delphinium staphisagria. Tetrahedron Letters 1055 (1976).Google Scholar
  221. 221.
    Pelletier, S. W., N. V. MoDY, Z. Djarmati, and S D. Lajsit’: The Structures of Staphigine and Staphirine. Two Novel Bis-Diterpene Alkaloids from Delphinium staphisagria. J. Org. Chem. 41, 3042 (1976).Google Scholar
  222. 222.
    Pelletier, S. W., Z. Djarmati, and N. V. Moly: The Structures of Staphisagnine and Staphisagrine, Two Novel Bis-Diterpene Alkaloids from Delphinium staphisagria. Tetrahedron Letters 1749 (1976).Google Scholar
  223. 223.
    Bird, G. J., D. J. Collins, F. W. Eastwood, B. M. K. C. Gatehouse, A. J. Jozsa, and J. M. Swan: New Steroidal Alkaloids from Solanum callium. Tetrahedron Letters 3653 (1976).Google Scholar
  224. 224.
    Thorpe, M. C., W. C. Coburn, JR., and J. A. Montgomery: The ‘3C Nuclear Magnetic Resonance Spectra of Some 2-, 6- and 2,6-Substituted Purines. J. Magn. Res. 15, 98 (1974).Google Scholar
  225. 225.
    Breitmaier, E., and W. Voelter Einflüsse von Substituenten in 6-Stellung auf die 13C-chemischen Verschiebungen der Kohlenstoffatome des Purins. Tetrahedron 30, 3941 (1974).CrossRefGoogle Scholar
  226. 226.
    Chenon, M.-T., R. J. Pugmire, D. M. Grant, R. P. Panzica, and L. B. Townsend: Carbon-13 Magnetic Resonance. Xxv. A Basis Set of Parameters for the Investigation of Tautomerism in Purines Established from Carbon-l3 Magnetic Resonance Studies Using Certain Purines and Pyrrolo[2,3-d]pyrimidines. J. Amer. Chem. Soc. 97, 4627 (1975).CrossRefGoogle Scholar
  227. 227.
    Carbon-I3 Magnetic Resonance. Xxvi. A Quantitative Determina- tion of the Tautomeric Populations of Certain Purines. J. Amer. Chem. Soc. 97, 4636 (1975).CrossRefGoogle Scholar
  228. 228.
    Chenon, M.-T., R. P. Panzica, J. C. Smith, R. J. Pugmire, D. M. Grant, and L. B. Townsend: Carbon-13 Magnetic Resonance Spectra of C-Nucleosides. 3. Tautomerism in Formycin and Formycin B and Certain Pyrazolo[4,3-d]-pyrimidines. J. Amer. Chem. Soc. 98, 4736 (1976).CrossRefGoogle Scholar
  229. 229.
    Nicolau, C., and K. Hildenbrand: 13C-Nuclear Magnetic Resonance Investigations of Xanthine and Some of its N-Methylated Derivatives. Z. Naturforsch. 29C, 475 (1974).Google Scholar
  230. 230.
    Bordner, J., W. E. Thiessen, H. A. Bates, and H. Rapoport: The Structure of a Crystalline Derivative of Saxitoxin. The Structure of Saxitoxin. J. Amer. Chem. Soc. 97, 6008 (1975).CrossRefGoogle Scholar
  231. 231.
    Shimizu, Y., L. J. Buckley, M. Alam, Y. Oshima, W. E. Fallon, H. Kasai, I. Miura, V. P. Gullo, and K. Nakanishi: Structures of Gonyantoxin II and Ill from the East Coast Toxic Dinoflagellate Gonyaular tamareu.ci.c. J. Amer. (Them. Soc. 98, 5414 (1976).CrossRefGoogle Scholar
  232. 232.
    Miller, G., and W. v. Philipsborn: 13C Nmr Spectra of Pteridines. HeIv. Chim. Acta 56, 2680 (1973).CrossRefGoogle Scholar
  233. 233.
    Flack, W. F., R. Weber, and M. Viscontini: Ober Pterinchemie, 50. Mitteil. 13Cnmr-Spektren von 7,8-Dihydro-und 5,6,7,8-Tetrahydrofolsäure. Lely. Chim. Acta 57, 2658 (1974).Google Scholar
  234. 234.
    Lyon, J. A., R. B. Dunlap, and P. D. E7.Lis: Assignment of the Carbon-13 Nuclear Magnetic Resonance Spectra of Selected Folates. J. Mann. Res. 18, 293 (1975).Google Scholar
  235. 235.
    Cussans, N. J., and T. N. HuckernY: Carbon-13 Nmr Spectroscopy of Heterocyclic Compounds - II. A 20 MHz Study of Chemical Shifts and Carbon-Proton Coupling Constants for Coumarin and Some Bromacoumarins. Tetrahedron 31, 2587 (1975).CrossRefGoogle Scholar
  236. 236.
    Carbon-13 Nmr Spectroscopy of Heterocyclic Compounds Iii. A 20 MHz Study of Chemical Shifts and Carbon-Proton Coupling Constants for the Methyl Coumarins. Tetrahedron 31, 2591 (1975).CrossRefGoogle Scholar
  237. 237.
    Cussans, N. J., and T. N. Huckerby: Carbon-13 Nmr Spectroscopy of Heterocyclic Compounds- IV. A 20 MHz Study of Chemical Shifts and Carbon-Proton Coupling Constants in a Series of Hydroxy, Methoxy and Glucosyl Coumarins. Tetrahedron 31, 2719 (1975).CrossRefGoogle Scholar
  238. 238.
    Sojka, S. A.: Carbon-13 Nuclear Magnetic Resonance Spectra of 2H-1-Benzopyran2-one (Coumarins) in Chloroform and Sulfuric Acid. J. Ora. Chem. 40, 1175 (1975).CrossRefGoogle Scholar
  239. 239.
    Ernst, L.: ‘3C Nmr Spectroscopy of Polycyclic Aromatics. V1. Coumarin and the Methylcountarins. J. Magn. Res. 21, 241 (1976).Google Scholar
  240. 240.
    Capper, R. D.: The Carbon-13 Nuclear Magnetic Resonance Spectrum of Siderin. Tetrahedron Letters 4293 (1974).Google Scholar
  241. 241.
    Dreyer, D. L., K. P. Munderloh, and W. E. Thiessen: Extractives of Dalea Species (Leguminosae). Tetrahedron 31, 287 (1975).CrossRefGoogle Scholar
  242. 242.
    Peti’ER, A., R. S. Ward, and T. I. Gray: The Carbon-13 Nuclear Magnetic Resonance Spectra of Flavonoids and Related Compounds. J. C. S. Perkin L 2475 (1976).Google Scholar
  243. 243.
    Wagner, H., V. M. Ciiari, and J. Sonnenrichler: 13C-Nmr-Spektren natürlich vorkommender Flavonoide. Tetrahedron Letters 1799 (1976).Google Scholar
  244. 244.
    Ternai, B., and K. R. Markham: Carhon-13 Nmr Studies of Flavonoids I. Flavones and Flavonols. Tetrahedron 32, 565 (1976).CrossRefGoogle Scholar
  245. 245.
    Markham, K. R., and B. Ternai: r3C Nmr of FIaavonoids H. Flavonoids other than Flavone and Flavonol Aglycones. Tetrahedron 32, 2607 (1976).CrossRefGoogle Scholar
  246. 246.
    Tort, K., T. Hirata, O. Koshitani, and T. Slga: Carhon-13 Nmr Spectral Studies of Aloenin and its Derivatives. Carbon-13 Signal Assignment Problem of 4-Methoxy2-Pyrones. Tetrahedron Letters 1311 (1976).Google Scholar
  247. 247.
    Burrows, B. F., W. B. Turner, and E. R. H. Walker: 8-Ethylidene-7,8-dihydro4-methoxypyrano(4,3-hJ-pyran-2.5-dione (Coarctatin), a Metabolite of Chactomium caa’cnuum. J. C. S. Perkin I, 999 (1975).Google Scholar
  248. 248.
    Kingsbury, C. A., M. Cliffton, and J. H. Looker: Carbon-13 Nuclear Magnetic Resonance Spectra of Kojic Acid and Other 4-Pyrone Derivatives.Google Scholar
  249. 249.
    Cromrif, L., G. W. Kilbef. and D. A. Whiting: Carbon-l3 Magnetic Resonance Spectra of Natural Rotenoids and their Relatives. J. C. S. Perkin I, 1497 (1975).Google Scholar
  250. 250.
    Brimacombe, J. S.: Nmr Spectroscopy and Conformational Features of Carbohydrates. L3C Nmr Spectroscopy. In: Specialist Periodical Report: Carbohydrates. The Chemical Society (London) 6, 169 (1973), 7, 182 (1975), 8, 171 (1976).Google Scholar
  251. 251.
    Ritchie, R. G. S., N. Cyr, and A. S. Perlin: Configurational Effects in 13C Chemical Shifts of 1,6-Anhydrohexapyranoses and Related Compounds. Utility of 13C-’1I Coupling Patterns for Signal Assignments. Can. J. Chem. 54, 2301 (1976).CrossRefGoogle Scholar
  252. 252.
    Bock, K., and C. Pedersen: A Study of 13CH Coupling Constants in Hexapyranoses. J. C. S. Perkin II, 293 (1974).Google Scholar
  253. 253.
    Abbas. S. A., A. H. Haines, and A. G. Wells: Assignment of 13C and ‘H Resonance of Methyl Groups in Me Tri-O-methyl Derivatives of Methyl Pentapyranosides: Some Observations on the Methoxy 1JC Chemical Shifts. J. C. S. Perkin I, 1351 (1976).Google Scholar
  254. 254.
    Vignox, M. R.. and PH. J. A. VoLtero: Rmn 13C: Sur fItilisation des Esters pour l’Attribution des Carbones des Molecules Glucidiques. Tetrahedron Letters 2445 (1976).Google Scholar
  255. 255.
    SzArek, W. A., D. M. Vyas, S. D. Gero, and G. Lukacs: Application of Carbon-13 Nuclear Magnetic Resonance Spectroscopy to the Structural Determination of Chlorodeoxy Sugars. Can. J. Chem. 52, 3394 (1974).CrossRefGoogle Scholar
  256. 256.
    Conway, E., R. D. Guthrie, S. D. Gero, G. Lukacs, and A.-M. Sepulchre: A 13C Nuclear Magnetic Resonance Chemical Shift Study of trans-Fused Hexapyranoside Derivatives. J. C. S. Perkin II, 542 (1974).Google Scholar
  257. 257.
    Miljkovic, M., M. Gligorhevic, T. Satoh, D. GI.Isin, and R. G. Pitcher: Carbon- 13 Nuclear Magnetic Resonance Spectra of Branched-chain Sugars. Configurational Assignment of the Branching Carbon Atom of Methyl Branched-chain Sugars. J. Org. Chem. 39, 3847 (1974).CrossRefGoogle Scholar
  258. 258.
    Tow, K., S. Seo, Y. Yoshimura, H. Arita, and Y. Tossita: Glycosidation Shifts in Carbon-13 Nmr Spectroscopy: Carbon-13 Signal Shifts from Aglycone and Glucose to Glucoside. Tetrahedron Letters 179 (1977).Google Scholar
  259. 259.
    Kasai, R., M. Suzuo, J. I5Akawa, and O. Tanaka: Carbon-13 Chemical Shifts of Isoprenoid-0-Glucopyranosides and -13-D-Mannopyranosides. Stereochemical Influences of Aglycone Alcohols. Tetrahedron Letters 175 (1977).Google Scholar
  260. 260.
    Hostettmann, K., and A. Jacot-Guillarmod: Identification de Xanthones et de Nouveaux Arabinosides de C-Glucosides flavoniques dans Swertia perennis L. Heiv. Chim. Acta 59, 1584 (1976).CrossRefGoogle Scholar
  261. 261.
    Colson, P., and R. R. King: The 13C Nmr Spectra of Disaccharides of D-Glucose, D-Galactose and L-Rhamnose as Models for Immunological Polysaccharides. Carbohydrate Research 47, 1 (1976).CrossRefGoogle Scholar
  262. 262.
    Lalonde, R. T., C. Wong, and A. I.-M. Tsai: Polyglucosidic Metabolites of Oleaceae. The Chain Sequence of Oleoside Aglucon. Tyrosol, and Glucose Units in Three Metabolites from Fraxinus Americana. J. Amer. Chem. Soc. 98, 3007 (1976).CrossRefGoogle Scholar
  263. 263.
    Breitmaier, E., and V. HoLlstein: Complete Assignment of the “C n. m. r. Spectrum of Mutarotated D-Ribose by Integration and Specific Deuteration. Org. Magn. Res. 8, 573 (1976).CrossRefGoogle Scholar
  264. 264.
    Funcke, W., and A. Klemer: 13C-Nmr-Untersuchungen an Mutarotationsgleichgewichten von D-Fructose und I-Amino-l-desoxy-D-fructose-derivaten (AmadoriVerbindungen). Carbohydrate Research 50, 9 (1976).CrossRefGoogle Scholar
  265. 265.
    DE Wit, G., A. D. G. Kieboom, and H. Van Bekkum: Ionization and Mutarotation of Hexoses in Aqueous Alkaline Solution as Studied by “C-Nmr Spectroscopy. Tetrahedron Letters 3943 (1975).Google Scholar
  266. 266.
    Yamazaki, K., M. Kaneda, and O. Tanaka: Carbon-13 Nmr Spectral Assignments of Paeoniflorin Homologues with the Aid of Spin-lattice Relaxation Times. Tetrahedron Letters 3965 (1976).Google Scholar
  267. 267.
    See for example p. 147 of Ref. 10.Google Scholar
  268. 268.
    Bock, K., and L. D. Hall: Carbon-13 Spin-lattice Relaxation Times of Some Carbohydrate Derivatives. Carbohydrate Research 40, 63 (1975).CrossRefGoogle Scholar
  269. 269.
    Blunt. J. W., and M. H. G. Munro: An Automated Procedure for Qualitative and Quantitative Analysis of Mixtures by Means of Carbon Magnetic Resonance Spectroscopy, Applications to Carbohydrate Analysis. Aust. J. Chem. 29, 975 (1976).CrossRefGoogle Scholar
  270. 270.
    Ller, J. M., H. Fuhrer, J. Gruner, und W. Voser: Stoffwechselprodukte von Mikroorganismen, 160. Mitteil. Conocandin, ein fungistatisches Antibiotikum aus Hormococcus conorum (Saco. et Roum.) Roback. HeIv. Chim. Acta 59, 2506 (1976).CrossRefGoogle Scholar
  271. 271.
    Hearn, M. T. W.: The Carbon-13 Nuclear Magnetic Resonance Spectrum of Junipal. Tetrahedron Letters 2787 (1975).Google Scholar
  272. 272.
    Levine, S. G., R. E. Hicks, H. E. Gottlieb, and E. Wenkert: Carbon-I3 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. Xxx. Griseofulvin. J. Org. Chem. 40, 2540 (1975).CrossRefGoogle Scholar
  273. 273.
    Huber, C., W. A. Court, J. P. Devlin, and O. E. Edwards: Stemphone. Tetrahedron Letters 2545 (1974).Google Scholar
  274. 274.
    Toma, F., F. C. Bouhet, P. Pram Van Chuong, P. Fromageot, W. Haar, H. Ruterjans, and W. Maurer: Carbon-13 Nmr Spectroscopy of the Biological Pigments Luteoskyrin and Rugulosin and Some Polyhydroxyanthraquinone Analogues. Ore. Magn. Res. 7, 496 (1975).CrossRefGoogle Scholar
  275. 275.
    Kobayashi, M., Y. Terui, K. Tow, and N. Tsun: Carbon-l3 Nmr Spectra of Juglone, Naphthazarin and their Derivatives. Tetrahedron Letters 619 (1976).Google Scholar
  276. 276.
    Tsuji, N., M. Kobayashi, Y. Terui, and K. Tort: The Structures of Griseusins A and B, New Isochromanquinone Antibiotics. Tetrahedron 32, 2207 (1976).CrossRefGoogle Scholar
  277. 277.
    Asleson, G. L., and C. W. Frank: Carbon-13 Nuclear Magnetic Resonance Spectral Analysis of Tetracycline Hydrochloride and Related Antibiotics. J. Amer. Chem. Soc. 97, 6246 (1975).CrossRefGoogle Scholar
  278. 278.
    Arnone, A., G. Fronza, R. Modelli, and A. Vigevani: “C Nmr Analysis of the Antitumor Antibiotics Daunorubicin and Adriamycin. Tetrahedron Letters 3349 (1976).Google Scholar
  279. 279.
    Highet, R. J., G. W. Perold, and E. A. Sokoloski: Characterization of SpiroBislactonic Phenolic Metabolites of Proteaceae by 13C Nuclear Magnetic Resonance. J. Org. Chem. 41, 3860 (1976).CrossRefGoogle Scholar
  280. 280.
    Martinellt, R., R. J. White, G. G. Gallo, and P. J. Beynon: Carbon-13 Nmr Spectrum Rifamycin S: A Re-examination of the Assignments with Special Reference to their Biogenetic Implication. Tetrahedron Letters 1367 (1974).Google Scholar
  281. 281.
    Cox, R. H., and R. J. Cole: Carbon-13 Nuclear Magnetic Resonance Studies of Fungal Metabolites, Aflatoxins and Sterigmatocystins. J. Org. Chem. 42, 112 (1977).CrossRefGoogle Scholar
  282. 282.
    Kakimuma, K., B. I. Milavetz, and K. L. Rinehart, JR.: Carbon-13 Nuclear Magnetic Resonance Spectra of the Streptovaricins and Related Compounds. J. Org. Chem. 41, 1358 (1976).CrossRefGoogle Scholar
  283. 283.
    Deshmukh. P. V., K. Kakimuma, J. J. Ameel, K. L. Rinehart, JR.. P. F. Wiley, and L. H. Li: Protostreptovaricins I-V. J. Amer. Chem. Soc. 98, 870 (1976).CrossRefGoogle Scholar
  284. 284.
    Kakimuma, K., C. A. Hanson. and K. L. Rinehart, JR.: Spectinabitin, a New Nitrogen-Containing Metabolite Isolated from Streptomyces spectabilis. Tetrahedron 32, 217 (1976).CrossRefGoogle Scholar
  285. 285.
    Koch, K. F., J. A. Rhoades, E. W. Hagaman, and E. Wenkert: Carbon-13 Nuclear Magnetic Resonance Spectral Analysis of Tobramycin and Related Antibiotics. J. Amer. Chem. Soc. 96, 3300 (1974).CrossRefGoogle Scholar
  286. 286.
    Wenkert, E., and E. W. Hagaman: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. Xxxix. Apramycin an Application of Amine Protonation Parameters. J. Org. Chem. 41, 701 (1976).CrossRefGoogle Scholar
  287. 287.
    Nagabhushan, T. W.. W. N. Turner, P. J. L. Daniels, and J. B. Morton: The Gentamycin Antibiotics. 7. Structures of the Gentamicin Antibiotics A,, A3 and A4. J. Org. Chem. 40, 2830 (1975).CrossRefGoogle Scholar
  288. 288.
    Nagabhushan, T. L., P. J. L. Daniels, R. S. Jaret, and J. B. Morton: The Gentamicin Antibiotics. 8. Structure of Gentamicin Az. J. Org. Chem. 40, 2835 (1975).CrossRefGoogle Scholar
  289. 289.
    Nagabhushan, T. L., and P. J. L. Daniels: Carbon-13 Magnetic Resonance Spectroscopy and Absolute Configuration of Anomeric Center in Axially Linked 4–0- and/or 6-O-Glycopyranosyl Derivatives of Deoxystreptamine. Tetrahedron Letters 747 (1975).Google Scholar
  290. 290.
    Uchida, K., E. Breitmaier, and W. A. Koenig: 13C Nmr Investigations of the Nucleoside Antibiotic Hikizimycin and its Constituents. Tetrahedron 31, 2315 (1975).CrossRefGoogle Scholar
  291. 291.
    Nourse, J. G., and J. D. Roberts: Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Spectra of Some Macrolide Antibiotics and Derivatives. Substituent and Conformational Effects. J. Amer. Chem. Soc. 97, 4584 (1975).CrossRefGoogle Scholar
  292. 292.
    Omura, S., A. Nakagawa, A. Neszmelyi, S. D. Gero, A.-M. Sepulchre, F. Pirou, and G. Lukacs: Carhon-13 Nuclear Magnetic Resonance Spectral Analysis of 16-Membered Macrolide Antibiotics. J. Amer. Chem. Soc. 97, 4001 (1975).CrossRefGoogle Scholar
  293. 293.
    Omura, S., A. Neszmelyi, M. SangarÉ, and G. Lukacs: Conformational Homogeneity in Solution of 14-Membered Macrolide Antibiotics as Evidenced by “C Nmr Spectroscopy. Tetrahedron Letters 2939 (1975).Google Scholar
  294. 294.
    Terui, Y., K. Tori. K. Nagashima, and N. Tsuji: C-13 Nuclear Magnetic Resonance Spectra of Erythromycins. Tetrahedron Letters 2583 (1975).Google Scholar
  295. 295.
    Martin, J. R., R. S. Egan, A. W. Goldstein, and P. Coi. Lum: Extension of the Erythromycin Biosynthetic Pathway. Isolation and Structure of Erythromycin E. Tetrahedron 31, 1985 (1975).Google Scholar
  296. 296.
    NeszmíLyi, A., S. ÓMura, T. T. Thang, and G. Lukacs: A Carbon-13 Spin Lattice Relaxation Time Study of 14-Membered Macrolide Antibiotics. Tetrahedron Letters 725 (1977).Google Scholar
  297. 297.
    NeszmÉLyi, A., S. Omura, and G. Lukacs: Carbon-l3 Spin-Lattice Relaxation Times and their Use for Spectral Analysis of 16-Membered Macrolide Antibiotics. J. C. S. Chem. Commun. 97 (1976).Google Scholar
  298. 298.
    Mtzsak, S., G. Slomp, A. NeszmÉLyi, S. D. Gero, and G. Lukacs: Carbon-13 N.M.R. Spectral Analysis and Spin-Lattice Relaxation Times of the Antibiotic Lincomycin and Related Compounds. Tetrahedron Letters 721 (1977).Google Scholar
  299. 299.
    Kukoljy, S., N. D. Jones, M. D. Chaney, T. K. Elzey, M. R. Gleissner, J. W. Paschal, and D. E. Dorman: Structure and Stereochemistry of Isomeric Penam and Cepham Derivatives. J. Org. Chem. 40, 2388 (1975).CrossRefGoogle Scholar
  300. 300.
    Tort, K., T. Tsushima, Y. Tamura, H. Shigemoto, T. Tsuji, H. Ishitobi, and H. Tanida: Structure and Stereochemistry of 2-Chloromethylpenam and 3-chlorocepham Derivatives Studied by ‘C. and ’H Nmr Spectroscopy. Tetrahedron Letters 3307 (1975).Google Scholar
  301. 301.
    Harrison. C. R., and P. Hodge: Determination of the Configuration of Some Penicillin S-Oxides by 13C Nuclear Magnetic Resonance Spectroscopy. J. C. S. Perkin 1, 1772 (1976).CrossRefGoogle Scholar
  302. 302.
    BussoN, R., II. Vanderhaeghf, and S. ToPper-: Preparation and Stereochemical Analysis of 5-Epibenzylpenicillin (S)- and (R)-Sulfoxide Esters. J. Org. Chem. 41, 3054 (1976).CrossRefGoogle Scholar
  303. 303.
    Ref. 10, Chap. 5, p. 2271T. and references cited therein.Google Scholar
  304. 304.
    Lackner, H.: 13C-Nmr-Spektren der Pentapeptidlactonringe von Actinomycinen. Tetrahedron Letters 1921 (1975).Google Scholar
  305. 305.
    Booth, II., A. B. Mauler, and W. J. Rzeszotarski: A I3C Nmr Study of Actinomycin D and Related Model Peptides. Org. Magn. Res. 8, 219 (1976).CrossRefGoogle Scholar
  306. 306.
    Dell, A., D. H. William, H. R. Morris, G. A. Smith, J. Feeney, and G. C. K. Roberts: Structure Revision of the Antibiotic Echinomycin. J. Amer. Chem. Soc. 97, 2497 (1975).CrossRefGoogle Scholar
  307. 307.
    Bycroft, B. W., and T. J. King: Revised Constitution. Absolute Configuration and Conformation of Griseoviridin, a Modified Cyclic Peptide Antibistic. J. C. S. Perkin 1, 1966 (1976).Google Scholar
  308. 308.
    Tow, K., K. Tokura, K. Okabe, M. Ebata, H. Otsuka, and G. Lukacs: Carbon-13 Nmr Studies of Peptide Antibiotics Thiostrepton and Siomycin A: The Structure Relationship. Tetrahedron Letters 185 (1976).Google Scholar
  309. 309.
    Bycroft, B. W., and R. Pinchin: Structure of Althiomycin, A Highly Modified Antibiotic. J. C. S. Chem. Commun. 121 (1975).Google Scholar
  310. 310.
    Gulbis, J., and G. W. Everett, JR.: A 13C Nuclear Magnetic Resonance Analysis of the Metal Binding Site in Tetracycline. J. Amer. Chem. Soc. 97, 6248 (1975).CrossRefGoogle Scholar
  311. 311.
    Gulbis, J., G. W. Everett, JR., and C. W. Frank: Effect of Added Electrolyte on the Binding of Tetracycline to Paramagnetic Ion Probes. A 13C and ‘H Nuclear Magnetic Resonance Study. J. Amer. C.em. Soc. 98, 1280 (1976).CrossRefGoogle Scholar
  312. 312.
    Leibplatz, D.: Nachweis spezifischer Calcium-and Natriumkomplexierung durch das Antibiotikum Rifamycin S mit Hilfe der C-13 Nmr-Spektroskopie. Tetrahedron Letters 4125 (1974).Google Scholar
  313. 313.
    Tanabe, M., H. Seto, and L. F. Johnson: Biosynthetic Studies with Carbon-13. Carbon-13 Nuclear Magnetic Resonance Spectra of Radicinin. J. Amer. Chem. Soc. 92, 2157 (1970).CrossRefGoogle Scholar
  314. 314.
    SroEssl, A., E. W. B. Ward, and J. B. Stotiiers: Incorporation of Doubly Labelled Sodium Acetate-13Cz into Phytuberin and Other Susquiterpenes in Potatoes: Experi- mental Confirmation of Postulated C-C Cleavages. Tetrahedron Letters 3271 (1976).Google Scholar
  315. 315.
    Tanabe, M., and K. T. Suzuki: Biosynthetic Studies with Carbon-13: Incorporation Pattern of 1,2–13C-Acetate into the Fungal Sesquiterpene Ovalicin. Tetrahedron Letters 4417 (1974).Google Scholar
  316. 316.
    Cane, D. E., and R. H. Levin: Application of Carbon-13 Magnetic Resonance to Isoprenoid Biosynthesis. II. Ovalicin and the Use of Doubly Labelled Mevalonate. J. Amer. Chem. Soc. 98, 1183 (1976).CrossRefGoogle Scholar
  317. 317.
    Baker, F. C., C. J. W. Brooks, and S. A. Hutchinson: Biosynthesis of Capsidiol in Sweet Peppers (Capsicum frutescens) Infected with Fungi: Evidence for Methyl Group Migration from 13C Nuclear Magnetic Resonance Spectroscopy. J. C. S. Chem. Commun. 293 (1975).Google Scholar
  318. 318.
    Baker, F. C., and C. J. W. Brooks: Biosynthesis of the Sesquiterpenoid, Capsidiol, in Sweet Pepper Fruits Inoculated with Fungal Spores. Phytochemistry 15, 689 (1976).Google Scholar
  319. 319.
    Evans, R., J. R. Hanson, and R. Nyfeler: Studies in Terpenoid Biosynthesis, Part Xvii. Biosynthesis of Sesquiterpenoids Cyclonerodiol and Cyclonerotriol. J. C. S. Perkin I, 1214 (1976).Google Scholar
  320. 320.
    Hanson, J. R., T. Marten, and M. Siverns: Studies in Terpenoid Biosynthesis, Xil Carbon-13 Nuclear Magnetic Resonance Spectra of the Trichothecanes and the Biosynthesis of Trichothecolone from [2-“C]-Mevalonic Acid. J. C. S. Perkin I, 1033 (1974).Google Scholar
  321. 321.
    Tanabe., M., K. T. Suzuki, and W. C. Jankowski: Biosynthetic Studies with Carbon-13: The FT-“C Nmr Spectra of the Sesquiterpenoid Coriolins. Tetrahedron Letters 2271 (1974).Google Scholar
  322. 322.
    Cane, D. E., and R. B. Nachbar: Biosynthesis of Formannosin from [l,2–13C]Acetate. Tetrahedron Letters 2097 (1976).Google Scholar
  323. 323.
    Polonsky, J., G. Lukacs, N. Gagnoli-Bellavita, and R. Ceccherelli: Application du Couplage “C-”C 5 la Détermination de l’Origine Biogénétique des Substituants en C-4 des Virescenols A et B. Tetrahedron Letters 481 (1975).Google Scholar
  324. 324.
    Adams, M. R., and J. D. Bu’LocK: Biosynthesis of the Diterpene Antibiotic, Aphidicolin, by Radioisotope and 13C Nuclear Magnetic Resonance Methods. J. C. S. Chem. Commun. 389 (1975).Google Scholar
  325. 325.
    Barrow, K. D., R. B. Jones, P. W. Pemberton, and L. Phillips: Fusicoccin. V. The Biosynthesis of Fusicoccin from [I-“C]- and [2-”C]-Acetate. J. C. S. Perkin I. 1405 (1975).Google Scholar
  326. 326.
    Seo, S., Y. Tomita, and K. Tori: Biosynthesis of Oleanene-and Ursene-type Triterpenes from [4-“C]-Mevalonic Acid in Tissue Cultures of I.codon japonicus Hara. J. C. S. Chem. Commun. 270 (1975).Google Scholar
  327. 327.
    RtIsoM, T., H. J. Jakobsen, N. Rastrup Andersen, and H. LorcK: Assignment of the “C Nmr Spectra of Fusidic Acid Derivatives. Biosynthetic Incorporation of Sodium [I-”C]-Acetate into Fusidic Acid. Tetrahedron Letters 2247 (1974).Google Scholar
  328. 328.
    Cushley, R. J., and J. D. Filipenko: “C Fourier Transform n.m.r. MR. Reassignment of the ”C Spectrum of Ergosterol. Org. Magn. Res. 8, 308 (1976).CrossRefGoogle Scholar
  329. 329.
    Popjak, G., J. Edmond, F. A. L. Anet, and N. R. Easton, JR.: Carbon-13 Nmr Studies on Cholesterol Biosynthesized from [“C] Mevalonates. J. Amer. Chem. Soc. 99, 931 (1977).CrossRefGoogle Scholar
  330. 330.
    Gudgeon, J. A., J. S. E. Hooker, and T. J. Simpson: Use of Singly and Doubly Labelled “C-Acetate in the Elucidation of the Structures and Biosyntheses of Multi-colic and Multicolosic Acids, New Tetronic Acids from Penicillium multicolor. J. C. S. Chem. Commun. 636 (1974).Google Scholar
  331. 331.
    Cox, R. E., and J. S. E. Hooker: Biosynthesis of Glauconic Acid from [2,3-“C]Succinate. J. C. S. Chem. Commun. 583 (1976).Google Scholar
  332. 332.
    Simpson, T. J.: The 13C Nmr Spectrum of a Pyrone Metabolite of Aspergillus melleus. Biosynthetic Incorporation of Singly and Doubly Labelled [13C]-Acetate. Tetrahedron Letters 175 (1975).Google Scholar
  333. 333.
    Simpson, T. J., and J. S. E. Holker: The Biosynthesis of a Pyrone Metabolite of Aspergillus melleus. An Application of Long-Range 13C–13C Coupling Constants. Tetrahedron Letters 4693 (1975).Google Scholar
  334. 334.
    Nair, M. S. R.: Biosynthesis and Revised Structure of Rosellisin: Structure of Rosellisin Aldehyde. Phytochemistry 15, 1090 (1976).CrossRefGoogle Scholar
  335. 335.
    Garson, M. J., and J. Staunton: Biosynthesis of Sclerin, Metabolite of Sclerotinia Sclerotiorum: Incorporation of [I-13C]- and [1,2–13C]-acetates. J. C. S. Chem. Commun. 928 (1976).Google Scholar
  336. 336.
    Cox, R. E., and J. S. E. Holker: The Biosynthesis of Fungal Metabolites. IX. Sclerin: Feedings with [1,2–13C]-Acetate and [Methyl-13C]-Methionine. J. C. S. Perkin I, 2077 (1976).Google Scholar
  337. 337.
    Yamazaki, M., Y. Mebayashi, and T. Tokoroyama: Biosynthesis of Sclerin. Tetrahedron Letters 489 (1977).Google Scholar
  338. 338.
    Hill, R. A., R. H. Carter (née Rayner), and J. Staunton: Biosynthesis of Terrein, a Metabolite of Aspergillus terreus Thom. J. C. S. Chem. Commun. 380 (1975).Google Scholar
  339. 339.
    Holker, J. S. E., and K. Young: Biosynthesis of Metabolites of Perioconia macro.cpinosa from [l-13C]- [2–13C]- and [1,2-’3C]-Acetate. J. C. S. Chem. Commun. 525 (1975).Google Scholar
  340. 340.
    Sato, Y., T. Oda, and S. Urano: Griseofulvin Biosynthesis: New Evidence of Two Acetate Dispositions in the Ring A from 13C Nuclear Magnetic Resonance Studies. Tetrahedron Letters 3971 (1976).Google Scholar
  341. 341.
    Simpson, T. J., and J. S. E. Holker: 13C-Nmr Studies on Griseofulvin Biosynthesis and Acetate Metabolism in Penicillium patulum. Phytochemistry 16, 229 (1977).CrossRefGoogle Scholar
  342. 342.
    Birch, A. J., T. J. Simpson, and P. W. Westerman: Biosynthesis of Ravenelin from [1–13C]- and [1,2–13C]-Acetate. Tetrahedron Letters 4173 (1975).Google Scholar
  343. 343.
    Birch, A. J., J. Baldas, J. R. HluruCek, T. J. Simpson, and P. W. Westerman: Biosynthesis of the Fungal Xanthone Ravenelin. J. C. S. Perkin I, 898 (1976).Google Scholar
  344. 344.
    Seto. H., L. W. Cary, and M. Tanabe: Utilization of 13C–13C Coupling in Structural and Biosynthetic Studies. The Fourier Transform 13C Nuclear Magnetic Resonance Spectrum of Mollisin. J. C. S. Chem. Commun. 867 (1973).Google Scholar
  345. 345.
    Casey, M. L., R. C. Paulick, and H. W. Whitlock, JR.: A Carbon-13 Nuclear Magnetic Resonance Study of Mollisin and Its Biosynthesis. J. Amer. Chem. Soc. 98, 2636 (1976).CrossRefGoogle Scholar
  346. 346.
    Seto, H., and H. Yoneiiara: Utilization of 13C–13C Coupling in Structural and Biosynthetic Studies. Viii. The Cyclization Pattern of a Fungal Metabolite, Scytalone. Tetrahedron Letters 487 (1977).Google Scholar
  347. 347.
    Sankawa, U., H. Shimada, T. Sato, T. Kinoshita, and K. Yamasaki: Biosynthesis of Scytalone. Tetrahedron Letters 483 (1977).Google Scholar
  348. 348.
    Mcinnes, A. G., D. G. Smith, J. A. Walter, L. C. Vining, and J. L. C. Wright: Homonuclear 13C Decoupling in 13C Nuclear Magnetic Resonance Studies of Biosynthesis Using Doubly Labelled Precursons. Assembly Pattern of the Acetate Units in Bikaverin. J. C. S. Chem. Commun. 66 (1975).Google Scholar
  349. 349.
    Paulick, R. C., M. L. Casey, D. F. Hillenbrand, and H. W. Whitlock, JR.: A 13C Nuclear Magnetic Resonance Study of the Biosynthesis of Islandicin from 13CH313CO2-Na. J. Amer. Chem. Soc. 97, 5303 (1975).CrossRefGoogle Scholar
  350. 350.
    Paulick, R. C.. M. L. Casey. and H. W. WmrcocK, JR.: A 13C Nuclear Magnetic Resonance Study of the Biosynthesis of Daunomycin from 13CH3-i3CO2-Na. J. Amer. Chem. Soc. 98, 3370 (1976).CrossRefGoogle Scholar
  351. 351.
    Holker, J. S. E., R. D. Lapper, and T. J. Simpson: The Biosynthesis of Fungal Metabolites. Part IV. Tajixanthone: “C Nuclear Magnetic Resonance Spectrum and Feeding with [1–13C]- and [2–1JC]-Acetate. J. C. S. Perkin I, 2135 (1974).Google Scholar
  352. 352.
    Canham, P., L. C. Vining, A. G. Mcinnes, J. A. Walter, and J. L. C. Wright: Pattern of Acetate Incorporation into the Aglycone of Chartreusin. Evidence from “C Nuclear Magnetic Resonance Studies for a Single-chain Polyketide Intermediate. J. C. S. Chem. Commun. 319 (1976).Google Scholar
  353. 353.
    Gorst-Allman, C. P., K. G. R. Pachler, P. S. Steyn, P. L. Wessels, and D. B. Scott: Biosynthesis of Averufin in Aspergillus parasiticus from [13C]-acetate. J. C. S. Chem. Commun. 916 (1976).Google Scholar
  354. 354.
    Seto, H.. L. W. Cary, and U. Tanabe: Utilization of “C-”L: Coupling in Structural and Biosynthetic Studies. V. The 13C FT Nmr Spectrum of Sterigmatocystin. Tetrahedron Letters 4491 (1974).Google Scholar
  355. 355.
    Steyn, P. S., R. Vleggaar, P. W. Wessels, and D. B. Scorn: Biosynthesis of Aflatoxin B. from [2-“C]- and [I,2-”C]-Acetate. J. C. S. Chem. Commun. 193 (1975).Google Scholar
  356. 356.
    Pachler, K. G. R., P. S. Steyn, R. Vleggaar, and P. L. Wessels: Study of thc Biosynthesis of Sterigmatocystin and Reassignment of 13C Nuclear Magnetic Resonance Spectrum. J. C. S. Chem. Commun. 355 (1975).Google Scholar
  357. 357.
    Hsieh, D. P. H., J. N. Seiber, C. A. Reece, D. L. Fitzell, S. L. Young, J. I. Dalezios. G. N. LA Mar, D. L. Budd. and E. Motell: “C Nuclear Magnetic Resonance Spectra of Afiatoxin Br Derived from Acetate. Tetrahedron 31, 661 (1975).CrossRefGoogle Scholar
  358. 358.
    Hsieh, D. P. H., R. C. Yao, D. L. Fi Zell, and C. A. Reece: Origin of the Bisfuran Ring Structure in Afiatoxin Biosynthesis. J. Amer. C.em. Soc. 98, 1021 (1976).CrossRefGoogle Scholar
  359. The Use of “C-Nmr Spectroscopy in Biosynthetic Studies. II. Biosynthesis of Narasin, a New Polyether lonophore from Fermentation of Streptomvices au, eoIaciens. Hely. Chini. Acta 59, 2625 (1976).CrossRefGoogle Scholar
  360. 360.
    Nadzan, A. M., and K. L. Rinehart, JR.: Nybomycin. 8. Biosynthetic Origin of the Central Rine Carbons Studied by 13C-Labelled Substrates. J. Amer. Chem. Soc. 98, 5012 (1976).CrossRefGoogle Scholar
  361. 361.
    CardiltO. R., C. Fuganti, G. Gatti, D. GhirrNghelli, and P. Grassell!: Molecular Structure of Cryptoechinuline A, a new Metabolite of Aspe yillus amstefodamì, Isolated during Investigations of Echinuline Biosynthesis. Tetrahedron Letters 3163 (1974).Google Scholar
  362. 362.
    Mcinnes, A. G., D. G. Smith, C.-K. Wat, L. C. Vining, and J. L. C. Wright: Tenellin and Bassianin, Metabolites of Beaueeria Species. Structure Elucidation with “N- and Doubly ”C Enriched Compounds using r3C Nuclear Magnetic Resonance Spectroscopy. J. C. S. Chem. Commun. 281 (1974).Google Scholar
  363. 363.
    Mcinnes, A. G., D. G. Smith, J. A. Walter, L. C. VintNG, and J. L. C. Wrigh’I: New Techniques in Biosynthetic Studies Using 13C Nuclear Magnetic Resonance Spectroscopy. The Biosynthesis of Tenellin Enriched from Singly and Doubly Labelled Precursors. J. C. S. Chem. Commun. 282 (1974).Google Scholar
  364. 364.
    Leete, E.. N. Kowanko, R. A. Newmark, L. C. Vining, A. G. Mcinnls. and.1. L. C. Wright: The Use of Carbon-13 Nuclear Magnetic Resonance to Establish that the Biosynthesis of Tenellin Involves an Intramolecular Rearrangement of Phenyl-alanine. Tetrahedron Letters 4103 (1975).Google Scholar
  365. 365.
    Graf, W., J.-L. Robert, J. C. VE.Deras, C. Tamm, P. II. Solomon. I. Micra, and K. Naksnishi: Biosynthesis of the Cytochalasans. Iii. “C Nmr of Cytochalasin B (Phomin) and Cytochalasin D. Incorporation of [1–13C]- and [2-”C]-Sodium Acetate. Hclv. Chim. Acta 57, 1801 (1974).Google Scholar
  366. 366.
    Videras, J. C., W. Graf, L. David, and C. Tamm: Biosynthesis of Cytochalasans, 4. The Mode of Incorporation of Common Naturally-Occurring Carboxylic Acids into Cytochalasin D. HeIv. Chim. Acta 58, 1886 (1975).CrossRefGoogle Scholar
  367. 367.
    Hurley, L. H., M. Zmuewski, and C.-J. Chang: Biosyuthesis of Anthramycin. Determination of the Labelling Pattern by the Use of Radioactive and Stable Isotope Techniques. J. Amer. Chem. Soc. 97, 4372 (1975).CrossRefGoogle Scholar
  368. 368.
    Stroshane, R. M.. M. Taniguchi, K. L. Rinehart, JR., J. P. Polls, W. J. Haak, and B. A. Ruff: Spectinomycin Biosynthesis Studied by Carbon Magnetic Resonance Spectroscopy. J. Amer. Chem. Soc. 98, 3025 (1976).Google Scholar
  369. 369.
    Munro, M. H. G., M. Taniguchi, K. L. Rinehart, JR., and D. Gottlieb: A Cmr Study of the Biosynthesis of Chloramphenicol. Tetrahedron Letters 2659 (1975).Google Scholar
  370. 370.
    Johnson, R. D., A. Haber, and K. L. Rinehart, JR.: Geldanamyein Biosynthesis and Carbon Magnetic Resonance. J. Amer. Chem. Soc. 96, 3316 (1974).CrossRefGoogle Scholar
  371. 371.
    Omura, S., A. Nakagawa, H. Takeshima, K. Atsumi, J. Miyazawa, F. Piriou, and G. Lukacs: Biosynthetic Studies Using 13C Enriched Precursors of the 16-Membered Macrolide Antibiotic Leucomycin A3. J. Amer. Chem. Soc. 97, 6600 (1975).CrossRefGoogle Scholar
  372. 372.
    Omura, S., A. Nakagawa, H. TakeshtM.A, J. MiyazawA, C. Kitao, F. PtRlou. and G. Lukacs: A 13C Nuclear Magnetic Resonance Study of the Biosynthesis of the 16-Membered Macrolide Antibiotic Tylosin. Tetrahedron Letters 4503 (1975).Google Scholar
  373. 373.
    HutcttInsdn, C. R., A. H. Heckendorf, P. E. Daddona, E. Hagaman, and E. Wlnkeri: Biosynthesis of Camptothecin. I. Definition of the Overall Pathway Assisted by Carbon-13 Nuclear Magnetic Resonance Analysis. J. Amer. Chem. Soc. 96, 5609 (1974).CrossRefGoogle Scholar
  374. 374.
    Battersby, A. R., P. W. Sheldrake, and J. A. Milner: Biosynthesis of Colchicine: Incorporation of a 13C-Lahelled Precursor in a Higher Plant. Tetrahedron Letters 3315 (1974).Google Scholar
  375. 375.
    Leste, E., and G. B. Boden: Biosynthesis of Shihunine in Dendrobium piciardü. J. Amer. Chem. Soc. 98, 6321 (1976).CrossRefGoogle Scholar
  376. 376.
    Leete, B.: Biosynthesis of the Isoquinuelidine Moiety of Dioseorinve. Incorporation of [5.6–13C2]-Nicotinic Acid Established by Means of 13C Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 99, 648 (1977).CrossRefGoogle Scholar
  377. 377.
    Hutchinson, C. R., M.-T. S. HsIA, and R. A. Carver: Biosynthetic Studies with 13CO2. of Secondary Plant Metabolites. Nicotina Alkaloids. I. Initial Experiments. J. Amer. Chem. Soc. 98, 6006 (1976).CrossRefGoogle Scholar
  378. 378.
    Djerassi, C.: Natural Products Chemistry 1950 to 1980 A Personal View. Pure Appt. Chem. 41, 113 (1975).Google Scholar
  379. 379.
    For an account on the experimental and methodological requirements see e. g. J. N. Shoolery, F. W. Wehrlt, and T. Wirthlin: Experimentelle Voraussetzungen zur Analyse kleinster Substanzmengen mittels “C- und’ H-Kernresonanzspektroskopie. Chemie-Technik 6, 55 (1977).Google Scholar
  380. 380.
    Heller, S. R., G. W. A. Milne, and R. J. Feldmann: A Computer-Based Chemical Information System. Science 195, 253 (1977).CrossRefGoogle Scholar
  381. 381.
    Schwarzenrach, R., J. Meili, H. KÔNitzer, and J. T. Clerc: A Computer System for Structural Identification in Organic Compounds from 15C Nmr Data. Org. Magn. Res. 8, 11 (1976).CrossRefGoogle Scholar
  382. 382.
    Bremser, W., M. Klier, and E. Meyer: Mutual Assignment of Subspectra and Substructures A Way to Structure Elucidation by “C Nmr Spectroscopy. Org. Mann. Res. 7, 97 (1975).CrossRefGoogle Scholar
  383. 383.
    Cheer, C. J., D. H. Smith, C. Djerassi, B. Turscii, J. C. Braekman, and D. Daloze: Application of Artificial Intelligence for Chemical Inference Xxi. Chemical Studies of Marine Invertebrates. Xvii. The computer-assisted identification of [+]-Palustrol in the Marine Organism Cespitularia sp.. atf. subuiridis. Tetrahedron 32, 1807 (1976).CrossRefGoogle Scholar
  384. 384.
    Fringuelli, F., H. E. Gottlieb. E. W. Hagaman, A. Taticchi, E. Wenkeri, and P. M. Wovkulich: 13C-Nmr Spectroscopy of Carane Derivatives. Gazz. Chim. Ital. 105, 1215 (1975).Google Scholar
  385. 385.
    Holden, C. M., J. C. Rees, S. P. Scott, and D. Whittaker: Stereochemistry and Reduction of Umbellulone (Thuj-3-en-2-one) and Isodihydroumbellulone (4ßHThujan-2-one). J. C. S. Perkin II, 1342 (1976).Google Scholar
  386. 386.
    Krhser, W.. L. Janitschke, and L. Ernst: Configurational Assignment by Nmr Spectroscopy of Stereoisomeric 2.6-Dimethyl-tricyclo [5,2,1, J2.6] dec-3-enes and De-canes. Albene and Isoalbene. Tetrahedron 34, 131 (1978).CrossRefGoogle Scholar
  387. 387.
    Bailleul, F., P. Delaveau, A. Rabaron, M. Plat, and M. KocH: Feretoside et Gardenoside du Feretia apondanthera. Rmn du carbone-13 en Série Iridoide. Phytochemistry 16, 723 (1977).CrossRefGoogle Scholar
  388. 388.
    Miles, D. H., U. Kokpol, J. Bhattacharyya, J. L. Atwood, K. E. Stone, T. A. Bryson, and C. Wilson: Structure of Sarracenin. An Unusual Enol Diacetate Mono-terpene from Insectivorous Plant Sarracenia Flava. J. Am. Chem. Soc. 98, 1569 (1976).CrossRefGoogle Scholar
  389. 389.
    Van Engen, D., J. Clardy, E. Kho-WtSeman, P. Drew, M. D. Higgs, and D. J. Faulkner: Violacenine, A. Reassignment of Structure. Tetrahedron Letters 29 (1978).Google Scholar
  390. 390.
    Higgs, M. D., D. J. Vanderah, and D. J. Faulkner: Polyhalogenated Monoterpenes from Plocamium cartilagineum from the British Coast. Tetrahedron 33, 2775 (1977).CrossRefGoogle Scholar
  391. 391.
    Wratten, S. J., and D. J. Faulkner: Carbonimidic Dichlorides from the Marine Sponge Pseudaxinyssa pitys. J. Am. Chem. Soc. 99, 7367 (1977).CrossRefGoogle Scholar
  392. 392.
    Crews, P., and E. Kho-Wiseman: Acylic Polyhalogenated Monoterpenes from the Red Alga Plocamium violaceum. J. Org. Chem. 42, 2812 (1977).CrossRefGoogle Scholar
  393. 393.
    Norton, R. S., R. G. Warren, and R. J. Wells: Three New Polyhalogenated Monoterpenes from Plocamium Species. Tetrahedron Letters 3905 (1977).Google Scholar
  394. 394.
    Sato, T., M. Tada, T. Takahashi, I. Horibe, H. Isnit. and K. Tori: Carbon-13 and Hydrogen-1 Nmr Studies of Conformations of Ligularol and 6-Epiligularol, Naturally Occurring cis-Decalin Derivatives. Tetrahedron Letters 3895 (1977).Google Scholar
  395. 395.
    Cuevas, O., and J. R. Hanson: Norbotryal Acetate. A Nor-sesquiterpenoid Aldehyde from Botrytis cinerea. Phytochemistry 16, 1016 (1977).CrossRefGoogle Scholar
  396. 396.
    KUno, 1., I. Miura, M. J. PE’Itei, Y.-W. Lee, F. Pilkievicz, and K. Nakanishi: Muzigadial and Warburganal, Potent Antifungal Antiyeast, and African Army Worm Antifeedant Agents. Tetrahedron Letters 4553 (1977).Google Scholar
  397. 397.
    Aasen, A. J., T. Nishida, C. R. Enzell, and H. H. Appel: The Structure of (11 t„ 125)11,12-Di(7-drimen-1 1-oxy)-11,12-epoxy-7-drimene. Acta Chem. Scand. B 31, 51 (1977).CrossRefGoogle Scholar
  398. 398.
    Rose, A. F., and J. J. Sills: Marine Natural Products, Xiv. l-S-Bromo-4-R-hydroxyselin-7-ene, A Metabolite of the Marine Alga Laurencie sp. Tetrahedron Letters 2935 (1977).Google Scholar
  399. 399.
    Murai, A., N. Katsui, F. Yagihasht, T. Masamune, Y. Ishigurt, and K. Tomiyama: Structure of Rishitin M-1 and M-2, Metabolites of Rishitin in Healthy Potato Tube Tissues. J. C. S. Chem. Commun. 670 (1977).Google Scholar
  400. 400.
    Ward, E. W. B., A. SroessL, and J. B. Stoihers: Metabolism of the Sesquiterpenoid Phytoalexins Capsidiol and Rishitin to their 13-Hydroxy Derivatives by Plant Cells. Phytochemistry 16, 2024 (1977).CrossRefGoogle Scholar
  401. 401.
    Coxon, D. T., K. R. Price, B. HowArd, and R. F. Curtis: Metabolites from Microbially Infected Potato. Part I. Structure of Phytuberin. J. C. S. Perkin 1, 53 (1977).CrossRefGoogle Scholar
  402. 402.
    Southwell, I. A.: Biogenetically Significant Sesquiterpenoids from Rebus rosifolius Oil. Tetrahedron Letters 873 (1977).Google Scholar
  403. 403.
    Anderson, R. C., D. M. Gunn, J. Murray-Rust, P. Murray-Rust, and J. S. Roberts: Vetispirane Sesquiterpene Glucosides from Fluecured Virginia Tabacco: Structure, Absolute Stereochemistry, and Synthesis. X-Ray Structure of the p-Bromobenzenesulphonate of One of the Derived Aglycones. J. C. S. Chem. Commun. 27 (1977).Google Scholar
  404. 404.
    Matsuo, A., and S. Hayashi: Revised Structure and Absolute Configuration of the Sesquiterpene (+)-Bazzanene. J. C. S. Chem. Commun. 566 (1977).Google Scholar
  405. 405.
    Herz, W., P. S. Kalyanaraman, and G. RamakrtShnan: Sesquiterpene Lactones from Eupatoriurn perfoliatum. J. Org. Chem. 42, 2264 (1977).CrossRefGoogle Scholar
  406. 406.
    Doskotch, R. W., F. S. EL-Feraly, E. H. F.Irchild, and C.-T. Huang: Isolation and Characterization of Peroxyferolide, a Hydroperoxy Sesquiterpene Lactone from Liriodendron tulipifera. J. Org. Chem. 42, 3614 (1977).CrossRefGoogle Scholar
  407. 407.
    Heitz, W.. P. S. Subramaniam, R. Mural, N. Dennis, and J. F. Blount: Micordllln, a Complex Elemanolide from Mikania cordifolia. J. Org. Chem. 42, 1720 (1977).CrossRefGoogle Scholar
  408. 408.
    Vidari, G., M. Debernardi, P. Vita-Finzi, and G. Fronza: Sesquiterpenes from Lactarius blennius. Phytochemistry 15, 1953 (1976).CrossRefGoogle Scholar
  409. 409.
    Zalkow, L. H., R. N. Harris, Iii., D. Van Derveer, and J. A. Bertrand: Isocomene, a Novel Sesquiterpene from Isocoma wrightii. X-Ray Crystal Structure of the Corresponding Diol. J. C. S. Chem. Commun. 456 (1977).Google Scholar
  410. 410.
    Beechan, C. M., C. Dierassi, J. S. Finer, and J. Clardy: Terpenoids, Lxxiii. Sinularene. A Sesquiterpene Hydrocarbon Based on a Novel Skeleton from the Soft Coral. Sinularia mayi. Tetrahedron Letters 2395 (1977).Google Scholar
  411. 411.
    Matsuo, A., I. Terada, M. Nakayama, and S. HayastIl: Cuprenenol and Rosulantol. New Cuparane Class Sesquiterpene Alcohols from the Liverwort Jungermannia rosulalts. Tetrahedron Letters 3821 (1977).Google Scholar
  412. 412.
    King, T. J.: Alliacolide, a New Bicyclic Sesquiterpene Expoxy-lactone with a Novel Carbon Skeleton from Cultures of the Fungus Marasmius alliaceus (Jacques ex Fr.) Fr, X-Ray Structure. J. C. S. Chem. Commun. 727 (1977).Google Scholar
  413. 413.
    Ranieri, R. L., and G. J. Calton: Quadrone, a New Antitumor Agent from Aspergillus terreus. Tetrahedron Letters 499 (1978).Google Scholar
  414. 414.
    Nozoe, S.. H. Kobayashi, S. Urano, and J. Furukawa: Isolation of A’-Protoilludene and the Related Alcohols. Tetrahedron Letters 1881 (1977).Google Scholar
  415. 415.
    YusTE, F., D. Diaz, F. Walls, and K. Jankowski: The Structure of Cacalone. J. Org. Chem. 41, 4103 (1976).CrossRefGoogle Scholar
  416. 416.
    Suzuki, T.. A. Furusaki. N. Hashiba, and E. Kurosawa: Novel Skeletal Bromo Ether from the Marine Alga, Laurencia nipponica Yamada. Tetrahedron Letters 3731 (1977).Google Scholar
  417. 417.
    Corr, J. C., S. J. Mitchell, and G. J. Stokie: Studies of Australian Soft Corals V. A Novel Furano-sesquiterpene Acid from the Soft Coral Sinularia yonatodes (kolonko). Tetrahedron Letters 1539 (1977).Google Scholar
  418. 418.
    Sun, H. H., S. M. Waraszkiewicl, and K. L. Erickson: Crs-Halogenated Compounds from the Hawaiian Marine Alga Laurencia nid)fica, VI. The Isomaneonenes. Tetrahedron Letters 4227 (1976).Google Scholar
  419. 419.
    Silva, M., A. Wiesenfeld, P. G. Sammes, and “1. W. Tyler: New Sesquiterpenes from Pleocarphus revolutus. Phytochemistry 16, 379 (1977).CrossRefGoogle Scholar
  420. 420.
    Eppley, R. M., E. P. Mazzola, R. J. Highet, and W. J. Bailey: Structure of Satratorin H, a Metabolite of Slachybotrys atra. Application of Proton and Carbon-13 Nuclear Magnetic Resonance. J. Org. Chem. 42, 240 (1977).CrossRefGoogle Scholar
  421. 421.
    Breitenstein, W., and C. Tamm: Verrucarin K, the First Natural Trichoíhecene Derivative Lacking the 12,13-Epoxy Group. Heiv. Chim. Acta 60, 1522 (1977).CrossRefGoogle Scholar
  422. 422.
    Matsumoto, M., H. Minato, K. Tori, and M. Ueyama: Structures of Isonoridin E, Epoxyisonoridin E, and Epoxy-and Diepoxy-nonidine H, New Metabolites Isolated from Ct’lindrocarpan Species Determined by Carbon-13 and Hydrogen-1 Nmr Spectroscopy. Tetrahedron Letters 4093 (1977).Google Scholar
  423. 423.
    Manville, J. F., K. Bock, and E. Von Rudloff: Occurrence of Juvabione-Type and Epijuvabione-type Sesquiterpenoids in Ahies alba. Phytochemistry 16, 1967 (1977).CrossRefGoogle Scholar
  424. 424.
    Gerber, N. N., and D. Z. Denney: The Carbon-13 Nuclear Magnetic Resonance Spectra of I-our Eudesmane Sesquiterpenols. Phytochemistry 16, 2025 (1977).CrossRefGoogle Scholar
  425. 425.
    Archer, R. A., D. W. Johnson, E. W. Hagaman, L. N. Moreno, and E. Wenkert: Carbon 13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. 47. Cannabinoid Compounds. J. Org. Chem. 42, 490 (1977).CrossRefGoogle Scholar
  426. 426.
    Jones, N. F.: The Pyrethrins and Related Compounds, Part 21. Carbon-t3 Nuclear Magnetic Resonance Spectra of Synthetic Pyrcthroids. J. C. S. Perkin I, 1878 (1977).Google Scholar
  427. 427.
    Takeuchi. S., J. Lzawa, H. Seto.. and H. Yonehara: New “C-Nmr Techniques Applied to Pentalenolactone Structure. Tetrahedron Letters 2943 (1977).Google Scholar
  428. 428.
    Carsten-Lichterfelde, C. Von. C. Pascual. R. MA. Rabanal, B. Rodriguez, and S. Valverul: “C Nmr Substituent Effects in Tetracyclic Diterpenoids. Tetrahedron 33, 1989 (1977).Google Scholar
  429. 429.
    Chalmers, A. A., C. P. Gorst-Allman, and L. P. L. Piacenza: Carbon-13 Nmr Spectra of Stachenol and Related Derivatives. Tetrahedron Letters 1665 (1977).Google Scholar
  430. 430.
    Imamgra, P. M., A. J. Marsaioli, L. E. S. Barata, and E. A. Ruveda: “C Nmr. Spectral Analysis of Eperuane Diterpenes. Phytochemistry 16, 1842 (1977).CrossRefGoogle Scholar
  431. 431.
    Pelletier, S. W., N. V. Mody, J. Bhattacharyya, and D. H. Miles: Carbon-13 Nmr Analysis of Naturally Occurring 9,10-Dihydrophenanthrenes and Their Derivatives. Tetrahedron Letters 425 (1978).Google Scholar
  432. 432.
    Kato, T., M. Tsunakawa, N. Sasaki, H. Aizawa, K. Fuhta, Y. Kitahara, and N. Takahashi: Growth and Germination Inhibitors in Rice Husks. Phytochemistry 16, 45 (1977).CrossRefGoogle Scholar
  433. 433.
    Hayashi, Y., T. Matsumoto, Y. Y.KI, and T. Sakan: New Congeners of Cytotoxic Nor-diterpenoid Dilactones in Podocarpus nagi, Three New Components of 7,8Epoxy-Enolide Type. Tetrahedron Letters 4215 (1977).Google Scholar
  434. 434.
    Kato, T., H. Aizawa, M. Tsunakawa, N. Sasaki, Y. Kitahara, and N. Takahashi:Google Scholar
  435. 435.
    Chemical Transformations of the Diterpene Lactones, Momilactones A and B. J. C. S. Perkin I, 250 (1977).Google Scholar
  436. 436.
    Savona, G., F. Plozzi, J. R. Hanson, and M. Sivfrns: Structures of Three New Diterpenoids from Ballota Species. J. C. S. Perkin I, 322 (1977).Google Scholar
  437. 437.
    ChattermE, A., A. Baner.Iee, and F. Boiilmann: Crotocaudin, a Rearranged Labdane Type Norditerpene from Croton caudatus Geisel. Tetrahedron 33, 2407 (1977).CrossRefGoogle Scholar
  438. 438.
    Miyase, T., P. Ruedi, and C. H. Eogster: Unusual Rearranged Abietanoic Diterpenoids from Solenostemon Species. J. C. S. Chem. Commun. 859 (1977).Google Scholar
  439. 439.
    Blunt, J. W., G. S. Boyd, M. P. Hartshorn, M. H. G. Munro, and L. K. Pannell: The Acid-Catalysed Dehydration of 13a-Substituted 13(3-methyl-podocarpan-8(3-ols. AusL J. Chem. 30, 2015 (1977).Google Scholar
  440. 440.
    Miyase, T., P. RÜFdi, and C. H. Eugster: Diterpenoide Drüsenfarbstoffe aus Labiaten: Coleone U, V, W and t4-O-Formylcoleon-V sowie 2 Royleanone aus Plectranulius tnyriamhus Brig., cis-and trans-A/B-6.7-Dioxoroyleanon. HeIv. Chim. Acta 60, 2770 (1977).CrossRefGoogle Scholar
  441. 441.
    Miyase, T., P. Aged!, and C. H. Eugster: Diterpenoide Drüsenfarbstoffe aus Labiaten: 3[3-Acetoxyfuerstion, Nilgherron A und Nilgherron B, neue Chinomethane aus Plectranthu.s nilgherricus Benth., absolute Konfiguration von Fuerstion. Hely. Chim. Acta 60, 2789 (1977).CrossRefGoogle Scholar
  442. 442.
    Ekman, R., R. SJÖHolm, and K. Hannus: Isoabienol, the Principal Diterpene Alcohol in Pinus sylvestris Needles. Acta Chem. Scand. B 31, 921 (1977).CrossRefGoogle Scholar
  443. 443.
    Nair, A. G. R., S. S. Subramanan, F. Bohlmann, S. SchÖNeweiss, and T. J. Mabry: A new Diterpene Galactoside from Acanthospermum hispidum. Phytochemistry 15, 1776 (1976).CrossRefGoogle Scholar
  444. 444.
    Rodriguez, B.: New Labdane Diterpenoids from Sideritis chamaedryfolia. Phytochemistry 17, 281 (1978).CrossRefGoogle Scholar
  445. 445.
    Braun, S., und H. Breitenbach: Strukturaufklärung einer neuen Diterpensäure aus Metaseguoia glyptostroboides mit Hilfe der 13C-Nmr-Spektroskopie. Tetrahedron 33, 145 (1977).CrossRefGoogle Scholar
  446. 446.
    Gonzalez, A. G., J. M. Arteaga, J. L. Breton, and. B. M. Fraga: Five new Labdane Diterpene Oxides from Eupatorium jhanii. Phytochemistry 16, 107 (1977).CrossRefGoogle Scholar
  447. 447.
    Ceccherelli, P., M. Curini, R. Pellicciari, M. S. Raju, and E. Wenkert: Conversion of Virescenol A into Virescenol B. J. Org. Chem. 42, 3438 (1977).CrossRefGoogle Scholar
  448. 448.
    Bhat, S. V., B. S. Bajwa, H. Dornauer, and N. J. DE SouzA: Structures and Stereo-chemistry of New Labdane Diterpenoids from Coleus forskohlii Brig. Tetrahedron Letters 1669 (1977).Google Scholar
  449. 449.
    Savona, G., S. Passannanti, M. P. Paternostro, F. PIozzi, J. R. Hanson, and M. Siverns: 813-Hydroxyfruticolone, a Diterpenoid from Teucrium fruticans. Phytochemistry 17, 320 (1978).CrossRefGoogle Scholar
  450. 450.
    Bohlmann, F., und C. Zdero: Ein neues Clerodan-Derivat sowie weitere Inhaltsstoffe aus der Gattung Macowania. Phytochemistry 16, 1583 (1977).CrossRefGoogle Scholar
  451. 451.
    Kubo, I., I. Miura, K. Nakanishi, T. Kamikawa, T. Isobe, and T. Kubota: Structure of Isodomedin, a Novel eni-Kaurenoid Diterpene. J. C. S. Chem. Commun. 555 (1977).Google Scholar
  452. 452.
    Vichnewski, W., H. DE Freitas Leitao Filho, R. Murari, and W. Herz: Cinnamoylgrandifloric Acid from Mikania oblongifolia. Phytochemistry 16, 2028 (1977).CrossRefGoogle Scholar
  453. 453.
    Manchand, P. S., and J. F. Blount: Stereostructures of the Macrocyclic Diterpenoids Ovatodiolide and Isoovatodiolide. J. Org. Chem. 42, 3824 (1977).CrossRefGoogle Scholar
  454. 454.
    Kashman, Y., and A. GrowEiss: Lobolide: A New Epoxy Cembranolide from Marine Origin. Tetrahedron Letters 1159 (1977).Google Scholar
  455. 455.
    Coll, J. C., G. B. Hawes, N. Liyanage, W. Oberhansli, and R. J. Wells: Studies of Australian Soft Corals. I. A New Cembrenoid Diterpene from a Sacrophyton Species. Aust. J. Chem. 30, 1305 (1977).CrossRefGoogle Scholar
  456. 456.
    CoLL, J. C., S. J. Mitchell, and G. J. S’rOkie: Studies of Australian Soft Corals. II. A Novel Cembrenoid Diterpene from Lobophytum michaelae. Aust. J. Chem. 30, 1859 (1977).CrossRefGoogle Scholar
  457. 457.
    Bowden, B. F., J. A. Brittle, J. C. Coll, N. Liyanage, S. J. Mitchell. and G. J. S.Orie: Studies of Austrial Soft Corals. VI. A New Cembrenoid Diterpene from the Soft Coral Lobophytum crassum (Coelenterata, Anthozoa, Octocorallia, Alcyonacea). Tetrahedron Letters 3661 (1977).Google Scholar
  458. 458.
    Springer, J. P., J. Clardy, R. H. Cox, H. G. Cutler, and R. J. Cole: The Structure of a New Type of Plant Growth Inhibitor Extracted from Immature Tabacco Leaves. Tetrahedron Letters 2737 (1975).Google Scholar
  459. 459.
    Behr, D., I. Wahlberg, A. J. Aasen, T. Nishida, C. R. Enzell, A.-M. Pilotti, and J.-E. Berg: (1S,2E,4R,6E,8R,I1S,12R)- and (1S,2E,4S,6E,8R,11S,12R)-8,11Epoxy-2,6-thunbergadiene-4,12-diol, Two New Diterpenoids of Greek Tobacco. Acta Chem. Scand.. in press.Google Scholar
  460. 460.
    Kazlauskas, R., P. T. Murphy, R. J. Wells, and P. SchÖNholzer: Two New Diterpenes Related to Eunicellin from a Cladiella Species (Soft Coral). Tetrahedron Letters 4643 (1977).Google Scholar
  461. 461.
    Ireland, C., and D. J. Faulkner: Diterpenes from Dolabella californica. J. Org. Chem. 42, 3157 (1977).CrossRefGoogle Scholar
  462. 462.
    Prestwich, G. D., S. P. Tanis, F. G. Pilkiewicz, I. Miura, and K. Nakanishi: Nasute Termite Soldier Frontal Gland secretions. 2. Structures of Trinervitene Congeners from Trinervitermes Soldiers. J. Am. Chem. Soc. 98, 6062 (1976).CrossRefGoogle Scholar
  463. 463.
    Prestwich, G. D., B. A. Solheim, J. Clardy. F. G. Pilkiewicz, I. Miura, S. P. Tanis, and K. Nakanishi: Kempene-1 and -2, Unusual Tetracyclic Diterpenes from Nasuti-termes Termite Soldiers. J. Am. Chem. Soc. 99, 8082 (1977).CrossRefGoogle Scholar
  464. 464.
    Pascard, C., T. Prange, and J. PoloNsky: Crystal and Molecular Structure of the Quassinoid 6-Hydroxy-picrasin B. J. Chem. Research (S), 324 (1977), (M), 3636 (1977).Google Scholar
  465. 465.
    Gonzalez, A. G., C. G. Francisco, R. Freire, R. Hernandez, J. A. Salazar, and E. Suarez: Cl2 Stereochemistry of a-and 13-Levantenolide. Carbon-13 Nmr Spectra Labdanolic Diterpenes. Tetrahedron Letters 1897 (1976).Google Scholar
  466. 465.
    Valverde. S., and B. Rodriguez: The Use of 13C-Nmr in the Determination of Structures: A Correction of the Structure of Borjatriol. Phytochemistry 16, 1841 (1977).CrossRefGoogle Scholar
  467. 467.
    Kashman, Y., and A. Rudi: The `C-Nmr Spectrum and Stereochemistry of Heteronemin. Tetrahedron 33, 2997 (1977).CrossRefGoogle Scholar
  468. 468.
    Cimino, G., S. Destefano, L. Minale, and E. Trivellone: l2-epi-SCalarin and 12-epi-Deoxoscalarin. Sesterterpenes from the Sponge Spongia Nitens. J. C. S. Perkin 1, 1587 (1977).CrossRefGoogle Scholar
  469. 469.
    Stipanovic, R. D., A. A. Bell, D. H. O’Brien, and M. J. Lukefahr: Heliocide H3, an Insecticidal Terpenoid from Gossypium hirsutum. Phytochemistry 17, 151 (1978).CrossRefGoogle Scholar
  470. 470.
    Chexal, K. K., J. P. Springer, J. Clardy, R. J. Cole, J. W. Kirksey, J. W. Dorner, H. G. Cutler, and B. J. Strawter: Austin, a Novel Polyisoprenoid Mycotoxin from Aspergillus ustus. J. Am. Chem. Soc. 98, 6748 (1976).CrossRefGoogle Scholar
  471. 470.
    Mondon, A., D. Trautmann, B. Epe, and U. Oelbermann: Zur Kenntnis der Bitterstoffe aus Cneoraceen. VI. Tetrahedron Letters 3291 (1976).Google Scholar
  472. 472.
    Zur Kenntnis der Bitterstoffe aus Cneoraceen, Vii. Tetrahedron Letters 3295 (1976).Google Scholar
  473. 473.
    Purushothaman, K. K., S. Chandrasekharan, J. D. Connolly, and D. S. Rycroft: Tetranortriterpenoids and Related Substances. Part 18. Two New Tetranortriterpenoids with a Modified Furan Ring from the Bark of Soymida febrifuga. A. Juss (Meliaceae). J. C. S. Perkin I, 1873 (1977).Google Scholar
  474. 474.
    Siddiqui, S., S. Fuchs, J. Lubckl und W. Voelter: Struktur eines neuen Naturstofles aus Melia azadirachta Linn: 17-Hydroxyazadiradion. Tetrahedron Letters 611 (1978).Google Scholar
  475. 475.
    Sabata, B. J. D. Connolly, G. Labbe, and D. S. Rycroft: Tetranortriterpenoids and Related Substances. Part 19. Revised Structures of Atalantolide and Atalantin, Limonoids from the Root Bark of Atalantia monophylla. Correa (Rutaceae). J. C. S. Perkin I, 1875 (1977).Google Scholar
  476. 476.
    Halsall, T. G., K. Wragg, J. D. Connolly, M. A. Mclellan, L. D. Bredei.L, and D. A. H. Taylor: 13C Nuclear Magnetic Resonance Spectra of Some Limonoids. Part Iii. The Spectra of Some Derivatives of Entandrophragmin and a Revised Structure for Condollein. J. Chem. Research (S), 154 (1977), (M), 1727 (1977).Google Scholar
  477. 477.
    Asakawa, J., R. Kasai, K. Yamasaki, and O. Tanaka: 13C Nmr Study of Ginseng Sapogenins and their Related Dammarane Type Triterpenes. Tetrahedron 33, 1935 (1977).CrossRefGoogle Scholar
  478. 478.
    sH17, H., S. Seo, K. Tori, T. T.zYD, and Y. Yoshimura: The Structures of Saikosaponin-E and Acetylsaikosaponins, Minor Components Isolated from Bupleurum falcatum L., Determined by C-13 Nmr Spectroscopy. Tetrahedron Letters 1227 (1977).Google Scholar
  479. 479.
    Yamada, Y., K. Hagiwara, K. IGtioHI, and S. SuzuKI: Structures of Anvenin I and II, Bitter Principles from Amagallis arvensis L. (Primulaceae). New Cucurbbitacin Glucosides. Tetrahedron Letters 2099 (1977).Google Scholar
  480. 480.
    Ziegler, R., and C. Tamm: Isolation and Structure of Eucosterol and 163-Hydroxyeucosterol. Two Novel Spirocyclic Nortriterpenes, and of a New 24-Nor-5a-chola8,16-diene-23-oic Acid from Bulbs of Several Eucomis Species. Heiv. Chim. Acta 59, 1997 (1976).Google Scholar
  481. 481.
    Okorie, D. A., and D. A. H. Taylor: Triterpenes from the seed of Entandrophragma Species. Phytochemistry 16, 2029 (1977).CrossRefGoogle Scholar
  482. 482.
    Dreyer, D. L., and E. K. Trousdale: Cucurbitacins in Purshia tridentata. Phytochemistry 17, 325 (1976).CrossRefGoogle Scholar
  483. 483.
    KAwAI, K., and S. Shibata: Pseudojujubogenin, a New Sapogenin from Bacopa mon-niera. Phytochemistry 17, 287 (1978).CrossRefGoogle Scholar
  484. 484.
    Blunt, J. W., and J. B. Stothers: “C N. m. r. Spectra of Steroids — A Survey and Commentary. Org. Magn. Resonance 9, 439 (1977).CrossRefGoogle Scholar
  485. 485.
    Van Antwerp, C. L., H. Eggert, G. D. Meakins, J. O. Miners, and C. Djerassi: Additivity Relationships in Carbon-13 Nuclear Magnetic Resonance Spectra of Dihydroxy Steroids. J. Org. Chem. 42, 789 (1977).CrossRefGoogle Scholar
  486. 486.
    Bermann, E., Z. Luz, Y. Mazur, and M. Sheves: Conformational Analysis of Vitamin D and Analogues. 13C and 1H Nuclear Magnetic Resonance Study. J. Org. Chem. 42, 3325 (1977).CrossRefGoogle Scholar
  487. 487.
    Smith, W. B.: The Carbon-13 Spectra of Steroids on the Way to Ecdysone. Org. Magn. Resonance 9, 644 (1977).CrossRefGoogle Scholar
  488. 488.
    Taylor, E. J., and C. Dierassi: Synthesis of Cholest-5-ene-33-,11 a,153-triol-7-one, A Model for the Steroid Nucleus of Oogoniol, a Sex Hormone of the Water Mold Achlya. J. Org. Chem. 42, 3571 (1977).CrossRefGoogle Scholar
  489. 489.
    Mcmorris, T. C., S. R. Show, and G. R. Weihe: Evidence for C-29 Hydroxyl Group in Oogoniol from “C Nmr Spectra of Model 33,26- and 33.29-Dihydroxy Stigmast-5-enes. Tetrahedron Letters 335 (1978).Google Scholar
  490. 490.
    Hiking, H., K. Mohri, Y. Hiking, S. Arihara, T. Takemoto, H. Mori, and K. Shibata: Inokosterone, an Insect Metamorphosing Substance from Achyranthes faurier. Absolute Configuration and Synthesis. Tetrahedron 32, 3015 (1976).CrossRefGoogle Scholar
  491. 491.
    Koreeda, M., N. KoIzumi, and B. A. Teilher: Stereochemically Controlled Synthesis of 20,22-Epoxycholesterols. Tetrahedron Letters 4565 (1976).Google Scholar
  492. 492.
    Moss, G. P.: Carbon-13 Nmr Spectra of Carotenoids. Pure Appl. Chem. 47, 97 (1976).Google Scholar
  493. 493.
    Matsuo, M., and S. Urano: “C Nmr Spectra of Tocophenols and 2,2-Dimethylchromanols. Tetrahedron 32, 229 (1976).CrossRefGoogle Scholar
  494. 494.
    Kaiser, R., A. Kappeler, and D. Lamparsky: Inhaltsstoffe des Osmanthus-Absolues. 3. Mitteil. Derivate der Theaspirane. HeIv. Chim. Acta 61, 387 (1978).CrossRefGoogle Scholar
  495. 495.
    Frei, B., H. Eichenberger, B. Von Wartburg, H. R. Wolf, and O. Jeger: Photochemische Reaktionen, 94. Mitteil. Vinyloge 3-Spaltung bei Epoxy-enonen der JononReihe. HeIv. Chim. Acta 60, 2968 (1977).CrossRefGoogle Scholar
  496. 496.
    Blount, J. F., R. L. Han, B. A. Pawson, R. G. Pitcher, and T. H. Williams: (E)- and (Z)-4-Methyl-5-[5-(2,6,6-trimethylcyclohexen-1 -yl)-3-methyl-2(L), 4(L)-pentadienylidene]-2(511)-furanone. Synthesis and Spectral Properties. J. Org. Chem. 41, 4108 (1976).Google Scholar
  497. 497.
    Behr, D., I. Wahlberg, T. Nishida, and C. R. Enzell: Tobacco Chemistry. 41. Structure Determination and Synthesis of 5(13),7E-Megastigmadien-6,9-diol, a New Constituent of Greek Tobacco. Acta Chem. Scand. B 31, 609 (1977).CrossRefGoogle Scholar
  498. 498.
    Hanisch, P., A. J. Jones, A. F. Casey, and J. E. Coates: Carbon-13 Magnetic Resonance Evidence for Non-Chair Conformations in Tropane Derivatives. J. C. S. Perkin II. 1202 (1977).Google Scholar
  499. 499.
    Zetta, L., and G. Gattc 13C N.m.r. Spectra of Lysergic Acid Derivatives. II. Dihydrolysergamides. Org. Magn. Resonance 9, 218 (1977).CrossRefGoogle Scholar
  500. 500.
    Ricca, R. S., and C. Casagrande: 15C Magnetic Resonance Studies of Reduced Proaporphinc Alkaloids. Org. Magn. Resonance 9, 8 (1977).CrossRefGoogle Scholar
  501. 501.
    Verpoorte, R., and A. B. SvEndsi:N: Carbon-13 Nuclear Magnetic Resonance of Some Strychnos Alkaloids. Pharm. Weekbl. 111, 745 (1976).Google Scholar
  502. 502.
    Verpoorte, R., P. J. Hylands, and N. G. Bisset: Carbon-13 N. m. r. Spectroscopy of Some Strychnos Alkaloids. Org. Magn. Resonance 9, 567 (1977).Google Scholar
  503. 503.
    LeUng, J., and A. J. Jones: Carbon-13 N. m. r. Analysis of Selected Strychnos Alkaloids. Org. Magn. Resonance 9, 333 (1977).CrossRefGoogle Scholar
  504. 504.
    Hughes, D. W., B. C. Nalliah, H. L. Holland, and D. B. Maclean: 13C Nuclear Magnetic Resonance Spectra of the Spirobenzylisoquinoline Alkaloids and Related Model Compounds. Can. J. Chem. 55, 3304 (1977).CrossRefGoogle Scholar
  505. 505.
    Ronaldson, J. W.: Sporidesmins. XV. The 13C Nuclear Magnetic Resonance Spectra of Sporidesmin and Sporidesmin-D. The Evidence in the Spectra of Strain Imposed by an Epidithio Bridge. Aust. J. Chem. 29, 2307 (1976).CrossRefGoogle Scholar
  506. 506.
    Van BtNst, G., D. TourwÉ, and E. DecoCK: Benzo-and Indoquinolizines. X. Application of Carbon-I3 N. M. R. to the Stereochemistry of the 4b,5,6,7,8a,10,11,16, 16h-Decahydrobibenzo[f,h[indolo-[2,3-a]quinolizine Isomers. Org. Magn. Resonance 8, 618 (1976).Google Scholar
  507. 507.
    Wesion, R. J., H. E. Gottlieb, E. W. Hagaman, and E. Wenkert: Carbon-l3 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. LI. Solanum Glycoalkaloids. Aust. J. Chem. 30, 917 (1977).CrossRefGoogle Scholar
  508. 508.
    Cole, R. J.. J. W. Kirksey. R. H. Cox, and J. Clardy: Structure of the Tremor-Producing Indole, “f R-2. J. Agric. Food Chem. 23, 1015 (1975).CrossRefGoogle Scholar
  509. 509.
    Cole, R. J., J. W. Porner, J. A. Lansden, R. II. Cox. C. Pape, G. Confer, S. S. Nicholson, and D. M. Bedell: Paspalum Staggers: Isolation and Identification of Tremorgenic Metabolites from Sclerotia of Clavicops paspali. J. Agric. Food Chem. 25, 1197 (1977).CrossRefGoogle Scholar
  510. 510.
    Ssang, A., H. Jacquemin, J.-L. Pousset, A. Cave, M. Damak, and C. Riche: Structure de la Borreline, Nouvel Alcaloïde Indolique. Tetrahedron Letters 1219 (1977).Google Scholar
  511. 511.
    Ssang, A.. J.-L, Pousset, H. Jacquemin, and A. CavÉ: Structure de la Borrecarpine, Nouvel Alcaloïde Indolique. Tetrahedron Letters 4317 (1977).Google Scholar
  512. 512.
    Lounasmaa, M., and C.-J. Johansson: Synthetic Studies in the Alkaloid Field. IV. The Sodium Dithionite Reduction of 1-[2-(3-tndolyl)-ethyl]-3-methoxy-carbonyl Pyridinium Bromides. Tetrahedron 33, 113 (1977).CrossRefGoogle Scholar
  513. 513.
    Bombardelli, E., A. Bonat1, B. Gabetta, E. Martinelli, G. Musiich, and B. Danielc 17-O-Acetyl-19,20-dihydrovoachalotine, a New Alkaloid from Voacanga chalotiana. Phytochemistry 15, 2021 (1976).CrossRefGoogle Scholar
  514. 514.
    Pouta, C., A. Ahond, and T. Sevenet: Alcaloides de Acacia simplicifolia. Phytochemistry 15, 2019 (1976).CrossRefGoogle Scholar
  515. 515.
    Melchio, J., A. Bouquet, M. Pais, and R. Goutarel: Alcaloïdes Indoliques. Cvi. Identité dc la Mayumbine et dc l’epi-I9 Ajmalicine. L’iso-3 Rauniticine, un Nouvel Alcalóide Extrait du Corynanthe mayumbensis (R. Good) N. Halle. Tetrahedron Letters 315 (1977).Google Scholar
  516. 516.
    Santamaria, J., D. Herlem, and F. KEtuoNG-Hog: Oxydation Photochimique d’Amines Tertiaires et d’Alcaloïdes Viii. Oxydation Photochimique d’Alcaloides Indolinoin-dolizidiniques. Vincadifformine et N(a)-Acétyt-dihydro-2,16-tabersonine. Tetrahedron 33, 2389 (1977).CrossRefGoogle Scholar
  517. 517.
    Morita, Y., M. Hesse, H. Schmid, A. Banerji, J. Banerji, A. Chatteries, and W. E. Oberhansli: Alstonia scholaris, Struktur des Indolalkaloides Narelin. Hel,. Chim. Acta 60, 1419 (1977).CrossRefGoogle Scholar
  518. 518.
    Das, B. C., J.-P. CossoN, and G. Lukacs: Structural Analysis by Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Pleiocraline, a New Bisindole Alkaloid from Alstonia dephanchei van Heurck et Muell. Arg. J. Org. Chem. 42, 2785 (1977).CrossRefGoogle Scholar
  519. 519.
    Wagner, H., R. BRÜNing, H. Lotter, and A. Jones: Die Struktur von Cassinin, einem neuen Sesquiterpenalkaloid aus Cassia metabolica Loes. Tetrahedron Letters 125 (1977).Google Scholar
  520. 520.
    Pelletier, S. W., N. V. Mods. and N. KArsul: The Structures of Sachaconitine and lsodefphinine from Aconitum miyabei Nakei. Tetrahedron Letters 4027 (1977).Google Scholar
  521. 521.
    Pelletier, S. W., N. V. Modp, and H. S. Pua: Structures of Falaconitine and Mithaconitine. Two Novel Diterpenoid Alkaloids from Aconitum jalconeri Stapf. J. C. S. Chem. Commun. 12 (1977).Google Scholar
  522. 522.
    Pelletier, S. W., and N. V. Moos: The Conformational Analysis of the E and F Rings of Atisine, Veatchine and Related Alkaloids. The Existence of C-20 Epimers. J. Am. Chem. Soc. 99, 284 (1977).Google Scholar
  523. 523.
    Pelletier, S. W., and N. V. Moos The C-20 Epimers of Atisine and Behaviour of the Oxazolidine Ring. Tetra- hedron Letters 1477 (1977).Google Scholar
  524. 524.
    Bozos, A., R. Cavier, F. Cossais, J.-P. Finet, J.-P. Jacquet, G. Lavielle, and N. Platzer: Synthese et Propriétés Amoebicides d’Analogues de l’Emétine. Analyse des Composés Nouveaux en 13C-Rmn. 1. (A) Alkyl-l-déséthyl-3-émétine à Jonction B/C ris ou trans. HeIv. Chin. Acta 60, 2122 (1977).CrossRefGoogle Scholar
  525. 525.
    Ahond, A., F. Picot. P. Potier, C. Poupat, and T. SÉVenet: Alcaloïdes de Melicope leratiì. Phytochemistry 17, 166 (1978).CrossRefGoogle Scholar
  526. 526.
    Stermitz, F. R., and I. A. Shariei: Alkaloids of Zanthoxylum ntonophyllum and Z. punctatum. Phytochemistry 16, 2003 (1977).Google Scholar
  527. 527.
    Zalkow, L. H., L. Gelbaum, and E. Keinan: Isolation of the Pyrrolizidine Alkaloid Europine N-oxide from Heliotropium maris-mortui and H. rotundifolium. Phytochemistry 17, 172 (1978).CrossRefGoogle Scholar
  528. 528.
    Joshi, B. S., N. Viswanathan, D. H. Gawad, V. Balakrisiinan, and W. Von Philipsborn: Piperaceae Alkaloids. Part 1V. Structure and Synthesis of Cyclostachine A, Cyclostachine B and Cyclopiperstachine. Hely. Chim. Acta 58, 2295 (1975).CrossRefGoogle Scholar
  529. 529.
    Davidar, A. M., F. Winternitz, and S. R. Johns: Structure of Ipomine, a New Alkaloid from 1pomoea muricata Jacq. Tetrahedron 33, 1733 (1977).CrossRefGoogle Scholar
  530. 530.
    Lalonde, R. T., N. Mia-um/Am), and C. F. Wong: A Stereocontrolled Synthesis of (±) Anhydronupharamine. The `H and 13C Nuclear Magnetic Resonance of Piperidine Nuphar Alkaloids. J. Org. Chem. 42, 2113 (1977).Google Scholar
  531. 531.
    ChrisforlDjs, I., A. Welter, and J. Jadot: Spectaline and ‘so-6 Cassine. Two New Piperidin-3-ol Alkaloids from the Leaves of Cassia spectabilis. Tetrahedron 33, 977 (1977).CrossRefGoogle Scholar
  532. 532.
    Arpin, N., J. Favre-Bonvin, and S. Thivend: Structure de la Mycosorine 2. Nouvelle Molecule. Isolée de Botrvtis cinerea. Tetrahedron Letters 819 (1977).Google Scholar
  533. 533.
    Coxon, B., A. J. Faiiaih. L. T. Sniegoski, H. S. Hertz, and R. Schaffer: A Novel Acylative Degradation of Uric Acid. Carbon-13 Nuclear Magnetic Resonance Studies of Uric Acid and its Degradation Products. J. Org. Chem. 42, 3132 (1977).CrossRefGoogle Scholar
  534. 534.
    Kasai, H., K. Nakanishi, K. Frenkel, and D. Grunberger: Structures of 7,12- Dimethylbenzia]-anthracene 5,6-Oxide Derivatives Linked to the Ribose Moiety of Guanosine. J. Am. Chem. Soc. 99, 8500 (1977).CrossRefGoogle Scholar
  535. 535.
    Bajura, G. S.. and W. G. Bentrude: Thymidine Nucleoside 3’,5’-Cyclic Phosphoramidites and Phosphites. Configuration at Phosphorus in Trivalent and Pentavent Cyclic Nucleotides by 31P and “C Nmr. Tetrahedron Letters 421 (1978).Google Scholar
  536. 536.
    Wegner, M. M., and H. Rapoport: Perhydrogenation of 2,8-Diaminopurin. J. Org. Chem. 42, 3065 (1977).CrossRefGoogle Scholar
  537. 537.
    Chang, C., H. G. Floss, and W. Steck: Carbon-13 Magnetic Resonance Spectroscopy of Coumarins. Carbon-13-Proton Long-Range Couplings. J. Org. Chem. 42, 1337 (1977).CrossRefGoogle Scholar
  538. 538.
    Chan, K. K., D. D. Giannini, A. H. Cain, J. D. Roberts, W. Porter. and W. F. Trager: Carbon-13 Nuclear Magnetic Resonance Studies of Coumarin and Related Compounds. Tetrahedron 33, 899 (1977).CrossRefGoogle Scholar
  539. 539.
    Senda, Y., J. Ishiyama, S. Imam.. MI, and K. Hanaya: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of 1-Tetralols and Chrolnan-4-ols. J. C. S. Perkin I, 217 (1977).Google Scholar
  540. 540.
    Pelter, A., R. S. Ward, and T. I. Gray: The Carbon-13 Nuclear Magnetic Resonance Spectra of Flavonoids and Related Compounds. J. C. S. Perkin I, 2475 (1976).Google Scholar
  541. 541.
    Wenkert, E., and H. E. Gottlieb: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Flavonoid and Isoflavonoid Compounds. Phytochemistry 16, 1811 (1977).CrossRefGoogle Scholar
  542. 542.
    Chari, V. M., M. 1Lyas, H. Wagner, A. NeszmÉLyi, F. Chen, L. Chen, Y. Lin, and Y. Lin: 15C-Nmr Spectroscopy of Biflavanoids. Phytochemistry 16, 1273 (1977).CrossRefGoogle Scholar
  543. 543.
    Desalbres, X., M. Duteil, J. Y. Lallemand, W. Degroot-Pfleiderer, and C. Veraloza: Carbon-13 N. m. r. Studies of Flavanone 5,3’,4’-Trihydroxy-713-Glucoside from Juelia subterranea (Balanophoraceae). Org. Magn. Resonance 9, 659 (1977).CrossRefGoogle Scholar
  544. 544.
    Lallemand, J. Y., and M. Duteil: 13C N. m. r. Spectra of Quercetin and Rutin. Org. Magn. Resonance 9, 179 (1977).CrossRefGoogle Scholar
  545. 545.
    Castelad, J. F., JR., O. R. Gottlieb, R. A. Delima, A. A. L. Mesquita, H. E. Gottlieb, and E. Wenkert: Xanthonolignoids from Kielmeyera and Caraipa Species -13C Nmr Spectroscopy of Xanthones. Phytochemistry 16, 735 (1977).CrossRefGoogle Scholar
  546. 546.
    Idris, M. S. H., A. Jefferson, and F. Scheinmann: Extractive from Guttiferae. Part 33. Synthesis of the Ozonolysis Product from Dimethylmangostin, 1-Hydroxy3,6,7-trimethoxy-2,8-bis-(2-oxo ethyl)-xanthone, some 13C Nuclear Magnetic Resonance Spectra of Xanthones. J. C. S. Perkin I, 2158 (1977).Google Scholar
  547. 547.
    Westerman, P. W., S. P. Gunasekera, M. 1Jvais, S. Sultanbawa, and R. Kazlauskas: Carbon-13 N. m. r. Study of Naturally Occurring Xanthones. Org. M.gn. Resonance 9, 631 (1977).CrossRefGoogle Scholar
  548. 548.
    Chalmers, A. A., G. J. H. Rall. and M. E. Oberholzer: 13C Nmr of Pterocarpans. Tetrahedron 33, 1735 (1977).CrossRefGoogle Scholar
  549. 549.
    Plattner, R. D.. G. F. Spencer, D. Weisleder, and R. Kleiman: Chromanone Acids in Calophyllum brasiliense Seed Oil. Phytochemistry 13, 2597 (1974).CrossRefGoogle Scholar
  550. 550.
    Schilling, E., K. Weinges, D. MÜLler, and W. Mayer: 13C-Nmr-Spektroskopisehe Konstitutionsermittlung der C30H24012-Procyamdine. Liebigs Ann. Chem. 1471 (1973).Google Scholar
  551. 551.
    Pomilio, A., B. Ellmann, K. KÜNstler, G. Schilling, and K. Weinges: Natur-stoffe aus Arzneipflanzen. Xxi. “C-Nmr-spektroskopische Untersuchungen an Flavanoiden. Liebigs Ann. Chem. 588 (1977).Google Scholar
  552. 552.
    Pomilio, A., O. MÜLler, G. Schilling, and K. Weinges: Zur Kenntnis der Proanthocyanidine. Xxii. Über die Konstitution der Kondensationsprodukte von Phenolen mit Flavyliumsalzen. Liebigs Ann. Chem. 597 (1977).Google Scholar
  553. 553.
    Pelter, A., R. Hansel, and M. Ks.i000: The Structure of Silychristin. Tetrahedron Letters 4547 (1977).Google Scholar
  554. 554.
    Wagner, H., V. M. Chari, M. Seitz, and I. Riess-Maurer: The Structure of Silychristin - A “C-Nmr Study. Tetrahedron Letters 381 (1978).Google Scholar
  555. 555.
    Dominguez, X. A., C. Martinez, A. Calero, X. A. Dominguez, JR., M. Hinojosa, and A. Zamudio: Louisfieserone, an Unusual Flavanone Derivative from Indigofera suffruticosa, Mill. Tetrahedron Letters 429 (1978).Google Scholar
  556. 556.
    Chari, V. M., N. Jordan, H. Wagner, and P. W. Thies: A “C-Nmr Study of the Structure of an Acyl-linarin from Valeriana wallichii. Phytochemistry 16, 1110 (1977).CrossRefGoogle Scholar
  557. 557.
    Bedgelmans, R., and C. Morin: Action of Hydroxylamine on Chromone and Khellin. Oxime vs. Isoxazoles Structures. J. Org. Chem. 42, 1356 (1977).CrossRefGoogle Scholar
  558. 558.
    Chopin, J., M. L. Bouillant, A. G. R. Nair, P. Ramesh, and T. J. Mabry: New C-Glycosylflavones from Mollugo distica T. Phytochemistry 17, 299 (1978).CrossRefGoogle Scholar
  559. 559.
    Jensen, S. R., B. J. Nielsen, and V. Norn: Dihydrochalcones from Viburnum davidii and V. lantanoides. Phytochemistry 16, 2036 (1977).CrossRefGoogle Scholar
  560. 560.
    Kaldas, M., I. Miura, and K. Hostettmann: Campestroside, a New Tetrahydroxanthone Glucoside from Gentian campestris. Phytochemistry 17, 295 (1978).CrossRefGoogle Scholar
  561. 561.
    Mcdonald, 1. A., T. J. Simpson, and A. F. Sierakowski: “C Nmr Spectral Studies of Some Naturally Occurring Quinones and Related Compounds. Aust. J. Chem. 30, 1727 (1977).CrossRefGoogle Scholar
  562. 562.
    Fle, G.: 13C-Nmr-Spektroskopie Chinoider Verbindungen. II. Substituierte 1,4Naphthochinone und Anthrachinone. Tetrahedron 33, 1936 (1977).CrossRefGoogle Scholar
  563. 563.
    Huneck, S., W. Steglich, and G. HÖFle: Canarion, ein neues Naphthochinon aus Usnea canariensis. Phytochemistry 16, 121 (1977).CrossRefGoogle Scholar
  564. 564.
    Stipanovic, R. D., A. A. Bell, D. H. O’Brien, and M. J. Lukefahr: Heliocide 14: An Insecticidal Sesterterpenoid from Cotton (Gossypium). Tetrahedron Letters 567 (1977).Google Scholar
  565. 565.
    Neville, G. A., F. B. Hasan, and I. C. P. Smith: Stereoselective Epimerization of Pilocarpine in Aqueous Solution as Determined by “C Nuclear Magnetic Resonance Spectroscopy. Can. J. Chem. 54, 2094 (1976).CrossRefGoogle Scholar
  566. 566.
    Craigie, J. S., A. G. Mcinnes, M. A. Ragan, and J. A. Walter: Chemical Constituents of the Physodes of Brown Algae. Characterization by 1H and “C Nuclear Magnetic Resonance Spectroscopy of Oligomers of Phloroglucinol from Fucus vesiculosus (L). Can. J. Chem. 55, 1575 (1977).CrossRefGoogle Scholar
  567. 567.
    Lounasmaa, M.: Dérivés Phloroglucinoliques d’Hagenia abyssinica. IV. Résonance Magnétique Nucléaire du “C de la Kasotoxine, du Pseudo-aspidinol et de l’aKosine. Acta Chem. Scand B31, 77 (1977).CrossRefGoogle Scholar
  568. 568.
    Kelley, C. J., R. C. Harruff, and M. Carmack: The Polyphenolic Acids of Lithospermum ruderale. II. Carbon-13 Nuclear Magnetic Resonance of Lithospermic and Rosmarinic Acid. J. Org. Chem. 41, 449 (1976).CrossRefGoogle Scholar
  569. 569.
    Arnone, A., L. Camarda, L. Merlini, and G. Nasini: ‘3C Nuclear Magnetic Resonance Spectral Analysis of Santalin and Santarubin Permethyl Ethers. J. C. S. Perkin I, 2118 (1977).Google Scholar
  570. 570.
    Harruff, R. C., and W. T. Jenkins: A 13C n. m. r. Study of the B6 Vitamins and their Aldimine Derivatives. Org. Magn. Resonance 8, 548 (1976).CrossRefGoogle Scholar
  571. 571.
    Grande, H. J., R. Gast, C. G. Van Schlagen, W. J. H. Van Berkel, and F. Muller: 13C-Nmr Study on Isoalloxazine and Alloxazine Derivatives. HeIv. Chim. Acta 60, 367 (1977).CrossRefGoogle Scholar
  572. 572.
    MacdoNald, J. C., G. G. Bishop, and M. Mazurek: ‘5C and Proton Nmr Spectra of 2 (1H)Pyrazinones. Tetrahedron 32, 655 (1976).CrossRefGoogle Scholar
  573. 573.
    Glombitza, K.-W., H.-U. RÖSener, and M. Koch: Polyhydroxyoligophenyle und Phenyläther aus Bifurcaria bifurcata. Phytochemistry 15, 1279 (1976).CrossRefGoogle Scholar
  574. 574.
    Anjaneyulu, A. S. R., A. M. Rao, V. K. Rao, L. R. Row, A. Pelter, and R. S. Ward: The Isolation and Structure of 6“-Bromo-Isoarboreol. The First Bromine Containing Lignan. Tetrahedron Letters 4697 (1975).Google Scholar
  575. 575.
    Anjaneyulu, A. S. R., P. A. Ramaiah, L. R. Row, A. Pelter, and R. S. Ward: The Stucture of Wodeshiol. The First of a New Series of Lignans. Tetrahedron Letters 2961 (1975).Google Scholar
  576. 576.
    Pelter, A., R. S. Ward, E. V. Rao, and K. U. Sastry: Revised Structures for Pluviatilol, Methyl Pluviatilol and Xanthoxylol. General Methods for the Assignment of Stereochemistry to 2,6-Diaryl-3,7-dioxabicyclo[3,3,0]octane Lignans. Tetrahedron 32, 2783 (1976).CrossRefGoogle Scholar
  577. 577.
    Pelter, A., R. S. Ward, and C. NishtNO: Revised Structures for Epiaschantin and Epimagnolin. Tetrahedron Letters 4137 (1977).Google Scholar
  578. 578.
    Anjaneyulu, A. S. R., A. M. Rao, V. K. Rao, L. R. Row, A. Pelter, and R. S. Ward: Novel Hydroxy Lignans from the Heartwood of Gmelina arborea. Tetrahedron 33, 133 (1977).CrossRefGoogle Scholar
  579. 579.
    Bailey, J. A., R. S. Burden, A. Mynett, and C. Brown: Metabolism of Phaseollin by Septoria nodorum and other Non-pathogens of Ptiaseolus vulgaris. Phytochemistry 16, 1541 (1977).CrossRefGoogle Scholar
  580. 580.
    Langcake, P., and R. J. Pryce: Oxidative Dimerisation of 4-Hydroxystilbenes in vitro, Production of a Grapevine Phytoalexin Mimic. J. C. S. Chem. Commun. 208 (1977).Google Scholar
  581. 581.
    Kinnel, R., A. J. Duggan, T. Eisner, and J. MeinwAld: Panacene: An Aromatic Bromoallene from a Sea Hare (Aplysia brasiliana). Tetrahedron Letters 3913 (1977).Google Scholar
  582. 582.
    Nicollier, G., and R. Tabacchi: Isolement et Identification de l’évernine dans la „Mousse de chêne“ (EEernia prunastri (L.) Ach.). Helv. Chins. Acta 59, 2979 (1976).CrossRefGoogle Scholar
  583. 583.
    Iro, S., and Y. Hirata: Isolation and Structure of a Mycosporine from the Zoanthid palythoa tuberculosa. Tetrahedron Letters 2429 (1977).Google Scholar
  584. 584.
    Muhlheirn, L. J., R. B. Befichey, D. P. Leworthy, and M. D. Osselton: Aurovertin B, a Metabolite of Calcarisporium arbuscula. J. C. S. Chem. Commun. 874 (1974).Google Scholar
  585. 585.
    Chen, P. N., D. G. I. Kingston, and J. R. Vercellottt: Reduction of Sterigmatocystin and Versicolorin A Hemiacetals with Sodium Borohydride. J. Org. Chem. 42, 3599 (1977).CrossRefGoogle Scholar
  586. 586.
    Volkmann, R. A., P. D. Weeks, D. E. Kuhla, E. B. Whipple, and G. N. Ciimurny: Reaction of Kojic Acid and Its Derivatives with Acrylonitrile. A New Look at an Old Problem. J. Org. Chem. 42, 3976 (1977).CrossRefGoogle Scholar
  587. 587.
    Niwa, M., M. Iguchi, and S. Yamamura: The Isolation and Structure of Obtusilactone. Tetrahedron Letters 1539 (1975).Google Scholar
  588. 588.
    Piestap, H. A., J. O. Bdnaeede, and E. A. RuvEda: Argentilactone, a Novel 5Hydroxyacid Lactose from Aristolochia argentina. Phytochemistry 16, 1579 (1977).CrossRefGoogle Scholar
  589. 589.
    Engstrom, G. W., J. V. Delance, J. L. Richard, and A. L. Baetz: Purification and Characterization of Roseotoxin B, a Toxic Cyclodepsipeptide from Trichothecium roseum. J. Agric. Food Chem. 23, 244 (1975).CrossRefGoogle Scholar
  590. 590.
    Marner, F.-J., R. E. MooRE, K. Hirotsu, and J. Clardy: Majusculamides A and B, Two Epimeric Lipodipeptides from Lyngbya majuscula Gomont. J. Org. Chem. 42, 2815 (1977).CrossRefGoogle Scholar
  591. 591.
    Berger, S.: Vitamin C. A 13C Magnetic Resonance Study. Tetrahedron 33, 1587 (1977).CrossRefGoogle Scholar
  592. 592.
    Perlin, A. S.: Carbon-13 N. M. R. Spectroscopy of Carbohydrates. Int. Rev. Sci. Org. Chem. 7, 1 (1976).Google Scholar
  593. 593.
    BurftTT, A. I. R., R: D. Guthrie, and R. W. Irvine: A 13C Nuclear Magnetic Resonance Study of Glycals (1,5-Anhydro-hox-1-enitols). Aust. J. Chem. 30, 1037 (1977).CrossRefGoogle Scholar
  594. 594.
    Yamasaki, K., R. Kasai, Y. Masaki, M. Okihara, O. Tanaka, H. Oshio, S. Takagi, M. Yamaki, K. Maslda, E. Nonaki, M. Tsubot, and I. Nishioka: Application of C-13 Nmr to the Structural Elucidation of Acylated Plant Glycosides. Tetrahedron Letters 1231 (1977).Google Scholar
  595. 595.
    Dolak, L.: The C-13 Nmr Spectrum of Novohiocin. J. Antibiot. 29, 710 (1976).CrossRefGoogle Scholar
  596. 596.
    Seto, H., Y. Miyazaki, K. Fujita, and N. Otake: Studies on the Ionophorous Antibiotics. X. The Assignment of 13C-Nmr Spectrum of Salinomycin. Tetrahedron Letters 2417 (1977).Google Scholar
  597. 597.
    Seto, H., T. Yahagt, Y. Miyazaki, and N. Otake: Utilization of Carbon-13-Carbon13 Coupling in Structural and Biosynthetic Studies. IX. Studies on the Ionophorous Antibiotics. IX. The Structure of 4-Methylsalinomycin (Narasin). J. Antibiot. 30, 530 (1977).CrossRefGoogle Scholar
  598. 598.
    Chain, E. B., and G. Mellows: Pseudomonic Acid. Part 3. Structure of Pseudomonic Acid B. J. C. S. Perkin I, 318 (1977).Google Scholar
  599. 599.
    Connor, D. T., R. C. Greenough, and M. Von Strandtmann: W-7783, a Unique Antifungal Antibiotic. J. Org. Chem. 42, 3664 (1977).CrossRefGoogle Scholar
  600. 600.
    Trofast, J., and B. WtCkrerg: Mycorrhizin A and Chloromycorrhizin A, Two Antibiotics from a Mycorrhizal Fungus of Monotropa hypopitys L. Tetrahedron 33, 875 (1977).CrossRefGoogle Scholar
  601. 601.
    Wiley, P. F., R. B. Kelly, E. L. Caron, V. H. Wiley, J. H. Johnson, F. A. Mackellar, and S. A. Mizsak: Structure of Nogalamycin. J. Am. Chem. Soc. 99, 542 (1977).CrossRefGoogle Scholar
  602. 602.
    Kelly, R. C., I. Schletter, J. M. Koert, K. A. Mackellar, and P. F. Wiley: Structures of Steffimycin and Steffimycin B. J. Org. Chem. 42, 3591 (1977).CrossRefGoogle Scholar
  603. 603.
    Wright, L. H., J. A. Chan, J. A. Schroer, and A. A. Aszales: A “C Nuclear Magnetic Resonance Study of N-Acetyldaunorubicinol. J. Org. Chem. 42, 2344 (1977).CrossRefGoogle Scholar
  604. 604.
    Vuilhorgne, M., S. Ennifar, B. C. Das, J. W. Paschal, R. Nagarajan, E. W. Hagaman, and E. Wenkert: Structure Analysis of the Nucleoide Disaccharide Antibiotic Anthelmycin by Carbon-13 Nuclear Magnetic Resonance Spectroscopy. A Structural Revision of Hikizimycin and Its Identity with Anthelmycin. J. Org. Chem. 42, 3289 (1977).CrossRefGoogle Scholar
  605. 605.
    Martin, J. R., R. S. Egan, A. W. Goldstein, R. S. Stanaszek, J. Tadanier, and W. Keller-Schierlein: Minor Lankamycin - Related Antibiotics from Streptomyces violaceoniger. HeIv. Chim. Acta 60, 2559 (1977).CrossRefGoogle Scholar
  606. 606.
    Corbett, D. F., A. J. Eglington, and T. T. Howarth: Structure Elucidation of MM 17880, a New Fused ß-Lactam Antibiotic Isolated from Streptomyces olivaceus: a Mild 5-Lactam Degradation Reaction. J. C. S. Chem. Commun. 953 (1977).Google Scholar
  607. 607.
    Wilson, W. L., H. W. Avdovich, D. W. Hughes, and G. W. Buchanan: Application of Proton and 13C-Nmr Spectroscopy to Estimation of Diastereoisomer Ratio in Phenethicillin. J. Pharm. Sci. 66, 1079 (1977).CrossRefGoogle Scholar
  608. 608.
    Brown, A. G., D. F. Corbett, A. J. Eglington, and T. T. Howarth: Structures of Olivanic Acid Derivatives MM 4550 and MM 13902, Two New Fused ß-Lactams Isolated from Streptomyces olivaceus. J. C. S. Chem. Commun. 523 (1977).Google Scholar
  609. 609.
    Depaire, H., J.-P. Thomas, A. Brun, and G. Lukacs: Acid and Alkaline Hydrolysis of the Antibiotic Nosiheptide. Tetrahedron Letters 1395 (1977).Google Scholar
  610. 610.
    Walker, J., A. Olesker, L. Valente, R. Rabanal, and G. Lukacs: Total Structure of the Polythiazole Containing Antibiotic Micrococcin P. The “C Nuclear Magnetic Resonance Study. J. C. S. Chem. Commun. 706 (1977).Google Scholar
  611. 611.
    Pandey, R. C., J. C. Cook, JR., and K. L. Rinehart, JR.: High Resolution and Field Desorption Mass Spectrometry Studies and Revised Structures of Alamethicins I and 11. J. Am. Chem. Soc. 99, 8469 (1977).CrossRefGoogle Scholar
  612. 612.
    Bycroft, B. W.: Configurational and Conformational Studies on the Group A Peptide Antibiotics of the Mikamycin (Streptogramin, Virginiamycin) Family. J. C. S. Perkin I, 2464 (1977).Google Scholar
  613. 613.
    Hassall, C. H., W. A. Thomas, and M. C. Mosohidis: Amino-acids and Peptides Part 19. Conformational Studies of the Monamycins, a Family of Cyclohexadepsipeptide Antibiotics. J. C. S. Perkin I, 2369 (1977).Google Scholar
  614. 614.
    Mcgahren, W. J. G. O. Morton, M. P. Kunstmann, and G. A. Ellestad: Carbon-13 Nuclear Magnetic Resonance Studies on a New Antitubercular Peptide Antibiotic LL-BM 547 J3. J. Org. Chem. 42, 1282 (1977).CrossRefGoogle Scholar
  615. 615.
    Mondelli, R., and P. Ventura: 13C Nuclear Magnetic Resonance of N-Heterocycles. Part 3. 13C Chemical Shift Assignments of the Carbonyl Groups in Penicillins and Cephalosphorins. J. C. S. Perkin II, 1749 (1977).Google Scholar
  616. 616.
    Popjak. G., J. Edmond, F. A. L. Anet, and N. R. Easton, JR.: Carbon-13 Nmr Studies on Cholesterol Biosynthesized from [13C] Mevalonates. J. Am. Chem. Soc. 99, 931 (1977).CrossRefGoogle Scholar
  617. 617.
    Bradshaw, A. P. W., J. R. Hanson, and M. Siverns: Use of Induced 13C–13C Coupling in Terpenoid Biosynthesis. J. C. S. Chem. Commun. 819 (1977).Google Scholar
  618. 618.
    Kimura, Y., M. Gohbara, and A. Suzukc Assignment of 13C-Nmr Spectrum and Biosynthesis of Colletotrichin. Tetrahedron Letters 4615 (1977).Google Scholar
  619. 619.
    DE Rosa, M., S. DE RosA, and A. Gambacorta: 13C-Nmr Assignments and Biosynthetic Data for the Ether Lipids of Caldariella. Phytochemistry 16, 1909 (1977).CrossRefGoogle Scholar
  620. 620.
    Seto, H., T. Sasaki, and H. Yonehara: Studies on the Biosynthesis of Radiclonic Acid. Tetrahedron Letters 4083 (1977).Google Scholar
  621. 621.
    Yoshida, S., S. Shiraishi, K. Fujita, and N. Takahashi: Biosynthetic Studies on Piericidin A and Its Structural Revision. Tetrahedron Letters 1863 (1975).Google Scholar
  622. 622.
    Garson, M. J., R. A. Hill, and J. Staunton: Deuterium as a Tracer in Polyketide Biosynthesis: Incorporation of [2–13C,2 2H3]Acetate into Terrein. J. C. S. Chem. Commun. 624 (1977).Google Scholar
  623. 623.
    Evans, G. E., and J. Staunton: Biosynthesis of Citromycetin: Incorporation of [I-13C]-, [2-L3C]-, and (l,213C2] Acetates. J. C. S. Chem. Commun. 760 (1976).Google Scholar
  624. 624.
    Feline, T. C., R. B. Jones, G. Mellows, and L. Phillips: Pseudomonic Acid. Part 2. Biosynthesis of Pseudomonic Acid A. J. C. S. Perkin 1, 309 (1977).CrossRefGoogle Scholar
  625. 625.
    Canham, P. L., L. J. Vining, A. G. Mcinnes, J. A. Walter, and J. L. C. Wright: Use of 13C in Biosynthetic Studies. Incorporation of 13C-labelled Acetate into Chartreusin by Streptomyces chartreusis. Can. J. Chem. 55, 2450 (1977).CrossRefGoogle Scholar
  626. 626.
    Haber, A., R. D. Johnson, and K. L. Rinehart, JR.: Biosynthetic Origin of the C2 Units of Geldanamycin and Distribution of Label from D-[6–13C] Glucose. J. Am. Chem. Soc. 99, 354 (1977).CrossRefGoogle Scholar
  627. 627.
    Cox. R. H., F. Churchill, R. J. Cole, and J. W. Dorner: Carbon-13 Nuclear Magnetic Resonance Studies of the Structure and Biosynthesis of Versiconal Acetate. J. Am. Chem. Soc. 99, 3159 (1977).CrossRefGoogle Scholar
  628. 628.
    Fitzell, D. L., R. Singh, D. P. Hsieh, and E. L. Motell: Nuclear Magnetic Resonance Identification of Versiconal Hemiacetal Acetate as an Intermediate in Aflatoxin Bioxynthesis. J. Agric. Food Chem. 25, 1193 (1977).CrossRefGoogle Scholar
  629. 629.
    Gorst-AI.Lman, C. P., K. G. R. Pachi.ER, P. S. Steyn, and D. B. Scott: Carbon-13 Nuclear Magnetic Resonance Assignments of Some Fungal C20 Anthraquinones, their Biosynthesis in Relation to that of Aflatoxin B. J. C. S. Perkin I, 2181 (1977).Google Scholar
  630. 630.
    Fitzell, D. L., D. P. H. Hsieh, R. C. Yao, and G. N. Lamar: Biosynthesis of Averufin from Acetate by Aspergillus parasiticus. J. Agric. Food Chem. 23, 442 (1975).CrossRefGoogle Scholar
  631. 631.
    Simpson, T. J.: 13C Nuclear Magnetic Resonance Spectra and Biosynthetic Studies of Xanthomegnin and Related Pigments from Aspergillus sulphureus and melleus. J. C. S. Perkin I, 592 (1977).Google Scholar
  632. 632.
    Leete, E.: Biosynthesis of Dioscorine: Incorporation of Nicotinic Acid into the Isoquinuclidine Moiety. Phytochemistry 16, 1705 (1977).CrossRefGoogle Scholar
  633. 633.
    The Incorporation of [5,6–13C2]-Nicotinic Acid into the Tabacco Alkaloids Examined by the Use of 13C Nuclear Magnetic Resonance. Bioorg. Chem. 6, 273 (1977).Google Scholar
  634. 634.
    Chang, C., H. G. Floss, L. H. Hurley, and M. Zmijewski: Application of Long-Range Spin-Spin Couplings in Biosynthetic Studies. J. Org. Chem. 41, 2932 (1976).CrossRefGoogle Scholar
  635. 635.
    Nadzan, A. M., and K. L. Rinehart, JR.: Nybomycin. 9. Synthetic and Biosynthetic Incorporation of 15N as a Means of Assigning the 13C Nuclear Magnetic Resonance Spectrum of Nybomycin. J. Am. Chem. Soc. 99, 4647 (1977).CrossRefGoogle Scholar
  636. 636.
    Cardillo, R., C. Fuganti, D. Ghiringhelli, and P. Graselli: Pattern of Incorporation of Leucine Samples Asymmetrically Labelled with 13C in the Isopropyl Unit into the Cs-lsoprenoid Units of Echinuline and Flavoglaucine. J. C. S. Chem. Commun. 474 (1977).Google Scholar
  637. 637.
    Ahrens, E. H., JR., D. C. Williams, and A. R. Battersby: Biosynthesis of Porphyrins and Related Macrocycles. Part 11. Studies on Biosynthesis of the Phytyl Chain of Chlorophyll a by Use of Carbon-13. J. C. S. Perkin I, 2540 (1977).Google Scholar
  638. 638.
    Scott, A. I., A, J. Irwin, L. M. Siegel, and J. N. Shoolery: Sirohydrochlorin. Prosthetic Group of a Sulfite Reductase Enzyme and Its Role in the Biosynthesis of Vitamin B12. J. Am. Chem. Soc. 100, 3161 (1978).Google Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • F. W. Wehrli
    • 1
  • T. Nishida
    • 2
  1. 1.Varian AGNMR Applications LaboratoryZugSwitzerland
  2. 2.Research DepartmentSwedish Tobacco CompanyStockholmSweden

Personalised recommendations