The term “flavin” stands for the yellow redox-active subgroup of the first coenzyme ever to be elucidated in terms of molecular structure. The “heroic” period of redox-enzymology of the early thirties ended in Hugo Theroell’s (172175) description of the first enzyme ever to be split reversibly to yield coenzyme and apoprotein. This was the NADPH-oxidizing “Old Yellow Enzyme” from yeast, whose biological function is still unknown even nowadays. The structure of the coenzyme has been shown to be riboflavin-5’-phosphate, viz. a phosphate derivative of vitamin B2, which had been synthesized somewhat earlier by Karrer’s group (83), who based this work upon even more important chemical precursor studies of Kuhn and coworkers (102, 100) and on the biochemical work of Warburg and Christian (188).


Succinate Dehydrogenase Pulse Radiolysis Electron Transfer Flavoprotein Violuric Acid Flavin Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartsch, R. G.: Properties of c-Typ Cytochromes of Chromatium. Feder. Proc. 20, 43 (1961).Google Scholar
  2. 2.
    Bartsch, R. G., T. E. Meyer, and A. B. Robinson: Complex c-Typ Cytochromes with Bound Flavin. In: “Structure and Function of Cytochromes” (K. Okuni, M. C. D. Kamen, I. Sezuku, eds.), p. 443. Tokyo: University of Tokyo Press. 1968.Google Scholar
  3. 3.
    Beinert, H.: Spectral Characteristics of Flavins at the Semiquinoid Oxidation Level. J. Amer. Chem. Soc. 78, 5323 (1956).Google Scholar
  4. 4.
    Flavin Coenzymes. In: “The Enzymes” (P. D. Boyer, H. Lardy, K. MyrbÄCK, eds.), Vol. 2, 2nd ed., p. 339. New York: Academic Press. 1960.Google Scholar
  5. 5.
    Berezovskii, V. M., L. S. TulChinskaya, and N. A. Polyakova: Alloxazine and Isoalloxazine Derivatives. Xiii. Synthesis of 7-Aminoalloxazine, 7-Aminodimethylriboflavin, and their Derivatives. Zh. Obsh. Khim. 35, 673 (1965).Google Scholar
  6. 6.
    Berezovskii, V. M., L. S. TulChinskaya, and N. A. PolyakovaReactivities of Alloxazines and Isoalloxazines. Russ. Chem. Rev. 41, 574 (1972).Google Scholar
  7. 7.
    Blankenhorn, G.: Flavin-Nicotinamide Biscoenzymes: Models for the Interaction between Nadh (Nadph) and Flavin in Flavoenzymes. Eur. J. Biochem. 50, 351 (1975).Google Scholar
  8. 8.
    Blankenhorn, G., and P. Hemmerich: Unpublished Results.Google Scholar
  9. 9.
    Boukine, V. N.: Compounds of Soluble Vitamins with Proteins in Fats. In: Resumés de Communications, 3ème Congres International de Biochimie, Bruxelles, p. 61 (1955).Google Scholar
  10. 10.
    Brohmller, M., and K. Decker: Covalently Bound Flavin in D-6-Hydroxynicotine Oxidase from Arthrobacter oxidans. Amino-Acid Sequence of the Fad-Peptide. Eur. J. Biochem. 37, 256 (1973).Google Scholar
  11. 11.
    BRÜHMÜLler, M., H. Mohler, and K. Decker: Covalently Bound Flavin in D-6Hydroxynicotine Oxidase from Arthrobacter oxidans. Purification and Properties of D-6-Hydroxynicotine Oxidase. Eur. J. Biochem. 29, 143 (1972).Google Scholar
  12. 12.
    Bruice, T. C.: Models and Flavin Catalysis. Submitted to “Progress in Bioorganic Chemistry” (E. T. Kaiser, F. J. Kezdy, eds.). New York: Wiley.Google Scholar
  13. 13.
    BRÜStlein, M., W.-R. Knappe und P. Hemmerich: Neue Photoalkylierungsreaktionen am Flavinkern. Angew. Chem. 83, 854 (1971).Google Scholar
  14. 14.
    Bullock, F. I., and O. Jardetzky:An Experimental Demonstration of the Nuclear Magnetic Resonance Assignments in the 6,7-Dimethylalloxazine Nucleus. J. Org. Chem. 30, 2056 (1965).Google Scholar
  15. 15.
    Cairns, W. L., and D. E. Metzler: Photochemical Degradation of Flavins. VI. A New Photoproduct and Its Use in Studying the Photolytic Mechanism. J. Amer. Chem. Soc. 93, 2772 (1971).Google Scholar
  16. 16.
    Carr, D. O., and D. E. Metzler: The Oxidation of Ethyl-1,2-Dihydro-2-naphtoate by Flavins and its Stimulation by Light. Biochem. Biophys. Acta 205, 63 (1970).Google Scholar
  17. 17.
    Checcucci, A., G. Colombetti, G. Del Carratore, R. Ferrara, and F. Lenci: Red Light-Induced Accumulation of Euglena gracilis. Photochem. Photobiol. 19, 223 (1974).Google Scholar
  18. 18.
    Chi, T. F., Y. L. Wang, C. L. TsOu, Y. C. Wang, and C. H. Yu: Scientia Sinica 14, 1193 (1965).Google Scholar
  19. 19.
    Draper, R. D., and L. L. Ingraham: A Potentiometric Study of the Flavin Semiquinone Equilibrium. Arch. Biochem. Biophys. 125, 802 (1968).Google Scholar
  20. 20.
    Drysdale, G. R., M. J. Spiegel, and P. J. Strittmatter: Flavoprotein-catalyzed direct Hydrogen Transfer between Pyridine Nucleotides. J. Biol. Chem. 236, 2323 (1961).Google Scholar
  21. 21.
    Dudley, K. H., A. Ehrenberg, P. Hemmerich und F. MÜÜLler: Spektren und Strukturen der am Flavin-Redoxsystem beteiligten Partikeln. Studien in der Flavinreihe IX. Helv. Chim. Acta 47, 1354 (1964).Google Scholar
  22. 22.
    Dudley, K. H. und P. Hemmerich: Stabile Dihydroflavine und quartare Flaviniumsalze. Studien in der Flavinreihe, 12. Mitt. Helv. Chim. Acta 50, 355 (1967).Google Scholar
  23. 23.
    Dudley, K. H. und P. Hemmerich Flavins Xiii. Rearrangement Reactions of 1,3,10-Trialkylflavinium Salts. J. Org. Chem. 32, 3049 (1967).Google Scholar
  24. 24.
    Edmondson, D. E.: Intramolecular Hemiacetal Formation in 8-Formylriboflavine. Biochemistry 13, 2817 (1974).Google Scholar
  25. 25.
    Edmondson, D. E.. and T. P. Singer: Oxidation-Reduction Properties of the 8α-Substituted Flavins. J. Biol. Chem. 248, 8144 (1973).Google Scholar
  26. 26.
    Ehrenberg, A., F. Muller, and P. Hemmerich: Basicity, Visible Spectra and Electron Spin Resonance of Flavosemiquinone Anions. Eur. J. Biochem. 2, 286 (1967).Google Scholar
  27. 27.
    Eisele, R.: Ph. D. Thesis, University of Konstanz (1974).Google Scholar
  28. 28.
    Eley, M., J. Lee, J. M. Lhoste, C. Y. Lee, M. J. Cormier, and P. Hemmerich: Bacterial Bioluminescence. Comparisons of Bioluminescence Emission Spectra, the Fluorescence of Luciferase Reaction Mixtures, and the Fluorescence of Flavin Cations. Biochemistry 9, 2902 (1970).Google Scholar
  29. 29.
    Entsch, B., D. P. Ballou, and V. Massey: The Role of Oxygenated Flavins in the Catalytic Reaction of p-Hydroxy-Benzoate Hydroxylase. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.Google Scholar
  30. 30.
    Erwin, V. G., and L. Hellerman: Mitochondrial Monamino Oxidase. I. Purification and Characterisation of the Bovine Kidney Enzyme. J. Biol. Chem. 242, 4230 (1967).Google Scholar
  31. 31.
    Faraggi, M., P. Hemmerich, and I. Pecht: O2-Affinity of Flavin Radical Species as Studied by Pulse Radiolysis. Febs-Lett. 51, 47 (1975).Google Scholar
  32. 32.
    Favaudon, V., and J.-M. Lhoste: The Kinetics of Flavine Oxidation-Reduction I. Biochemistry 14, 4734 (1975).Google Scholar
  33. 33.
    Fenner, H., H. H. Roessler, and H. J. Duchstein: Structure and Reactivity of 5-Deazaflavins. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). In Press.Google Scholar
  34. 34.
    Forrest, H. S., C. Van Baalen, M. Viscontini und M. Piraux: Reaktion von CN mit hydriertem 2-Amino-6-hydroxy-pteridin. Helv. Chim. Acta 43, 1005 (1960).Google Scholar
  35. 35.
    Rster, T.: Elektrolytische Dissoziation angeregter Moleküle. Z. Elektrochem. 54, 42 (1950).Google Scholar
  36. 36.
    Frisell, W. R., C. W. Chung, and C. G. Mackenzie: Catalysis of Oxidation of Nitrogen Compounds by Flavin Coenzymes in the Presence of Light. J. Biol. Chem. 234, 1297 (1959).Google Scholar
  37. 37.
    Frisell, W. R., and C. G. Mackenzie: Separation and Purification of Sarcosine Dehydrogenase and Dimethylglycine Dehydrogenase. J. Biol. Chem. 237, 94 (1962).Google Scholar
  38. 38.
    FRÖHlich, O., and B. Diehn: Photoeffects in a Flavin-containing Lipid Bilayer Membrane and Implications for Algal Phototaxis. Nature 248, 802 (1974).Google Scholar
  39. 39.
    Rtner, B., und P. Hemmerich: Zur Propargylaminhemmung der Monoaminooxidase: Struktur des Inhibitor-Komplexes. Angew. Chem. 87, 137 (1975).Google Scholar
  40. 40.
    Gerstner, E. und E. Pfeil: Zur Kenntnis des Flavinenzyms Hydroxynitril-Lyase (D-Oxynitrilase). Hoppe-Seyler’s Z. Physiol. Chem. 353, 271 (1972).Google Scholar
  41. 41.
    Ghisla, S.: Personal Communication.Google Scholar
  42. 42.
    Ghisla, S., U. Hartmann und P. Hemmerich: Die Synthese des SuccinatDehydrogenase-Riboflavins. Angew. Chem. 82, 669 (1970).Google Scholar
  43. 43.
    Ghisla, S., U. Hartmann, P. Hemmerich und F. Muller: Die reduktive Alkylierung des Flavinkerns, Struktur und Reaktivitat von Dihydroflavinen. Xviii Mitt. Liebigs Ann. Chem. 1973, 1388.Google Scholar
  44. 44.
    Ghisla, S., and P. Hemmerich: Synthesis of the Flavocoenzyme of Monoamine Oxidase. Febs-Lett. 16, 229 (1971).Google Scholar
  45. 45.
    Ghisla, S., and P. Hemmerich Unpublished observations.Google Scholar
  46. 46.
    Ghisla, S., V. Massey, J.-M. Lhoste, and S. G. Mayhew: Fluorescence and Optical Characteristics of Reduced Flavins and Flavoproteins. Biochemistry 13, 589 (1974).Google Scholar
  47. 47.
    Ghisla, S., V. Massey, and S. G. Mayhew: Studies on the Active Centers of Flavoproteins; Binding of 8-Hydroxy-Fad and 8-Hydroxy-Fmn to Apoproteins. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.Google Scholar
  48. 48.
    Ghisla, S., and S. G. Mayhew: Identification and Structure of a Novel Flavin Prosthetic Group Associated with Reduced Nicotinamide Adenine Dinucleotide from Peptostreptococcus elsdenii. J. Biol. Chem. 248, 6568 (1973).Google Scholar
  49. 49.
    Ghisla, S., and S. G. Mayhew Eur. J. Biochem., in press.Google Scholar
  50. 50.
    Gibson, Q. H., and J. W. Hastings: The Oxidation of Reduced Flavin Mononucleotide by Molecular Oxygen. Biochem. J. 83, 368 (1962).Google Scholar
  51. 51.
    Gladys, M. und W.-R. Knappe: Photochemie des (Iso)Alloxazins Iii. Intramolekulare Photodealkylierung von 10-Alkylisoalloxazinen, eine Modellreaktion für den Riboflavinphotoabbau. Chem. Ber. 107, 3658 (1974).Google Scholar
  52. 52.
    Green, O. E., S. Mii, and P. M. Kohout: Studies on the Terminal Electron Transport System. I. Succinic Dehydrogenase. J. Biol. Chem. 217, 551 (1955).Google Scholar
  53. 53.
    Haas, W., and P. Hemmerich: pH-Dependence, Isotope Effects and Products of Flavinsensitized Photodecarboxylation and Photodehydrogenation. Z. Naturforsch. 27b, 1035 (1972).Google Scholar
  54. 54.
    Hall, R. L., B. Vennesland, and F. J. KÉZdy: Glyoxylate Carboligase of Escherichia coli. J. Biol. Chem. 244, 3991 (1969).Google Scholar
  55. 55.
    Hamilton, G. A.: The Proton in Biological Redox Reactions. In: “Progress in Bioorganic Chemistry” (E. T. Kaiser, F. J. KÉzDY, eds.), Vol. 1, p. 83. New York: Wiley. 1971.Google Scholar
  56. 56.
    Harbury, H. A., K. F. LA Noue, P. A. Loach, and R. M. Amick: Molecular Interaction of Isoalloxazine Derivatives II. Proc. Nat. Acad. Sci. Usa 45, 1708 (1959).Google Scholar
  57. 57.
    Hastings, J. W., et al.: Several Papers. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.Google Scholar
  58. 58.
    Hastings, J. W., C. Balny, C. Lepeuch, and P. DouzOu: Spectral Properties of an Oxygenated Luciferase - Flavin Intermediate Isolated by Low-Temperature Chromatography. Proc. Natl. Acad. Sci. U.S.A. 70, 3468 (1973).Google Scholar
  59. 59.
    Hastings, J. W., and Q. H. Gibson: Intermediates in the Bioluminescent Oxidation of Reduced Flavin Mononucleotide. J. Biol. Chem. 238, 2537 (1963).Google Scholar
  60. 60.
    Heizmann, C., P. Hemmerich, R. Mengel, and W. Pfleiderer: Pteridine Synthesis from Riboflavin and other Isoalloxazines. In: “Chemistry and Biology of Pteridines” (K. IwAO, M. Akino, M. Goto, Y. Jwanami, eds.), p. 105. Tokyo: Int. Acad. Printing Co. Ltd. 1970.Google Scholar
  61. 61.
    Hemmerich, P.: Studien in der Lumiflavin-Reihe Viii. Die Kondensation von 8-Methyl-isoalloxazinen mit Aldehyden. Helv. Chim. Acta 43, 1942 (1960).Google Scholar
  62. 62.
    Hemmerich, P. ie Koordinationschemie der Flavokoenzyme und die Bedeutung der NichtHam-Metallionen in der Atmungskette. In: ,,Mechanismen enzymatischer Reaktionen“ (14. Colloquium der Gesellschaft für Physiologische Chemie, Mosbach/Baden 1963). Berlin-GÖttingen-Heidelberg-New York: Springer. 1964.Google Scholar
  63. 63.
    Hemmerich, P. lavosemichinon-Metallchelate: Modelle zur Erklärung der ,,active site“ in mitochondrialen Flavoenzymen. Zum Verhalten des Riboflavins gegen Metallionen Iii. Helv. Chim. Acta 47, 464 (1964).Google Scholar
  64. 64.
    Hemmerich, P. ree Radicals of Biological Interest as Studied by Esr. Proc. Roy. Soc. A302, 335 (1968).Google Scholar
  65. 65.
    Hemmerich, P.Discussion remark. In: “Flavins and Flavoproteins” (H. Kamin, ed.), p. 52. Baltimore: University Park Press. 1971.Google Scholar
  66. 66.
    Hemmerich, P., A. P. Bhaduri, G. Blankenhorn, M. Brustlein, W. Haas, and W.-R. Knappe: Model Studies towards Demonstration of Covalent 2e--Transfer Intermediates and Their Structure in Flavin Dependent CH- and O2-Activation. In: “Oxidases and Related Redox Systems“ (T. E. King, H. S. Mason, M. Morrison, eds.), p. 3. Baltimore: University Park Press. 1973.Google Scholar
  67. 67.
    Hemmerich, P., A. Ehrenberg, W. H. Walker, L. E. G. Eriksson, J. Salach, P. Bader, and T. P. Singer: On the Structure of Succinate Dehydrogenase Flavocoenzyme. Febs-Lett. 3, 37 (1969).Google Scholar
  68. 68.
    Hemmerich, P., and W. Haas: Recent Developments in the Study of “Fully Reduced Flavin”. In: “Reactivity of Flavins” (K. Yagi, ed.). Tokyo: University Press, 1975.Google Scholar
  69. 69.
    Hemmerich, P., and W.-R. Knappe: Flavin-Dependent Substrate Dehydrogenation; Model Studies and Mechanisms. In: “Structure and Function of Oxidation Reduction Enzymes” (A. Akeson, A. Ehrenberg, eds.), p. 367. Oxford: Pergamon Press. 1971.Google Scholar
  70. 70.
    Hemmerich, P., and J. Lauterwein: The Structure and Reactivity of Flavin-Metal Complexes. In: “Inorganic Biochemistry” (G. Eichhorn, ed.), Vol. 2, p. 1168, Amsterdam: Elsevier. 1973.Google Scholar
  71. 71.
    Hemmerich, P., V. Massey, and G. Weber: Photo-Induced Benzyl Substitution of Flavins by Phenylacetate: A Possible Model for Flavoprotein Catalysis. Nature 213, 728 (1967).Google Scholar
  72. 72.
    Hemmerich, P., and F. MÜLler: Flavin-O2-Interaction Mechanism and the Function of Flavin in Hydroxylation Reactions. Ann. N. Y. Acad. Sci. 212, 13 (1973).Google Scholar
  73. 73.
    Hemmerich, P., F. MÜLler, and A. Ehrenberg: The Chemistry of Flavin-Metal Interaction. In: “Oxidases and Related Redox Systems” (T. E. King, H. S. Mason, M. Morrison, eds.), p. 157. New York: Wiley. 1965.Google Scholar
  74. 74.
    Hemmerich, P., G. Nagelschneider, and C. Veeger: Chemistry and Molecular Biology of Flavins and Flavoproteins. Febs-Lett. 8, 69 (1970).Google Scholar
  75. 75.
    Hemmerich, P., B. Prus, and H. Erlenmeyer: Synthesen in der Lumiflavinreihe IV. Helv. Chim. Acta 42, 1604 (1959).Google Scholar
  76. 76.
    Hemmerich, P., B. Prus, and H. Erlenmeyer tudien in der Lumiflavinreihe V. Spezifische Reaktivitat 8-standiger Substituenten am Isoalloxazinkern; Flavin-Dimere. Helv. Chim. Acta 42, 2164 (1959).Google Scholar
  77. 77.
    Hemmerich, P., B. Prus, and H. Erlenmeyer tudien in der Lumiflavinreihe VI. Alkylierungs- und Desalkylierungsreaktionen an (Iso)alloxazinen; 1,3,10Trimethylflavosemichinone. Helv. Chim. Acta 43, 372 (1960).Google Scholar
  78. 78.
    Hemmerich, P., and M. Schuman-Jorns: Mechanisms of Hydrogen Transfer in Redox Enzymes. In: “Enzymes: Structure and Function” (J. Drenth, R. A. Oosterbaan, C. Veeger, eds.), p. 95. Amsterdam: North Holland Pub. Corp. 1972.Google Scholar
  79. 79.
    Hemmerich, P., C. Veeger und H. C. S. WooD: Fortschritte in der Chemie und Molekularbiologie der Flavine und Flavocoenzyme. Angew. Chem. 77, 699 (1965).Google Scholar
  80. 80.
    Hemmerich, P., and A. Wessiak: The Structural Chemistry of Flavin Dependent O2-Activation. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.Google Scholar
  81. 81.
    Igaue, I., B. Gomes, and K. T. Yasunobu: Beef Mitochondrial Monoamine Oxidase, a Flavin Dinucleotide Enzyme. Biochem. Biophys. Res. Commun. 29, 562 (1967).Google Scholar
  82. 82.
    Kamin, H., ed.: Flavins and Flavoproteins. Baltimore: University Park Press. 1971.Google Scholar
  83. 83.
    Karrer, P., K. Schopp und F. Benz: Synthesen von Flavinen IV. Helv. Chim. Acta 18, 426 (1935).Google Scholar
  84. 84.
    Kearney, E. B.: Studies on Succinic Dehydrogenase Xii. Flavin Component of the Mammalian Enzyme. J. Biol. Chem. 235, 865 (1960).Google Scholar
  85. 85.
    Kearney, E. B., J. I. Salach, W. H. Walker, R. L. Seng, W. Kenney, E. Zeszotek, and T. P. Singer: The Covalently-Bound Flavin of Hepatic Monoamino Oxidase. I. Isolation and Sequence of a Flavin Peptide and Evidence for Binding at the 8α-Position. Eur. J. Biochem. 24, 321 (1971).Google Scholar
  86. 86.
    Kearney, E. B., J. I. Salach, W. H. Walker, R. Seng, and T. P. Singer: Structure of the Covalently Bound Flavin of Monoamine Oxidase. Biochem. Biophys. Res. Commun. 42, 490 (1971).Google Scholar
  87. 87.
    Kearney, E. B., and T. P. Singer: On the Prosthetic Group of Succinic Dehydrogenase. Biochem. Biophys. Acta 17, 596 (1955).Google Scholar
  88. 88.
    Kenney, W. C., D. E. Edmondson, and T. P. Singer: A Novel Form of Covalently Bound Flavin from Thiamine Dehydrogenase. Biochem. Biophys. Res. Commun. 57, 106 (1974).Google Scholar
  89. 89.
    Kenney, W. C., D. E. Edmondson, and T. P. Singer he Covalently Bound Flavin of Chromatium Cytochrome c552. 2. Sequence of Flavin Peptides and Flavin-Tyrosine Interaction. Eur. J. Biochem. 48, 449 (1974).Google Scholar
  90. 90.
    Kenney, W. C., and W. H. Walker: Synthesis and Properties of 8α-Substituted Riboflavins of Biological Importance. Febs-Lett. 20, 297 (1972).Google Scholar
  91. 91.
    Kenney, W. C., W. H. Walker, E. B. Kearney, E. Zeszotek, and T. P. Singer: Amino Acid Sequence at the Active Center of Succinate Dehydrogenase. Biochem. Biophys. Res. Commun. 41, 488 (1970).Google Scholar
  92. 92.
    Kenney, W. C., W. H. Walker, and T. P. Singer: Studies on Succinate Dehydrogenase XX. Amino Acid Sequence around the Flavin Site. J. Biol. Chem. 247, 4510 (1972).Google Scholar
  93. 93.
    Kierkegaard, P., R. Norrestam, P. Werner, I. CSÖRegh, M. Glehn, R. Karlsson, M. Leijonmarck, O. Ronnquist, B. Stennesland, O. Tillberg, and L. TorbjÖRnssON: X-Ray Structure Investigations of Flavin Derivatives. In: “Flavines and Flavoproteins” (H. Kamin, ed.), p. 1. Baltimore: University Park Press. 1971.Google Scholar
  94. 94.
    King, T. E., and J. W. Clark-Lewis: The Structures of Some Supposed Azetid-2:4- diones. Part Iii. The “Alloxan-5-o-dimethylaminoanil” of Rudy and Cramer, and its Alkali Hydrolysis Product. J. Chem. Soc. 1951, 3080.Google Scholar
  95. 95.
    Klaui, W.: Untersuchungen über den Einfluß koordinativ gebundener Übergangs metalle auf Reaktionen von ungesattigten Carbocyclen in Übergangsmetall-Komplexen. Ph. D. Thesis, University of Zürich: 1975.Google Scholar
  96. 96.
    Klopman, G.: Chemical Reactivity and the Concept of Charge and FrontierControlled Reactions. J. Amer. Chem. Soc. 90, 223 (1968).Google Scholar
  97. 97.
    Knappe, W.-R.: Photochemie des 10-Phenylisoalloxazins. Intramolekulare Singulettund intermolekulare Triplett-Reaktionen. Chem. Ber. 107, 1614 (1974).Google Scholar
  98. 98.
    Knappe, W.-R., and P. Hemmerich: Covalent Intermediates in Flavin-sensitizcd Photodehydrogenation and Photodecarboxylation. Z. Naturforsch. 27b, 1032 (1972).Google Scholar
  99. 99.
    Kosower, E. M.: Molecular Biochemistry, p. 166. New York: McGraw-Hill. 1962.Google Scholar
  100. 100.
    Kuhn, R., K. Rfinemund, and F. Weygand: Synthese des Lumi-lactoflavins. Ber. 67, 1460 (1934).Google Scholar
  101. 101.
    Kuhn, R. und R. Strobele: Über Verdo-, Chloro- und Rhodoflavine. Ber. 70, 753 (1937).Google Scholar
  102. 102.
    Kuhn, R., and T. Wagner-Jauregg: Uber die aus Eiklar und Milch isolierten Flavine. Ber. 66, 1577 (1933).Google Scholar
  103. 103.
    Kuhn, R., and F. Weygand: Synthese des 9-Methyl-isoalloxazins. Berg. 67, 1409 (1934).Google Scholar
  104. 104.
    Lambooy, J. P.: The Alloxazines and Isoalloxazines. In: “Heterocyclic Compounds” (R. C. Elderfield, ed.). Vol. 9. p. 118. N. Y. 1967.Google Scholar
  105. 105.
    Land, E. J., and A. J. Swallow: One-Electron Reactions in Biochemical Systems as Studied by Pulse Radiolysis 1. Nicotinamide — Adenine Dinucleotide and Related Compounds. Biochim. Biophys. Acta 162, 327 (1968).Google Scholar
  106. 106.
    Larrabee, R. B.: Fluxional Main Group IV Organometallic Compounds. The Implications for Orbital Symmetry Rules. J. Organomet. Chem. 74, 313 (1974).Google Scholar
  107. 107.
    Lasser, N., and I. Feitelson: Excited State pK-Values from Fluorescence Measurements. J. Phys. Chem. 77, 1011 (1973).Google Scholar
  108. 108.
    Louie, D. D., and N. Kaplan: Stereospecifity of Hydrogen Transfer Reaction of Pseudomonas aeruginosa Pyridine Nucleotide Transhydrogenase. J. Biol. Chem. 245, 5691 (1970).Google Scholar
  109. 109.
    Ludwig, M., R. M. Burnett, G. D. Darling, S. R. Jordan, D. S. Kendall, and W. W. Smith: The Structure of Clostridium MP. Flavodoxin as a Function of Oxidation State: Some Comparisons. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.Google Scholar
  110. 110.
    Mager, H. I. X.: Nonenzymic Activation and Transfer of Oxygen by Reduced Alloxazine. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.Google Scholar
  111. 111.
    Mager, H. I. X., and W. Berends: Hydroperoxides of Partially Reduced Quinoxalines, Pteridines and (Iso)alloxazines: Intermediates in Oxidation Processes. Rec. Trav. Chim. 84, 1329 (1965).Google Scholar
  112. 112.
    Mager, H. I. X., and W. Berends The Structure of Transient Hydroperoxides in the Autoxidation of Reduced Flavins. Biochem. Biophys. Acta 118, 440 (1966).Google Scholar
  113. 113.
    Mager, H. I. X., and W. Berends Activation and Transfer of Oxygen. V. Spontaneous Oxidation of 1,3,10-trimethyl-5,10-dihydroalloxazine in Acidic Media in Connection with its Hydroxylating Ability. Rec. Trav. Chim. 911, 611 (1972).Google Scholar
  114. 114.
    Mager, H. I. X., and W. Berends Activation and Transfer of Oxygen. VI. The Influence of Hydrochloric Acid on the Autoxidation of Dihydroalloxazines. Rec. Trav. Chim. 91, 630 (1972).Google Scholar
  115. 115.
    Mager, H. I. X., and W. Berends Activation and Transfer of Oxygen. IX. Nonenzymic Hydroxylation of Phenylalanine by Model Systems of Dihydroalloxazine/O2, Dihydroalloxazine/H2O2 and Alloxazinium Cation/H2O2. Tetrahedron 30, 917 (1974).Google Scholar
  116. 116.
    Massey, V.: Unpublished.Google Scholar
  117. 117.
    Massey, V., and B. Curti: A New Method of Preparation of D-Amino Acid Oxidase Apoprotein and a Conformational Change after its Combination with Flavin Adenin Dinucleotide. J. Biol. Chem. 241, 3417 (1966).Google Scholar
  118. 118.
    Massey, V., and S. Ghisla: Role of Charge-Transfer Interactions in Flavoprotein Catalysis. Ann. N. Y. Acad. Sci. 227, 446 (1974).Google Scholar
  119. 119.
    Massey, V., S. Ghisla, D. Ballou, C. T. Walsh, Y. F. Cheng, and R. H. Abeles: Rapid Reaction Studies on Dehydrogenation and Elimination Reactions of D-Amino Acid Oxidase and Lactate Oxidase. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.Google Scholar
  120. 120.
    Massey, V., and P. Hemmerich: Flavine and Pteridine Monooxygenases. In: “The Enzymes” (P. D. Boyer, ed.), 3rd ed., Volume Xii B, 191. N. Y.: Academic Press. 1976.Google Scholar
  121. 121.
    Massey, V., F. MÜLler, R. Feldberg, M. Schuman, P. A. Sullivan, L. G. Howell, S. G. Mayhew, and R. H. Matthews: The Reactivity of Flavoproteins with Sulfite. Possible Relevance to the Problem of Oxygen Reactivity. J. Biol. Chem. 244, 3999 (1969).Google Scholar
  122. 122.
    Massey, V., G. Palmer, and D. Ballou: On the Reaction of Reduced Flavins with Molecular Oxygen. In: “Oxidases and Related Redox Systems” (T. E. King, H. S. Mason, and M. Morrison, eds.), Vol. I, p. 25. Baltimore: University Park Press. 1973.Google Scholar
  123. 123.
    Mayhew, S. G.: Studies of Flavin Binding in Flavodoxins. Biochem. Biophys. Acta 235, 289 (1971).Google Scholar
  124. 124.
    Mayhew, S. G., G. P. Foust, and V. Massey: Oxidation-Reduction Properties of Flavodoxin from Peptostreptococcus elsdenii. J. Biol. Chem. 244, 803 (1969).Google Scholar
  125. 125.
    Mayhew, S. G., and V. Massey: Evidence for a Novel Flavin Prosthetic Group Associated with Nadh Dehydrogenase from Peptostreptococcus elsdenii. Biochim. Biophys. Acta 235, 303 (1971).Google Scholar
  126. 126.
    Mayhew, S. G., C. D. Whitfield, S. Ghisla, and M. Schuman-Jorns: Identification and Properties of New Flavins in Electron Transferring Flavoprotein from Peptostreptococcus elsdenii and Pig-Liver Glycolate Oxidase. Eur. J. Biochem. 44, 579 (1974).Google Scholar
  127. 127.
    Mccapra, F., and D. W. Hysert: Bacterial Bioluminescence. Identification of Fatty acid as Product, its Quantum Yield, and a Suggested Mechanism. Biochem. Biophys. Res. Comm. 52, 298 (1973).Google Scholar
  128. 128.
    Michaelis, L., M. P. Schubert, and C. V. Smythe: Potentiometric Study of the Flavins. J. Biol. Chem. 116, 587 (1936).Google Scholar
  129. 129.
    Michaelis, L., and G. Schwarzenbach: The Intermediate Forms of OxidationReduction of the Flavins. J. Biol. Chem. 123, 527 (1938).Google Scholar
  130. 130.
    Miura, R., K. Matsui, K. Hirotsu, A. Shimada, M. Takatsu, and S. Otani: X-Ray Crystallographic Determination of a Derivative of a New Flavin Compound, Roseoflavin. J. Chem. Soc. Chem. Commun. 1973, 703.Google Scholar
  131. 131.
    Mohler, H., M. BruhmÜLler, and K. Decker: Covalently Bound Flavin in D-6-Hydroxynicotine Oxidase from Arthrobacter oxidans. Identification of the 8α-(N-3-Histidyl)-riboflavin-Linkage between Fad and Apoenzyme. Eur. J. Biochem. 29, 152 (1972).Google Scholar
  132. 132.
    Morris, J. R., H. L. Crespi, and J. J. Katz: Characterization of a new Photo-Esr Signal Assotiated with Photosynthesis. Biochem. Biophys. Res. Commun. 49, 139 (1972).Google Scholar
  133. 133.
    Moller, F.: On the Reaction of Flavins with Alcohols. In: “Flavins and Flavoproteins” (H. Kamin, ed.), p. 363. Baltimore: University Park Press. 1971.Google Scholar
  134. 134.
    Moller, F.In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.Google Scholar
  135. 135.
    Moller, F., P. Hemmerich, and A. Ehrenberg: Esr-Spectra of Flavin Radical Cations. In Preparation.Google Scholar
  136. 136.
    Muller, F., P. Hemmerich, A. Ehrenberg, G. Palmer, and V. Massey: The Chemical and Electronic Structure of the Neutral Flavin Radical as Revealed by Electron Spin Resonance Spectroscopy of Chemically and Isotopically Substituted Derivatives. Eur. J. Biochem. 14, 185 (1970).Google Scholar
  137. 137.
    Muller, F., V. Massey, G. Heizmann, P. Hemmerich, J. M. Lhoste, and D. C. Gould: The Reduction of Flavins by Borohydride: 3,4-Dihydroflavin Structure, Absorption and Luminescence. Eur. J. Biochem. 9, 392 (1969).Google Scholar
  138. 138.
    Neal, R. A.: Bacterial Metabolism of Thiamine Iii. Metabolism of Thiamine to 3-(2’-Methyl-4’-Amino-5’-Pyrimidyl methyl)-4-Meth yl-thiazole-5-acetic Acid (Thiamine Acetic Acid) by a Flavoprotein isolated from a soil Microorganism. J. Biol. Chem. 245, 2599 (1970).Google Scholar
  139. 139.
    Neumoller, O.-A., ed.: Römpps Chemie-Lexikon. Stuttgart: Franck’sche Verlagshandlung. 1973.Google Scholar
  140. 140.
    Nicoli, M. Z., and J. W. Hastings: Bacterial Luciferase. The Hydrophobic Environment of the Reactive Sulfhydryl. J. Biol. Chem. 249, 2393 (1974).Google Scholar
  141. 141.
    NIcoLI, M. Z., E. M. Meighen, and J. W. Hastings: Bacterial Luciferase. Chemistry of the Reactive Sulfhydryl. J. Biol. Chem. 249, 2385 (1974).Google Scholar
  142. 142.
    O’Brien, D. E., L. T. Weinstock, and C. C. Cheng: Synthesis of 10-Deazariboflavin and Related 2,4-Dioxopyrimido (4,5-b) quinolines. J. Heterocycl. Chem. 7, 99 (1970).Google Scholar
  143. 143.
    Patek, D. R., C. R. Dahl, and W. R. Frisell: Isolation of Acid-Nonextractable Flavins from a Bacterial Sarcosine Oxidase. Biochem. Biophys. Res. Commun. 46, 885 (1972).Google Scholar
  144. 144.
    Patek, D. R., and W. R. Frisell: Purification and Characterisation of the Flavin Prosthetic Group of Sarcosine Dehydrogenase. Arch. Biochem. Biophys. 150, 347 (1972).Google Scholar
  145. 145.
    Pearson, W. N.: Riboflavin. In: “The Vitamins” (P. Gyorgy, W. N. Pearson, eds.), Vol. Vii, p. 99. N. Y.: Academic Press. 1967.Google Scholar
  146. 146.
    Penzer, G. R., and G. K. Radda: The Chemistry and Biological Function of Isoalloxazines (Flavins). Quart Rev. 21, 43 (1967).Google Scholar
  147. 147.
    Penzer, G. R., and G. K. Radda: The Chemistry of Flavins and Flavoproteins. Photoreduction of Flavins by Amino Acids. Biochem. J. 109, 259 (1968).Google Scholar
  148. 148.
    Penzer, G. R., and G. K. Radda Photochemistry of Flavins. In: “Vitamins and Coenzymes” (D. B. Mccormick, L. D. Wright, eds.), Vol. Xviii of “Methods in Enzymology”, p. 479. N. Y.: Academic Press. 1971.Google Scholar
  149. 149.
    Piloty, O., and K. Finckh: Über die Harnsauregruppe. Liebigs Ann. Chem. 333, 37 (1904).Google Scholar
  150. 150.
    Plaut, G. W. E.: Water-Soluble Vitamins, Part II. Riboflavin and Folic Acid. Ann. Rev. Biochem. 30, 409 (1961).Google Scholar
  151. 151.
    Poff, K. L., and W. L. Butler: Absorbance Changes induced by Blue Light in Phycomyces blakesleeanus and Dietyostelium discoideum. Nature 248, 799 (1974).Google Scholar
  152. 152.
    Polyakova, N. A., L. S. TulChinskaya, L. G. Zapesochnaya, and V. M. Berezovskii: Alloxazines and Isoalloxazines Xxxi. Synthesis of Hydroxy Analogs of Natural Flavines. Zhur. Obsh. Khim. 42, 465 (1972).Google Scholar
  153. 153.
    Rivlin, R. S., ed.: Riboflavin. N. Y.: Plenum Press. 1975.Google Scholar
  154. 154.
    Salach, J., W. H. Walker, T. P. Singer, A. Ehrenberg, P. Hemmerich, S. Ghisla, and U. Hartmann: Studies on Succinate Dehydrogenase. Site of Attachment of the Covalently-Bound Flavin to the Peptide Chain. Eur. J. Biochem. 26, 267 (1972).Google Scholar
  155. 155.
    Schabort, I. C., and D. J. J. Potgieter: β-Cyclopiazonate Oxidocyclase from Pennicillum Cyclopium. II. Studies on Electron Acceptors, Inhibitors, Enzyme Kinetics, Amino Acid Composition, Flavin Prosthetic Group and other Properties. Biochim. Biophys. Acta 250, 329 (1971).Google Scholar
  156. 156.
    SchÖLlnhammer, G., W. Haas, and P. Hemmerich: Unpublished.Google Scholar
  157. 157.
    SchÖLlnhammer, G., and P. Hemmerich: Unpublished.Google Scholar
  158. 158.
    SchÖLlnhammer, G., and P. Hemmerich Nucleophilic Addition at the Photoexcited Flavin Cation: Synthesis and Properties of 6- and 9-Hydroxy-Flavocoenzyme Chromophores. Eur. J. Biochem. 44, 561 (1974).Google Scholar
  159. 159.
    Schonbrunn, A., C. Walsh, S. Ghisla, H. Ogata, V. Massey, and R. Abeles: The Structure of the Flavin Inhibitor Adduct from Lactate Oxidase. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.Google Scholar
  160. 160.
    Schreiner, S., U. Steiner, and H. E. A. Kramer: Determination of the pK Values of the Lumiflavin Triplet State by Flash Photolysis. Photochem. Photobiol. 21, 81 (1975).Google Scholar
  161. 161.
    Schuman-Jorns, M., G. SchÖLlnhammer, and P. Hemmerich: Intramolecular Addition of the Riboflavin Side Chain: Anion Catalyzed Neutral Photochemistry. Eur. J. Biochem. 57, 35 (1975).Google Scholar
  162. 162.
    Siegel, L. M., H. Kamin, D. C. Rueger, R. P. Presswood, and O. H. Gibson: An Iron-Free Sulfite Reductase Flavoprotein from Mutants of Salmonella tryphimurium. In: “Flavins and Flavoproteins” (H. Kamin, ed.), p. 523. Baltimore: University Park Press. 1971.Google Scholar
  163. 163.
    Singer, T. P., ed.: Flavins and Flavoproteins. Amsterdam: Elsevier, in press.Google Scholar
  164. 164.
    Singer, T. P., and D. E. Edmondson: 8α-Substituted Flavins of Biological Importance. Febs-Lett. 42, 1 (1974).Google Scholar
  165. 165.
    Singer, T. P., E. B. Kearney, and V. Massey: Observations on the Flavin Moiety of Succinate Dehydrogenase. Arch. Biochem. Biophys. 60, 255 (1956).Google Scholar
  166. 166.
    Singer, T. P., and W. C. Kenney: To be published.Google Scholar
  167. 167.
    Slater, E. C., ed.: Flavins and Flavoproteins. Amsterdam: Elsevier. 1966.Google Scholar
  168. 168.
    Smith, S. B., M. Brustlein, and T. C. Bruice: Electrophilicity of the 8-Position of the Isoalloxazine (Flavine) Ring System. Comment on the Mechanism of Oxidation of Dihydroalloxazine. J. Amer. Chem. Soc. 96, 3696 (1974).Google Scholar
  169. 169.
    Song, P.-S.: On the Basicity of the Excited State of Flavins. Photochem. Photobiol. 7, 311 (1968).Google Scholar
  170. 170.
    Sun, M., T. A. Moore, and P.-S. Song: Molecular Luminescence Studies of Flavins. I. The Excited States of Flavins. J. Amer. Chem. Soc. 94, 1730 (1972).Google Scholar
  171. 171.
    Tauscher, L., S. Ghisla, and P. Hemmerich: Nmr-Study of Nitrogen-Inversion and Conformation of 1,5-Dihydro-Isoalloxazines (Reduced Flavins). Helv. Chim. Acta 56, 630 (1973).Google Scholar
  172. 172.
    Theorell, H.: Reindarstellung (Kristallisation) des gelben Atmungsferments und die reversible Spaltung desselben. Biochem. Z. 272, 155 (1934).Google Scholar
  173. 173.
    Theorell, H. Über die Wirkungsgruppe des gelben Ferments. Biochem. Z. 275, 37 (1935).Google Scholar
  174. 174.
    Theorell, H. Reindarstellung der Wirkungsgruppe des gelben Ferments. Biochem. Z. 275, 344 (1935).Google Scholar
  175. 175.
    Theorell, H. Das gelbe Oxydationsferment. Biochem. Z. 278, 263 (1935).Google Scholar
  176. 176.
    Tishler, M., K. Pfister, R. D. Babson, K. Ladenburg, and A. J. Flaming: The Reaction between o-Aminoazo Compounds and Barbituric Acid. A New Synthesis of Riboflavin. J. Amer. Chem. Soc. 69, 1487 (1947).Google Scholar
  177. 177.
    Tulchinskaya, L. S., N. A. Polyakova, and V. M. Berezovskii: Alloxazine and Isoalloxazine Compounds Xxvi. Azo Coupling of 7-Amino and 7-Hydroxyalloxazines. Zh. Obsh. Khim. 40, 1859 (1970).Google Scholar
  178. 178.
    Vainshtein, F. M., E. I. Kukhtenko, E. I. Tomilenko, and E. A. Shilov: Nucleophilic Replacement of the Sulfonato Group in Aromatic Compounds with the Participation of Oxidizing Agents. Zh. Org. Khim. 3, 1654 (1967).Google Scholar
  179. 179.
    Vaish, S. P., and G. Tollin: Flash Photolysis of Flavins. V. Oxidation and Disproportionation of Flavin Radicals. Bioenergetics 2, 61 (1971).Google Scholar
  180. 180.
    Walaas, E., and O. Walaas: Kinetics and Equilibria in Flavoprotein Systems. V. The Effects of pH, Anions and Partial Structural Analogues of the Coenzyme on the Activity of D-Amino Acid Oxidase. Acta Chem. Scand. 10, 122 (1956).Google Scholar
  181. 181.
    Walker, W. H., P. Hemmerich, and V. Massey: Reductive Photoalkylierung des Flavinkerns und flavin-katalysierte Photodecarboxylierung von Phenylacetat. Studien in der Flavinreihe XV. Helv. Chim. Acta 50, 2269 (1967).Google Scholar
  182. 182.
    Walker, W. H., P. Hemmerich, and V. Massey Light-Induced Alkylation and Dealkylation of the Flavin Nucleus. Stable Dihydroflavins: Spectral Course and Mechanism of Formation. Eur. J. Biochem. 13, 258 (1970).Google Scholar
  183. 183.
    Walker, W. H., E. B. Kearney, R. L. Seng, and T. P. Singer: Sequence and Structure of a Cysteinyl Flavin Peptide from Monamine Oxidase. Biochem. Biophys. Res. Commun. 44, 287 (1971).Google Scholar
  184. 184.
    Walker, W. H., P. Hemmerich, and V. MasseyThe Covalently-Bound Flavin of Hepatic Monamine Oxidase. 2. Identification and Properties of Cysteinyl Riboflavin. Eur. J. Biochem. 24, 328 (1971).Google Scholar
  185. 185.
    Walker, W. H., W. C. Kenney, D. E. Edmondson, T. P. Singer, J. R. Cronin, and R. Hendriks: The Covalently Bound Flavin of Chromatium Cytochrome c552. 1. Evidence for Cysteine Thiohemiacetal at the 8α-Position. Eur. J. Biochem. 48, 439 (1974).Google Scholar
  186. 186.
    Walker, W. H., T. P. Singer, S. Ghisla, and P. Hemmerich: Studies on Succinate Dehydrogenase. 8α-Histidyl-Fad as the Active Center of Succinate Dehydrogenase. Eur. J. Biochem. 26, 279 (1972).Google Scholar
  187. 187.
    Walsh, T., A. Schonbrunn, and R. H. Abeles: Studies on the Mechanism of Action of D-Amino Acid Oxidase. Evidence for Removal of Substrate a-Hydrogen as a Proton. J. Biol. Chem. 246, 6855 (1971).Google Scholar
  188. 188.
    Warburg, O., and W. Christian: Über das gelbe Ferment und seine Wirkungen. Biochem. Z. 266, 377 (1933).Google Scholar
  189. 189.
    Warburg, O., and W. Christian Das Coferment der d-Alanin Oxidase. Biochem. Z. 296, 294 (1938).Google Scholar
  190. 190.
    Warburg, O., and W. Christian Isolierung der prosthetischen Gruppe der d-Aminosäureoxidase. Biochem. Z. 298, 150 (1938).Google Scholar
  191. 191.
    Warburg, O., and W. Christian Bemerkung über gelbe Fermente. Biochem. Z. 298, 368 (1938).Google Scholar
  192. 192.
    Weatherby, G. D., and D. O. Carr: Riboflavin-Catalyzed Photooxidative Decarboxylation of Dihydrophtalates. Biochemistry 9, 344 (1970).Google Scholar
  193. 193.
    Weber, G.: Fluorescence of Riboflavin and Flavin-Adenin-Dinucleotide. Biochem. J. 47, 114 (1950).Google Scholar
  194. 194.
    Weygand, F., R. LÖWenfeld, and E. F. MÖLler: Über die Spezifität von 6.7-Dichlor9-d-ribo-flavin als Antagonist des Lactoflavins. Chem. Ber. 84, 101 (1951).Google Scholar
  195. 195.
    Whitby, L. G.: A New Method for Preparing Flavin Adenine Dinucleotide. Biochem. J. 54, 437 (1953).Google Scholar
  196. 195a.
    White, E. H., J. D. Miano, C. J. Watkins, and E. J. Breaux: Chemisch erzeugte angeregte Zustände. Angew. Chem. 86, 292 (1974).Google Scholar
  197. 196.
    Yagi, K., ed.: Flavins and Flavoproteins. Tokyo: University of Tokyo Press. 1968.Google Scholar
  198. 197.
    Yang, C. S.: Photosensitized Conversion of Ethionine to Ethylene by Flavin Mononucleotide. Photochem. Photobiol. 12, 419 (1970).Google Scholar
  199. 198.
    Yang, C. S., and P. Hemmerich: Unpublished.Google Scholar
  200. 199.
    Yang, C. S., and D. Mccormick: The Photochemical Degradation of Flavins as Influenced by the Length and Extent of Hydroxylation of the Side Chain. J. Amer. Chem. Soc. 87, 5763 (1965).Google Scholar
  201. 200.
    Yokoe, I., and T. C. Bruice: Oxidation of Thiophenyl and Nitroalkanes by an Electron Deficient Isoalloxazine. J. Amer. Chem. Soc. 97, 450 (1975).Google Scholar
  202. 201.
    Zeitschrift für Naturforschung: 27b, Heft 9 (1972).Google Scholar
  203. 202.
    Zeller, E. A., B. Gartner, and P. Hemmerich: 4a,5-Cycloaddition Reactions of Acetylenic Compounds at the Flavoquinone Nucleus as Mechanisms of Flavoprotein inhibitors. Z. Naturforsch. 27b, 1050 (1972).Google Scholar

Copyright information

© Springer-Verlag Wien 1976

Authors and Affiliations

  • P. Hemmerich
    • 1
  1. 1.Fachbereich BiologieUniversität KonstanzFederal Republic of Germany

Personalised recommendations