The chemistry of tryptophan (1) has probably been the object of more intense investigation than that of any other amino acids. This is undoubtedly due to the particular reactivity of the indole nucleus and to the extensive chemistry developed over the years regarding this important and ubiquitous functionality. Only the sulfur amino acids have received comparable attention from chemists and biochemists.


Tryptophan Residue Magnetic Circular Dichroism Indole Ring Tryptophan Content Free Tryptophan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acheson, R. M.: An Introduction to the Chemistry of Heterocyclic Compounds. Interscience Publ., J. Wiley (1973)CrossRefGoogle Scholar
  2. 2.
    Afghan, B. K., and J. Israeli: Reaction of Metal Nitrilotriacetates with ()-Tryptophan. Bull. Soc. Chim. Fr. 4, 1393–1394 (1969)Google Scholar
  3. 3.
    Agarwal, K. L., G. W. Kenner, and R. C. Sheppard: Peptides. XXVIII. Synthesis of Ovine-Bovine Gastrin I. J. Chem. Soc. C 6, 954–958 (1969)CrossRefGoogle Scholar
  4. 4.
    Alakhov, YU. B., A. A. Kiryushkin, V. M. Lipkin, and G. W. A. Milne: Butylation of the Tryptophan Indole Ring: a Side-Reaction during the Removal of t-Butyloxycarbonyl and t-Butyl Protecting Group in Peptide Synthesis. J. C. S. Chem. Commun. 406–407 (1970)Google Scholar
  5. 5.
    Aldrich, J. E., and R. B. Cundall: The Radiation-induced Inactivation of Lysozyme. Int. J. Rad. Biol. 16, 343–358 (1969)CrossRefGoogle Scholar
  6. 6.
    Alexander, N. M.: Oxidation and Oxidative Cleavage of Tryptophanyl Peptide Bonds during Jodination. Biochem. Biophys. Res. Commun. 54, 614–619 (1973)CrossRefGoogle Scholar
  7. 7.
    Alexander, N. M.: Oxidative Cleavage of Tryptophanyl Peptide Bonds during Chemical- and Peroxidase-catalyzed Iodinations. J. Biol. Chem. 249, 1946–1952 (1974)Google Scholar
  8. 8.
    Allegri, G., and A. DE Antoni: Transamination of Kynurenine. Acta Vitamin. Enzymol. (Milan) 28, 223–242 (1974)Google Scholar
  9. 9.
    Allen, L. M., and W. R. Grover: Tryptophan Tritiation in Supernatant Malate Dehydrogenase from Pig Heart. Biochem. Biophys. Res. Commun. 41, 1518–1522 (1970)CrossRefGoogle Scholar
  10. 10.
    Andrews, L. J., and L. S. Forster: Protein Difference Spectra. Effect of Solvent and Charge of Tryptophan. Biochemistry 11, 1875–1879 (1972)CrossRefGoogle Scholar
  11. 11.
    Arai, S., M. Abe, M. Yamashita, H. Kato, and M. Fujimaki: Applying Proteolytic Enzymes on Soybean. Viii. Formation of an Indole Derivative by Condensation between Tryptophan and n-Hexanal. Agr. Biol. Chem. 35, 552–559 (1971)CrossRefGoogle Scholar
  12. 12.
    Asquith, R. S., and D. E. Rivett: Studies on the Photooxidation of Tryptophan. Biochim. Biophys. Acta 252,111 116 (1971)Google Scholar
  13. 13.
    Atassi, M. Z.: Specific Cleavage of Tryptophyl Peptide Bonds with Periodate in Sperm Whale Myoglobin. Arch. Biochem. Biophys. 120, 56–59 (1967)CrossRefGoogle Scholar
  14. 14.
    Atassi, M. Z.: Reaction of Amino Acids and Proteins with Trichloroisocyanuric Acid. Tetrahedron Letters 49, 4893–4896 (1973)CrossRefGoogle Scholar
  15. 15.
    Audern, M., and M. Sheinblatt: Nmr Studies of Cyclic Dipeptides containing Histidine and Tryptophan Residues, in: Peptides, Polypeptides and Proteins (E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan, Eds.), p. 293–299. New York: J. Wiley (1974)Google Scholar
  16. 16.
    Auer, H. E.: Far-Ultraviolet Absorption and Circular Dichroism Spectra of LTryptophan and Some Derivatives. J. Amer. Chem. Soc. 95, 3003–3011 (1973)CrossRefGoogle Scholar
  17. 17.
    Aviram, I, and A. Schejter: Modification of the Tryptophanyl Residue of Horse Heart Cytochrome C. Biochim. Biophys. Acta 229, 113–118 (1971)CrossRefGoogle Scholar
  18. 18.
    Avrutskaya, I. A., K. K. Babievskii, M. M. Belikov, E. V. ZaporozHets, and M. YA. FlOshchin: Electrochemical Reduction of Indolylnitroacrylate in Alcohol Solution. Elekrokhimiya 9, 163–1368 (1973)Google Scholar
  19. 19.
    Baba, Y., A. Arimura, and A. V. Schally: Tryptophan Residue in Porcine LH and Fsh-releasing Hormone. Biochem. Biophys. Res. Commun.45,483–487 (1971)Google Scholar
  20. 20.
    Bachmayer, H.: Effect of Tryptophan Modification on the Activity of Bacterial and Viral Neuramidase. Febs Lett. 23, 217–219 (1972)CrossRefGoogle Scholar
  21. 21.
    Bajusz, S., K. Medzihradszky, Z. Paley, and ZS. Lang: Total Synthesis of Human Corticotropin (α-Acth). Acta Chim. Acad. Sci. Hung. 52, 335–341 (1967)Google Scholar
  22. 22.
    Bak, B., C. Dambmann, and F. NicolalSen: Hydrogen-deuterium Exchange in Tryptophan. Acta Chem. Scand. 21, 1674–1675 (1967)CrossRefGoogle Scholar
  23. 23.
    Bak, B., C. Dambmann, F. Nicolaisen, and E. J. Pfdersen: Proton Magnetic Resonance Spectra at 220 MH, of Amino Acids, Porcine and Bovine Insulin and the A and BChains of Bovine Tnsulin I Mol Spect 26 78–97 (1968)Google Scholar
  24. 24.
    Bak, B., J. Led, and E. J. Pedersen: Isotopic Labeling of Tryptophan and Tryptophan Residues in Polypeptides. Acta Chem. Scand. 23, 3051–3054 (1969)CrossRefGoogle Scholar
  25. 25.
    Barman, T. E., and D. E. Koshland, Jr.: A Colorimetric Procedure for the Quantitative Determination of Tryptophan Residues in Proteins. J. Biol. Chem. 242, 5771–5776 (1967)Google Scholar
  26. 26.
    Barman, T. E.: Reactivities of the Tryptophan Residues of α-Lactalhumin and Lysozyme to 2-Hydroxy-5-Nitrobenzyl Bromide. J. Mol. Biol. 52, 391–394 (1970)CrossRefGoogle Scholar
  27. 27.
    Barman, T. E., and W. Bagshaw: Modification of the Tryptophan Residues of Bovine α-Lactalbumin with 2-Hydroxy-5-nitrobenzyl Bromide and with Dimethyl (2-hydroxy-5-nitrobenzyl) Sulfonium Bromide. II. Effect on the Specific Protein Activity. Biochim. Biophys. Acta. 278. 491–500 (1972)CrossRefGoogle Scholar
  28. 28.
    Barman, T. E.: Modification of the Tryptophan Residues of Bovine α-Lactalbumin with 2-Hydroxy-5-nitrobenzyl Bromide and with Dimethyl (2-hydroxy-5-nitrobenzyl) Sulfonium Bromide. I. Characterization of the Modified Protein. Biochim. Biophys. Acta 257 (2), 293–313 (1972)Google Scholar
  29. 29.
    Barth, G., E. Bunnenberg, and C. Djerassi: Magnetic Circular Dichroism Studies. Xix. Determination of the Tyrosine: Tryptophan Ratio in Proteins. Anal. Biochem. 48, 471–479 (1972)CrossRefGoogle Scholar
  30. 30.
    Barth, G., W. Voelter, E. Bunnenberg, and C. Djerassi: Magnetic Circular Dichroism Studies. Xvii. Magnetic Circular Dichroism Spectra of Proteins. A New Method for the Quantitative Determination of Tryptophan. J. Amer. Chem. Soc. 94, 1293–1298 (1972)CrossRefGoogle Scholar
  31. 31.
    Battersby, A. R.: Some Applications of Tritium Labeling for the Exploration of Biochemical Mechanisms. Accounts Chem. Res. 5, 148–154 (1972)CrossRefGoogle Scholar
  32. 32.
    Bayer, E., Bacher, P. Krauss, W. Voelter, G. Barth, E. Bunnenberg, and C. Djerassi: Investigation of Xanthine Oxidase. Magnetic Circular Dichroism Studies. Eur. J. Biochem. 22, 580–584 (1971)CrossRefGoogle Scholar
  33. 33.
    Beacham, J., P. H. Bentley, R. A. Gregory, G. W. Kenner, J. K. Macleod, and R. C. Sheppard: Human Gastrin: Isolation, Structure and Synthesis. Synthesis of Human Gastrin T. Nature 209, 585–586 (1966)CrossRefGoogle Scholar
  34. 34.
    Bello, J.: Thermal Perturbation Difference Spectra of Proteins Containing Tryptophyl Residues. Biochemistry 9, 3562–3568 (1970)CrossRefGoogle Scholar
  35. 35.
    Bello, J., and H. R. Bello: Spectral Studies of Interactions of Detergents with Tryptophyl Compounds. Eur. J. Biochem. 34, 535–538 (1973)CrossRefGoogle Scholar
  36. 36.
    Benassi, C. A.: Aspects of Tryptophan Metabolism in Man. Res. Progress in Organic-Biological and Medicinal Chemistry, Soc. Editoriale Farm. (Milan) 1, 45–81 (1964)Google Scholar
  37. 37.
    Benassi, C. A., E. Scoffone, and F. M. Veronese: Products Arising in the Performic Oxidation of Tryptophan. Tetrahedron Letters 49, 4389–4393 (1965)CrossRefGoogle Scholar
  38. 38.
    Benassi, C. A., F. M. Veronese, A. DE Antoni, and P. Pajetta: Products Arising from the Performic Acid Oxidation of Tryptophan. Gazz. Chim. Ital. 97, 1–17 (1967)Google Scholar
  39. 39.
    Bencze, W. L., and K. Schmid: Determination of Tyrosine and Tryptophan in Proteins. Anal. Chem. 25, 1193–1196 (1957)CrossRefGoogle Scholar
  40. 40.
    Ben Ladkar, T., M. H. Brieri, and J. Bolard: Induced Optical Activity in DonorAcceptor Complexes. C. R. Acad. Sci., Sez. B 271, 1201–1203 (1970)Google Scholar
  41. 41.
    Bergstrand, H.: Isolation and Partial Characterization of Some Proteolytically and Chemically Derived Fragments of Bovine Encephalitogenic Protein. Eur. J. Biochem. 21, 116–124 (1971)CrossRefGoogle Scholar
  42. 42.
    Bewley, T. A., and C. H. LI: Reactivity of the Tryptophan Residues in Lysozyme. Nature 206, 624 (1965)CrossRefGoogle Scholar
  43. 43.
    Bewley, T. A., H. Kawauchi, and C. H. LI: Human Pituitary Growth Hormone. Xxxiii. Comparative Studies of the Single Tryptophan Residue in Human Chorionic Somatotropin and Human Pituitary Growth Hormone. Biochemistry 11, 4179–4187 (1972)CrossRefGoogle Scholar
  44. 44.
    Birkofer, L., and K. Hempel: Synthesis of Tritium-Labeled Amino Acids of High Specific Activity. Chem. Ber. 96, 1373–1381 (1963)CrossRefGoogle Scholar
  45. 45.
    Blake, C. C. F.: A Crystallographic Study of the Oxidation of Lysozyme by Iodine. Proc. Roy. Soc. B 167, 435–438 (1967)CrossRefGoogle Scholar
  46. 46.
    Bloxam, L. D., and W. H. Warren: Error in the Determination of Tryptophan by the Method of Denkla and Dewey. A Revised Procedure. Anal. Biochem. 60, 621–625 (1974)CrossRefGoogle Scholar
  47. 47.
    BoccÙ, E., F. M. Veronese, A. Fontana, and C. A. Benassi: Sulfenyl Halide as Modifying Reagents for Polypeptides and Proteins. Vii. Quantitative Evaluation of Tryptophan and Cysteine Residues in Proteins. Eur. J. Biochem. 13, 188–192 (1970)CrossRefGoogle Scholar
  48. 48.
    BoccÙ, E., F. M. Veronese, A. Fontana, and C. A. Benassi: Studies on the Function of Tryptophan-108 on Lysozyme. Acta Vitam. Enzymologica, (Milan), 28, 75–78 (1975).Google Scholar
  49. 49.
    Bonnett, R., and R. Holleyhead: Reaction of Tryptophan Derivatives with Nitrite. J. Chem. Soc., Perkin I, 962–964 (1974)Google Scholar
  50. 50.
    Bovey, F. A., and G. V. D. Tiers: Proton N.M.R. Spectroscopy. V. Studies of Amino Acids and Peptides in Trifluoroacetic Acid. J. Amer. Chem. Soc. 81, 2870–2878 (1959)CrossRefGoogle Scholar
  51. 51.
    Boyd, D. R., J. W. Daly, and D. M. Jerinna: Rearrangement of [1 2H]- and [2-2H]-Naphthalene 1,2-Oxides to 1-Naphthol. Mechanism of the Nih Shift. Biochemistry 11, 1961–1966 (1972) and reference therein.Google Scholar
  52. 52.
    Boyland, E., P. SiMs, and D. C. Williams: The Oxidation of Tryptophan and Some Related Compounds with Persulphate. Biochem. J. 62, 546–550 (1956)Google Scholar
  53. 53.
    Bradbury, J. H., and R. S. Norton: Carbon-13 Nmr Spectra of Tryptophan, Tryptophan Peptides and of Native and Denaturated Proteins. Biochim. Biophys. Acta 328, 10–19 (1973)CrossRefGoogle Scholar
  54. 54.
    Bradshaw, R. A., and D. A. Deranleau: Use of N-methylnicotinamide Chloride as a Conformational Probe in Proteins. Identification of the Binding Sites in Chicken Egg-white Lysozyme and a Comparison with Bovine α-Lactalbumin. Biochemistry 9 3310–3315 (1970)CrossRefGoogle Scholar
  55. 55.
    Brand, L., and B. Witholt: Fluorescence Measurements, in: Methods in Enzymology– Enzyme Structure (C. H. W. Hirs, Ed.). 11, 776–856. London-New York: Academi Press 1973Google Scholar
  56. 56.
    Bredderman, P. J.: Tryptophan Analysis of Proteins in 6 M Guanidine Hydrochloride: Modification for More General Application. Anal. Biochem. 61, 298–301 (1974)CrossRefGoogle Scholar
  57. 57.
    Brieskorn, C. H., and K. Danziger: Color Reaction of Tryptophan and Glyoxilic Acid Sulfuric Acid. Z. Lebensm.-Unters. Forsch. 137, 362–370 (1968)Google Scholar
  58. 58.
    Broentigam, K. H., and T. Severin: Maillard Reaction. IX. Reaction of Tryptophan with Xylose. Z. Lebensm.-Unters. Forsch. 154, 80–83 (1974)Google Scholar
  59. 59.
    Broquist, P. H., and J. S. Trupin: Amino Acid Metabolism, Ann. Review Biochem. 35, 231–274 (1966)CrossRefGoogle Scholar
  60. 60.
    Brovetto-Cruz, J., and C. H. LI: Human Pituitary Growth Hormone. Studies of the Tryptophan Residues. Biochemistry 8, 4695–4700 (1969)CrossRefGoogle Scholar
  61. 61.
    Brown, R. D., and B. A. W. Coller: A Theoretical Study of the Chemistry of Furan, Pyrrole, Benzofuran, Indole, Dibenzofuran, and Carbazole. Australian J. Chem. 12. 152–165 (1959)Google Scholar
  62. 62.
    Brundish, E., D. F. Elliott, and R. Wade: Synthesis of L-Amino Acids and their Derivatives Labelled with Tritium. J. Labelled Compd. 7, 473–493 (1971)CrossRefGoogle Scholar
  63. 63.
    Buckingham, R. H., and A. Pirie: Effect of Light on Lens Proteins in Vitro. Exp. Eye Res. 14, 297–299 (1972)CrossRefGoogle Scholar
  64. 64.
    Buku, A., R. Altmann, and TH. Wieland: Components of the Green Deathcap Amanita phalloides. Xlvi. The Nontoxic Sulfoxide Diastereoisomeric of O-Methylα-amanitin. Liebigs Ann. Chem. 1974, 1580–1586.Google Scholar
  65. 65.
    Burnett, P. R., and E. H. Eylar: Allergic Encephalomyelitis. Oxidation and Cleavage of the Single Tryptophan Residue of the A1 Protein from Bovine and Human Myelin. J. Biol. Chem. 246, 3425–3430 (1971).Google Scholar
  66. 66.
    Burstein, Y., and A. Patchornik: Selective Chemical Cleavage of Tryptophanyl Peptide Bonds in Peptides and Proteins. Biochemistry 11, 4641–4650 (1972)CrossRefGoogle Scholar
  67. 67.
    Bye, E., and C. Roemming: Crystal Structure of DL-Tryptophan Formate. Acta Chem. Scand. 27, 471–484 (1973)CrossRefGoogle Scholar
  68. 68.
    Capon, B.: Neighbouring Group Participation. Quarterly Reviews 18, 45–111 (1964)CrossRefGoogle Scholar
  69. 69.
    Casnati, G., A. Dossena, and A. Pochini: Electrophilic Substitution in Indoles: Direct Attack at the 2-Position of 3-Alkylindoles. Tetrahedron Letters 5277–5280 (1972)Google Scholar
  70. 70.
    Casnati, G., M. Francioni, A. Guareschi, and A. Pochini: Insertion of Isoprene Units into Indole Systems. Tetrahedron Letters 2485–2487 (1969)Google Scholar
  71. 71.
    Casnati, G., R. Marchelli, and A. Pochini: Rearrangement of 3-alkyl-l-alkylIndoles: A Model Reaction for the Biogenesis of Echinulin-type Compounds. J. Chem. Soc. Perkin I, 754–757 (1974)Google Scholar
  72. 72.
    Cauzzo, G., and G. Jori: Methylene Blue-photosensitized Conversion of 3-substituted Indoles to β-Carboline Derivatives. J. Org. Chem. 37, 1429–1433 (1972)CrossRefGoogle Scholar
  73. 73.
    Cavanaugh, J. R.: The Rotational Isomerism of the Aromatic Amino Acids by Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 92, 1488–1493 (1970)CrossRefGoogle Scholar
  74. 74.
    Chan, T. L.. and K. A. Schellenberc: Studies on the Presence and Role of Tryptophan in Pig Heart Mitochondrial Malate Dehydrogenase. J. Biol. Chem. 243, 6284–6290 (1968)Google Scholar
  75. 7.
    Chang, C., and K. Hayashi: Chemical Modification of the Tryptophan Residue in Cobratoxin. Biochem. Biophys. Res. Commun. 37, 841–846 (1969)CrossRefGoogle Scholar
  76. 76.
    Chang, C. C., and C. C. Yang: Immunochemical Studies on Tryptophan Modified Cobratoxin. T’ai-Wan I Hsueh Hui Tsa Chih 71, 381–382 (1972). Chem. Abstr. 78, 14382y (1973)Google Scholar
  77. 77.
    Chao, L., and E. R. Einstein: Localization of the Active Site Through Chemical Modification of the Encephalitogenic Protein. J. Biol. Chem. 245 (23), 6397–6403 (1970)Google Scholar
  78. 78.
    Chatterjee, A. K., G. J. Durant, H. Hendrickson. Y. C. Lee, and R. Montgomery: Periodatc Oxidation of Biopolymers. Biochem. Biophys. Res. Commun. 4, 425–430 (1961)CrossRefGoogle Scholar
  79. 79.
    Chibata, I., and S. Yamada: Amino Acids. III. Synthesis of DL-tryptophan. Bull. Agr. Chem. Soc. Japan. 21, 58–67 (1957)CrossRefGoogle Scholar
  80. 80.
    Chibata, I., and S. Yamada: Amino Acids. IV. Enzymic Resolution of DL-tryptophan. Bull. Agr. Chem. Soc. Japan. 21, 62–66 (1967)CrossRefGoogle Scholar
  81. 81.
    Cohen, L.: Group-specific Reagents in Protein Chemistry. Ann. Rev. Biochem. 37, 695–726 (1968)CrossRefGoogle Scholar
  82. 82.
    Cohen, L.: Chemical Modifications as a Probe of Structure and Function, in: The Enzymes (P. D. Boyer, Ed.), Vol. I, 148–212. London-New York: Academic Press. 1970Google Scholar
  83. 83.
    Cohen, J. S.: Proton Magnetic Resonance Studies of Oligopeptides Containing Aromatic Residues Biochim. Biophys Acta 229, 603–609 (1971)CrossRefGoogle Scholar
  84. 84.
    Coletti-Previero, M. A., A. Previero, and E. Zuckerkandl: Separation of the Proteolytic and Esterasic Activities of Trypsin by Reversible Structural Modifications. J. Mol. Biol. 39, 493–501 (1969)CrossRefGoogle Scholar
  85. 85.
    Cornforth, J. W., R. H. Cornforth, C. E. Dalgliesh, and A. Neuberger: D,L-β-3-oxindolylalanine (DL-Hydroxytryptophan). I. Synthesis. Biochem. J. 48, 591 597 (1951)Google Scholar
  86. 86.
    Cosani, A., E. Peggion, A. S. Verdini, and M. Terbojevich: Far-Ultraviolet Optical Rotatory Properties of Poly-L-Tryptophan. Part. I. Biopolymers 6, 963–971 (1968)CrossRefGoogle Scholar
  87. 87.
    Collson, A., and T. Yonetani: Oxidation of Cytochrome c Peroxidase with Hydrogen Peroxide. Identification of the Endogenous Donor. Biochem. Biophys. Res. Commun. 49, 391–398 (1972)CrossRefGoogle Scholar
  88. 88.
    CoY, D. H., E. J. CoY, and A. V. Schally: Effect of Simple Amino Acid Replacements on the Biological Function of Luteinising Hormone-Releasing Hormone. J. Med. Chem. 16, 1140–1143 (1973)CrossRefGoogle Scholar
  89. 89.
    Coy, D. H., E. J. Coy, and A. V. Schally: Solid Phase Synthesis of Luteinizing Hormone-Releasing Hormone and its Analogues, in: Methods in Enzymology (B. W. O’Malley and J. G. Hardman, Eds.), 37, part B, 416–423. London-New York: Academic Press 1975Google Scholar
  90. 90.
    CoY, D. H., E. J. Coy, Y. Hirotsu, J. A. Vilchez-Martinez, A. V. Schally, J. W. Van Nispen, and G. T. Tesser: Investigation of the Role of Tryptophan in the Luteinizing Hormone-Releasing Hormone. Biochemistry 13, 3550–3553 (1974)CrossRefGoogle Scholar
  91. 91.
    Cotrait, M., and Y. Barrans: Structure Cristalline de l’Ester Methyliquc du NAcetyl-L-tryptophane. Acta Cryst. B 30, 510–513 (1974). 92. Cuatrecasas, P., S. Fuchs, and C. B. Anfinsen: Tyrosyl Residues at the Active Site of Staphylococcal Nuclease. Modifications by Tetranitromethane. J. Biol. Chem. 243, 4787–4798 (1968)Google Scholar
  92. 93.
    Dalgliesh, C. E.: The Synthesis of N-Formyl-DL-Kynurenine and Related Compounds, and Observations on the Synthesis of Kynurenine. J. Chem. Soc. 1952, 137–141.Google Scholar
  93. 94.
    Dalgliesh, C. E.: Nonspecific Formation of Hydroxylated Metabolites of the Aromatic Amino Acids. Arch. Biochem. Biophys. 58, 214–226 (1955)CrossRefGoogle Scholar
  94. 95.
    Daly, J. W., D. M. Jerina, and B. Witkop: Migration of Deuterim During Hydroxylation of Aromatic Substrates by Liver Microsomes. I. Influence of Ring Substituents. Arch. Biochem. Biophys. 128, 517–527 (1968)CrossRefGoogle Scholar
  95. 96.
    Davey, J. M., A. H. Laird, and J. S. Morley: Polypeptides. Part III. The Synthesis of the C-Terminal Tetrapeptide Sequence of Gastrin, its Optical Isomers, and Acylated Derivatives. J. Chem. Soc. (C), 555–566 (1966)Google Scholar
  96. 97.
    Denckla, W. D., and H. K. Dewey: The Determination of Tryptophan in Plasma, Liver and Urine. J. Lab. Chim. Med. 69, 160–169 (1967)Google Scholar
  97. 98.
    Deschreider, A. R., and M. Renard: The Influence of Ultraviolet Rays on the Absorption Spectrum of L-Tryptophan. Bull. Inst. Agron. et Stas. Rech. Gembloux 23, 151–165 (1955), Chem. Abstr. 49, 15482e (1955)Google Scholar
  98. 99.
    Dickman, S. R., and A. L. Crockett: Reactions of Xanthydrol. IV. Determination of Tryptophan in Blood Plasma and Proteins. J. Biol. Chem. 220, 957–965 (1956)Google Scholar
  99. 100.
    DiopOH, J., and M. Olomucki: New Protein Reagents. II. 4 Chloro-3,5-dinitrophenacyl Bromide. Biochim. Biophys. Acta 263, 220–225 (1972)CrossRefGoogle Scholar
  100. 101.
    Donovan, J. W.: Ultraviolet Difference Spectroscopy. New Techniques and Applications, in: Methods in Enzymology (C. H. W. Hirs and S. N. Timasheff, Eds.). 27, 497–525. London-New York: Academic Press. 1973Google Scholar
  101. 102.
    Dopheide, T. A. A., and W. M. Jones: Studies on the Tryptophan Residues in Porcine Pepsin. J. Biol. Chcm. 243, 3906–3911 (1968)Google Scholar
  102. 103.
    Eckstein, H., G. Barth, R. E. Linder, E. Bunnenberg, and C. Djerassi: Untersuchungen des Magnetischen Zirkulardichroisin. Xxiv. Kinetische Untersuchungen der Tryptophanoxidation in Proteinen. Liebigs Ann. Chern. 1974, 990–995.Google Scholar
  103. 104.
    Edelhoch, H.: Spectroscopic Determination of Tryptophan and Tyrosine in Proteins- Biochemistry 6, 1948–1954 (1967)Google Scholar
  104. 105.
    Edelhoch, H., R. E. Lippoldt, and M. Wilchek: The Circular Dichroism of Tyrosyl and Tryptophanyl Diketopiperazines. J. Biol. Chem. 243, 4799–4805 (1968)Google Scholar
  105. 106.
    Edwards, B. G.: Ultraviolet Spectra of Some Indole Derivatives, Including Tryptophan and Gramicidin. Arch. Biochem. Biophys. 21, 103–108 (1949)Google Scholar
  106. 107.
    Ellinger, A., and C. Flamand: Constitution of the Indole Group in Egg Albumin. IV. Preliminary Communication. Synthesis of Racernic Tryptophan. Bcr. 40, 3029–3033 (1907)Google Scholar
  107. 108.
    Elodi, P., and S. Lakatos: Anomalous Absorption of Tryptophan. Eur. J. Biochem. 36, 45–52 (1973)CrossRefGoogle Scholar
  108. 109.
    EK, A., H. Kissman, J. B. Patrick, and B. Witkop: Chemical Contributions to the Mechanism of the Biological Oxidation ofTryntophan Fxnerientia 8,36–40 (1952)Google Scholar
  109. 110.
    Enfield, D. L., L. H. Ericsson, K. A. Walsh, H. Neurath. and K. Titani: Bovine Factor X1 (Stuart Factor). Primary Structure of the Light Chain. Proc. Natl. Acad. Sci. U.S. 72, 16–19 (1975)CrossRefGoogle Scholar
  110. 111.
    Eskins, K., and M. Friedman: Photoaddition of Dimethyl Sulfoxide to Polypeptides. Photochem. Photobiol. 12, 245–247 (1970)CrossRefGoogle Scholar
  111. 112.
    Evans, N. A.: Reaction of 3-methylindole with Singlet Oxygen. Aust. J. Chem. 24, 1971–1973 (1971)CrossRefGoogle Scholar
  112. 113.
    Fahrenholz, F., H. Faulstich, and TH. Wieland: Components of the Green Deathcap Toadstool, Xvii; Peptide Syntheses, Xlviii. Synthesis of Norphalloin and of a Monocyclic Compound with 18-Membered Ring. Liebigs Ann. Chem. 743, 83–94 (1971)CrossRefGoogle Scholar
  113. 114.
    Faulstich, H., Thh. Wieland, and C. JochHum: Über die Inhaltsstoffe des Grunen Knollenblatterpilzes. Xxxiv. Amanin und die Amanitine sind Sulfoxide. Liebigs Ann Che 713, 186–195 (1968)CrossRefGoogle Scholar
  114. 115.
    Faulstych, H., E. Nebelin, and TH. Wielano: Peptide Syntheses, Liv. Syntheses of Analogs of Norphalloin. Liebigs Ann. Chem. 1973, 50–58.Google Scholar
  115. 116.
    Fasmman, G. D., and B. Bablouzian: Differential Spectrofluorometry, in: Methods in Enzymology - Enzyme Structure (C. H. W. Hirs and S. N. Timasheff, Eds.). 27, Part D, 811–822. London-New York: Academic Press. 1973Google Scholar
  116. 117.
    Finlayson, A. J.: Performic Acid Oxidation of Egg-white Lysozyme. Can. J. Biochem. 47. 31–37 (1969)Google Scholar
  117. 118.
    Foery, W., R. E. Mac Kenzie, F. Y. Wu, and D. B. MC Cormiere: Flavinyl Peptides. III. Studies of Intramolecular Interactions in Flavinyl Aromatic Amino Acids by Proton Magnetic Resonance. Biochemistry 9, 515–525 (1970)CrossRefGoogle Scholar
  118. 119.
    Fontana, A.: Modification of Tryptophan with Bnps-Skatole (2-(2-Nitrophenylsulfenyl)-3-Methyl-3-Bromoindolenine), in: Enzyme Structure. Methods in Enzymology (C. H. W. Hirs and S. N. Timasheff, Eds.). 25, 419–423. New York: Academic Press. 1972Google Scholar
  119. 120.
    Fontana, A., and E. Gross: Solid Phase Synthesis of the Pentadecapeptide ValGramicidin A. Peptides 1972 (H. Hanson and H. D. Jakubke, Eds.). North Holland Publ. Co.. 229–234 (1972)Google Scholar
  120. 121.
    Fontana, A., F. Marchiiori, L. Moroder, and E. Scoffone: New Removal Conditions of Sulfenyl Group in Peptide Synthesis. Tetrahedron Letters 26, 2985–2987 (1966)CrossRefGoogle Scholar
  121. 122.
    Fontana, A., F. Marchhiori, R. RocchIY, and P. Pajetta: On the Protection of the Amino Group by Sulfenyl Residues. I. Reaction of Tryptophan with Sulfenyl Halides. Gazz. Chim. Ital. 96, 1301–1312 (1966).Google Scholar
  122. 123.
    Fontana, A., and E. Scoffone: Sulfenyl Halides as Reagents in Peptide and Protein Chemistry. Mechanisms of Reactions of Sulfur Compounds (N. Kharasch, Ed.), Intra-Science Res. Foundation, Santa Monica, Calif. 4, 15–24 (1969)Google Scholar
  123. 124.
    Fontana, A., and E. Scoffone: Sulfenyl Halides as Modifying Reagents for Polypeptides and Proteins, in: Enzyme Structure. Methods in Enzymology (C. H. W. Hyrs and S. N. Timasheff, Eds.). 25, 482–494. New York: Academic Press. 1972Google Scholar
  124. 125.
    Fontana, A., and E. Scoffone: Degradation of Polypeptides and Proteins. Elucidation of Organic Structures by Physical and Chemical Methods (K. W. Bentley and G. W. Kirby, Eds.). 4 (II), 451–548. New York: J. Wiley. 1973Google Scholar
  125. 126.
    Fontana, A., E. Scoffone, and C. A. Benassi: Sulfenyl Halides as Modifying Reagents for Polypeptides and Proteins. II. Modification of Cysteinyl Residue. Biochemistry 7, 980–986 (1968)CrossRefGoogle Scholar
  126. 127.
    Fontana, A., F. M. Veronese, and E. BoccÙ: Labelling of the Indole Nucleus of Tryptophan at the 2-Position. Acta Vitam. Enzymologica (Milan) 28, 79–83 (1975)Google Scholar
  127. 128.
    Fontana, A., C. Vita, and C. Toniolo: Selective Cleavage of the Single Tryptophanyl Peptide Bond in Horse Heart Cytochrome C. Febs Letters 32, 139–142 (1973)CrossRefGoogle Scholar
  128. 129.
    Fontana, A.: unpublished results (1975).Google Scholar
  129. 130.
    FÖNY, W., R. E. MC Kenzie, F. Y. Wu, and D. B. MC Cormickk: Flavinyl reptioes. III. Studies of the Intramolecular Interactions in Flavinyl Aromatic Amino Acids by Proton Magnetic Resonance. Biochemistry 9, 515–525 (1970)CrossRefGoogle Scholar
  130. 131.
    Foote, C. S.: Mechanisms of Photosensitized Oxidation. Science 162, 963–970 (1968)CrossRefGoogle Scholar
  131. 132.
    Foote, C. S.: Photosensitized Oxygenation and the Role of Singlet Oxygen. Acc. Chem. Res. 1, 104–110 (1968)CrossRefGoogle Scholar
  132. 133.
    Foote, C. S.: Ford-Hutchinson, A. W., and D. J. Perkins: Chemical Modification of the Tryptophan Groups of Transferrin. Eur. J. Biochem. 25, 415–419 (1972)CrossRefGoogle Scholar
  133. 134.
    Fossel, E. T., W. R. Veatch, YU. A. Ovchinnnikov, and E. R. Blout: A C13 Nuclear Magnetic Resonance Study of Gramicidin A in Monomer and Dimer Films. Biochemistry 13, 5264–5275 (1974)CrossRefGoogle Scholar
  134. 135.
    Friedman, M., and J. W. Finley: Methods of Tryptophan Analysis. Agr. Food Chem. 19, 626–631 (1971)CrossRefGoogle Scholar
  135. 136.
    Friedman, M., L. H. Krull, and J. F. Cavins: Reactions of Amino Acids, Peptides and Proteins with α,β-unsaturated Compounds. Xiv. Chromatographic Determination of Cystine and Cysteine Residues in Proteins as S-β-(4-pyridylethyl)cysteine. J. Biol. Chem. 245, 3868–3871 (1970)Google Scholar
  136. 137.
    Fukul, K., T. Yonezawa, C. Nagata, and H. SHiNgu: Molecular Orbital Theory of Orientation in Aromatic, Heteroaromatic and Other Conjugated Molecules. J. Chem. Phys. 22. 1433–1442 (1954).Google Scholar
  137. 138.
    Gabriel, M., D. Larchier, H. Rinnert, and C. Thirion: Magnetic Circular Dichroism of Tyrosine and Tryptophan. Variation as a Function of pH. C. R. Acad. Sci Ser R 276, 39–41 (1973)Google Scholar
  138. 139.
    Gaitonde, M. K., and T. Dovey: A Rapid and Direct Method for the Quantitative Determination of Tryptophan in the Intact Protein. Biochem. J. 117, 907–911 (1 970Google Scholar
  139. 140.
    Gaitonde, M. K.: A Fluorimetric Method for the Determination of Tryptophan in Animal Tissues Biochem J 139 625–631 (1974)Google Scholar
  140. 141.
    Gartland, G. L., G. R. Freeman, and C. E. Bugg: Crystal Structures of Tryptamine Picrate and D,L-Tryptophan Picrate-Methanol, Two Indole Donor-Acceptor Complexes. Acta Cryst. B 30, 1841–1849 (1974)Google Scholar
  141. 142.
    Gehrke, C. W., and H. Takeda: Gas-Liquid Chromatographic Analysis of Tryptophan in Proteins. J. Chromat. 76, 77–89 (1973)CrossRefGoogle Scholar
  142. 143.
    Geiger, R., K. Sturm, and W. Siedel: Synthesis of a Biologically Active Tricosapeptide Amide with the Amino Acid Sequence 1–23 of Corticotropin (Acth). Ber. 97, 1207–1213 (1964)CrossRefGoogle Scholar
  143. 144.
    Geiger, R., W. Konig, H. Wissmann, K. Geisen, and F. Enzmann: Synthesis and Characterisation of a Decapeptide Having LH-RH/Fsh-RH Activity. Biochem. Biophys. Res. Commun. 45, 767–773 (1971).CrossRefGoogle Scholar
  144. 145.
    Geric, J. T. C., and R. A. Rimerman: N-Formyl-L-Tryptophan – Chymotrypsin Complex in Solution. Biochem. Biophys. Res. Commun. 40. 1149–1154 (1970)CrossRefGoogle Scholar
  145. 146.
    Glazer, A. N.: Specific Chemical Modification of Proteins. Ann. Rev. Biochem. 39 101–130 (1970)CrossRefGoogle Scholar
  146. 147.
    Glickson, J. D., C. C. Mc Donald, and W. D. Phillips: Assignment of Tryptophan Indole NH Proton Resonance of Lysozyme. Biochem. Biophys. Res. Commun. 35, 492–498 (1969)CrossRefGoogle Scholar
  147. 148.
    Gomyo, T., and M. Fujimaki: Changes of Protein by Dye-sensitized Photooxidation. III. Photodecomposition Products of Lysozyme. Agric. Biol. Chem. Tokyo 34, 302–309 (1970)CrossRefGoogle Scholar
  148. 149.
    Goodman, M., and C. ToNiolo: Conformational Studies of Proteins with Aromatic Side Chain Effects. Bi0p0lymers 6. 1673–1689 (1968)CrossRefGoogle Scholar
  149. 150.
    Goodwin, T. W., and R. A. Morton: Spectrophotometric Determinations of Tyrosine and Tryptophan in Proteins. Biochem. J. 40, 628–632 (1946)Google Scholar
  150. 151.
    Gosztonyi, T., J. Marton, and A. Kovacs: The Labeling of β-lipoprotein with Tritium. Nature (London) 208, 381–382 (1965)CrossRefGoogle Scholar
  151. 152.
    Goswami, A. K.: Determination of Tryptophan and Indole Substances by a Colorimetric Diazotisation Method. Analyst 99, 657–660 (1974)CrossRefGoogle Scholar
  152. 153.
    Green, N. M., and B. Witkop: Oxidation Studies of Indoles and the Tertiary Structure of Proteins. Trans. N. Y. Acad. Sci. 26, 659–669 (1964)CrossRefGoogle Scholar
  153. 154.
    Green, J. P., and J. P. Mabrien: Quantum Chemical Studies of Charge Transfer Complexes of Indoles. Proc. Natl. Acad. Sci. U.S.A. 54, 659–664 (1965)CrossRefGoogle Scholar
  154. 155.
    Green, N. M., and M. D. Melamed: Optical Rotatory Dispersion, Circular Dichroism and Far-Ultraviolet Spectra of Avidin and Streptavidin. J. Biochem. 100, 614–621 (1966)Google Scholar
  155. 156.
    Greenstein, J. P., and M. Winitz: Chemistry of the Amino Acids 3, 2316–2347. New York: J. Wiley. 1961Google Scholar
  156. 157.
    Gruen, L. C.: Effect of other Amino Acids on Recovery of Tryptophan Following Acid Hydrolysis. Aust. J. Biol. Sci. 26, 287–290 (1973)Google Scholar
  157. 158.
    Gruen, L. C., and P. W. Nicholls: Improved Recovery of Tryptophan Following Acid Hydrolysis of Proteins. Anal. Biochem. 47, 348–355 (1972)CrossRefGoogle Scholar
  158. 159.
    Gurnani, S., M. Arifuddin, and K. T. Augusti: Effect of Visible Light on Amino Acids. I. Tryptophan. Photochem. Photobiol. 5, 495–505 (1966)CrossRefGoogle Scholar
  159. 160.
    Hachimori, Y., H. Horinishi, K. Kurihara, and K. Shibata: States of Amino Acid Residues in Proteins. V. Different Reactivities with H2O2 of Tryptophan Residues in Lysozyme, Proteinases, and Zymogens. Biochim. Biophys. Acta 93, 346–360 (1964)CrossRefGoogle Scholar
  160. 161.
    Hachimori, Y., K. Kurihara, H. Horinishi, A. Matsushima, and K. Shibata: States of Amino Acid Residues in Proteins. Viii. Tyrosine, Histidine, and Tryptophan Residues in Chymotrypsin in the Presence of Substrate and in Diisopropylphosphorylchymotrypsin. Biochim. Biophys. Acta 105, 167–177 (1965)CrossRefGoogle Scholar
  161. 162.
    Hartdegen, F. J., and J. A. Rupley: Inactivation of Lysozyme by Iodine. Oxidation of a Single Tryptophan. Biochim. Biophys. Acta 92, 625–627 (1964)Google Scholar
  162. 163.
    Hartdegen, F. J., and J. A. Rupley: Oxidation ot Lysozyme by Iodine: laentification of Oxindolylalanine 108. J. Mol. Biol. 80, 649–656 (1973)CrossRefGoogle Scholar
  163. 164.
    Hayaishi, O., S. Rothberg, A. H. Metler, and Y. Saito: Studies on Oxygenases. Enzymatic Formation of Kynurenine from Tryptophan. J. Biol. Chem. 229, 889–896 (1957)Google Scholar
  164. 165.
    Hayaishi, O.: Enzyme Hydroxylation. Ann. Rev. Biochem. 38, 21–44 (1969)CrossRefGoogle Scholar
  165. 166.
    Heber, H., H. Faulstich, and 1H. Wieland: Syntheses of Furtner Analogues of Norphalloin. Gly1-, L-Val1- and D-Abu2-Norphalloin and (β-Trideutero)-Ala5Norphalloin. Intern. J. Peptide Protein Res. 6, 381–389 (1974)CrossRefGoogle Scholar
  166. 167.
    Heinrichi, C. P., K. Noack, and O. Wiss: Chemical Modification of Tryptophan at the Binding Site of Thiamine Pyrophosphate in Transketolase from Baker’s Yeast. Biochem. Biophys. Res. Commun. 49, 1427–1432 (1972)CrossRefGoogle Scholar
  167. 168.
    Heinrich, C. P., S. Adam, and W. Arnold: The Reaction of Dimethyl (2-Hydroxy5-Nitrobenzyl) Sulfonium Bromide with N-Acetyl-L-Tryptophan Amide. Febs Lett. 33, 181–183 (1973)CrossRefGoogle Scholar
  168. 169.
    Heinrikson, R. L., and K. J. Kramer: Recent Advances in the Chemical Modification and Covalent Structural Analysis of Proteins, in: Progress in Biorganic Chemistry (E. T. Kaiser and F. J. KÉzDY, Eds.), p. 141–250. New York: J. Wiley. 1974Google Scholar
  169. 170.
    Helene, C., J. L. Dimicoli, H. N. Borazan, M. Durand, J. C. Maurizot, and J. J. Taulme: in: Conformation of Biological Molecules and Polymers. Interactions of Aromatic Amino Acids with Nucleic Acids (E. D. Bergmann and B. Pullmann, Eds.), 361–380. Jerusalem: The Israel Academy of Sciences and Humanities. 1973Google Scholar
  170. 171.
    Hermodson, M. A., L. H. Ericsson, H. Neurath, and K. A. Walsh: Determination of the Amino Acid Sequence of Porcine Trypsin by Sequenator Analysis. Biochemistry 12, 3146–3153 (1973)CrossRefGoogle Scholar
  171. 172.
    Herskovits, T. T.: Difference Spectroscopy in Methods in Enzymology, Enzyme Structure (C. H. W. Hirs, Ed.) 11, 748–775. London-New York: Academic Press. 1967Google Scholar
  172. 173.
    Hidenari, Y., F. Morita, and K. Yagi: Interaction of Heavy Meromyosin from Substrate. VI. Difference Absorption Spectra Induced by Atp Analogs and Chemical Modification of Tryptophanyl Residue with 2-hydroxy-5-nitrobenzyl Bromide. J. Biochem. (Tokyo) 72, 1227–1236 (1972)Google Scholar
  173. 174.
    Hill, R. L., and W. R. Schmidt: Complete Enzymic Hydrolysis of Proteins. J. Biol. Chem. 237, 389–396 (1962)Google Scholar
  174. 175.
    Hinnan, R. L., and C. P. Baumann: Reactions of N-Bromosuccinimide and Indoles. A Simple Synthesis of 3-Bromo-oxindoles. J. Org. Chem. 29, 1206–1215 (1964)CrossRefGoogle Scholar
  175. 176.
    Hinman, L. M., C. R. Coan, and D. A. Deranleau: Solution Topography of Proteins by Charge Transfer. Model Complexes, Ribonuclease, and Lysozyme. J. Amer. Chem. Soc. 96, 7067–7073 (1974)CrossRefGoogle Scholar
  176. 177.
    Hino, T., and M. Nakagawa: 1-(3-Methyl-2-Indolyl) Pyridinium Bromide. Synthesis and Autoxidation of its Catalytic Hydrogenation Product. Tetrahedron 23, 1441–1450 (1967)CrossRefGoogle Scholar
  177. 178.
    Hino, T., M. Nakagawa, and S. Akaboshi: 2-Ethoxyindoles and 2-Ethylthioindoles: Their Autoxidation and Reactions with Piperidine. J. C. S. Chem. Commun. 656–658 (1967)Google Scholar
  178. 179.
    Hino, T., and M. Nakagawa: Oxidation-Reduction of 2-Substituted 3-Benzylindoles and 3-Benzylidene-3 H-indoles. Model Reactions for Alcohol Dehydrogenase. J. Amer. Chem. Soc. 91, 4598–4599 (1969)CrossRefGoogle Scholar
  179. 180.
    Hino, T., H. Yamaguchi, and M. Nakagawa: Oxidation of 2-Ethylthioindoles with Hydrogen Peroxide. Oxidative Migration of the Ethylsulphinyl Group. J. C. S. Chem. Commun. 473–474 (1972)Google Scholar
  180. 181.
    HiRoshi, O.: Microbial Formation of L-Tryptophan from D-Tryptophan. Agr. Biol. Chem. 32, 254–256 (1968).CrossRefGoogle Scholar
  181. 182.
    Hirs, C. H. W.: Performic Acid Oxidation, in: Methods in Enzymology (C. H. W. Hirs, Ed.) 11, 197–199. London-New York: Academic Press. 1967Google Scholar
  182. 183.
    Hirs, C. H. W.: Methods in Enzymology 11. London-New York: Academic Press. 1967.Google Scholar
  183. 184.
    Hofmann, K., J. A. Montibeller, and F. M. Finn: Acth Antagonists. Proc. Natl. Acad. Sci. U.S. 71, 80–83 (1974)CrossRefGoogle Scholar
  184. 185.
    Holiday, E. R.: Spectrophotometry of Proteins. I. Absorption Spectra of Tyrosine, Tryptophan and Their Mixtures. Biochem. J. 30, 1795–1799 (1936)Google Scholar
  185. 186.
    Holladay, L. A., R. G. Hammonds, JR., and D. Puett: Growth Hormone Conformation and Conformational Eauilibria. Biochemistry 13, 1653–1661 (1974) , ,.Google Scholar
  186. 187.
    Holmgren, A.: Reversible Chemical Modification of the Tryptophan Residues of Thioredoxin from Escherichia coli B. Eur. J. Biochem. 26, 528–534 (1972)CrossRefGoogle Scholar
  187. 188.
    Holmgren, A.: Tryptophan Fluorescence Study of Conformational Transition of the Oxidized and Reduced Form of Thioredoxin. J. Biol. Chem. 247, 1992–1998 (1972)Google Scholar
  188. 189.
    Effects of Oxidation of Tryptophan Residues in Thioredoxin from Escherichia coli by N-Bromosuccinimide. J. Biol. Chem. 248, 4106–4111 (1973)Google Scholar
  189. 190.
    Holmquist, B., and B. L. Vallee: Tryptophan Quantitation by Magnetic Circular Dichroism in Native and Modified Proteins. Biochemistry 12, 4409–4417 (1973)CrossRefGoogle Scholar
  190. 191.
    Holt, L. A., B. Milligan, and D. F. Rivett: Tritiation of Tryptophyl Residues in Proteins. Biochemistry 10, 3559–3564 (1971)CrossRefGoogle Scholar
  191. 192.
    Holt, L. A., and B. Milligan: Application of Enzymic Hydrolysis and Tritium Labelling to a Study of the Modification of Tryptophyl Residues in Proteins. Aust. J. Biol. Sci. 26, 871–876 (1973)Google Scholar
  192. 193.
    Horton, H. R., and D. E. Koshland, JR.: Environmentally Sensitive Groups Attached to Proteins, in: Methods in Enzymology (C. H. W. Hirs, Ed.) 11, 856–870. London-New York: Academic Press. 1967Google Scholar
  193. 194.
    Horton, H. R., and D. E. Koshland, JR.: Modification of Proteins with Active Benzyl Halides, in: Methods in Enzymology (C. H. W. Hirs and S. N. TiMasheff, Eds.) 11, 468–482. London-New York: Academic Press. 1972Google Scholar
  194. 195.
    Horton, H. R., and G. Young: 2-Acetoxy-5-nitrobenzyl Chloride. A Reagent Designed to Introduce a Reporter Group Near the Active Site of Chymotrypsin. Biochim. Biophys. Acta 194, 272–278 (1969)CrossRefGoogle Scholar
  195. 196.
    Horton, H. R., and W. P. Tucker: Dimethyl (2-hydroxy-5-nitrobenzyl) sulfonium Salts. Water Soluble Environmentally Sensitive Protein Reagents. J. Biol. Chem. 245, 3397–3401 (1970)Google Scholar
  196. 197.
    Hugli, T. E., and S. Moore: Determination of the Tryptophan Content of Proteins by Ion Exchange Chromatography of Alkaline Hydrolysates. J. Biol. Chem. 247, 2828–2834 (1972)Google Scholar
  197. 198.
    Ikeda, K., and K. Hamaguchi: Binding of N1-Methylnicotinamide Chloride to Trp-62 Linked with the Ionization of Glu-35 of Hen Egg-white Lysozyme. J. Biochem. (Tokyo) 74, 221–230 (1973)Google Scholar
  198. 199.
    Imoto, T., F. J. Hartdegen, and J. A. Rupley: Oxidation of Lysozyme by Iodine: Isolation of an Inactive Product and its Conversion to an Oxindolealanine-Lysozyme. J. Mol. Biol. 80, 637–648 (1973)CrossRefGoogle Scholar
  199. 200.
    Imoto, T., and J. A. Rupley: Oxidation of Lysozyme by Iodine: Identification and Properties of an Oxindolyl Ester Intermediate: Evidence for Participation of Glutamic Acid 35 in Catalysis. J. Mol. Biol. 80. 657–667 (1973)CrossRefGoogle Scholar
  200. 201.
    Inoue, M., and H. Hayatsu: Interactions between Bisulfite and Amino Acids. Formation of Methionine Sulfoxide from Methionine in the Presence of Oxygen. Chem. Pharm. Bull. 19, 1286–1289 (1971)CrossRefGoogle Scholar
  201. 202.
    IRiE, M.: State of Tryptophan Residue in Ribonuclease T1 and Carboxymethyl Ribonuclease T1. J. Biochem. 68. 31–37 (1970)Google Scholar
  202. 203.
    Irie, M., M. Harada, and F. Sawada: State of Tryptophan Residues in Ribonuclease from Aspergillus Saitoi. J. Biochem. 72, 1351–1359 (1972)Google Scholar
  203. 204.
    Isbell, B. E., C. Rice-Evans, and G. H. Beaven: The Conformation of Gramicidin A in Solution. Febs Letters 25, 192–196 (1972)CrossRefGoogle Scholar
  204. 205.
    Jacobsen, C.: Chemical Modification of the High-Affinity Bilirubin Binding Site of Human Serum Albumin. Eur. J. Biochem. 27, 513–519 (1972)CrossRefGoogle Scholar
  205. 206.
    Jayson, G. G., G. Scholes, and J. Weiss: Formation of Formylkynurenine by the Action of X-Rays on Tryptophan in Aqueous Solution. Biochem. J. 57, 386–390 (1954)Google Scholar
  206. 207.
    Jackson, A. H., B. Naidor, and P. Smitgh: Electrophilic Substitution in Indoles. IV. The Cyclization of Indolyl-butanole to Tetrahydrocarbazole. Tetrahedron 24, 6119–6129 (1968)CrossRefGoogle Scholar
  207. 208.
    Jackson, A. H., and A. E. Smith: Electrophilic Substitution in Indoles. I. Model Experiments Related to the Synthesis of Echinulin. Tetrahedron 21, 989–1000 (1965)CrossRefGoogle Scholar
  208. 209.
    Jerina, D. M., J. W. Daly, B. Witkop, P. Zaltzman-Niremberg, and S. Udenfriend: The Role of Arene Oxide-Oxepin System in the Metabolism of Aromatic Substrates. Formation of 1,2-Naphthalene Oxide from Naphthalene by Liver Microsomes. J. Amer. Chem. Soc. 90, 6525–6527 (1968)CrossRefGoogle Scholar
  209. 210.
    Jorkasky, D. K., S. E. Pearson, and C. L. Borders, Jr.: Reversible Inactivation of Avian Lysozymes by Dimethyl (2-Hydroxy-5-Nitrobenzyl)-Sulfonium Bromide. Biochem. Biophys. Res. Commun. 52, 987–991 (1973)CrossRefGoogle Scholar
  210. 211.
    Jori, G., M. FoliN, G. Gennari, G. Galiazzo, and O. BUso: Photooxidation of Lanthanide Ion-Lysozyme Complexes. A New Approach to the Evaluation of Intramolecular Distances in Proteins. Photochem. Photobiol. 19, 419–434 (1974)CrossRefGoogle Scholar
  211. 212.
    Jori, G., and G. Galiazzo: Proflavine-Sensitized Selective Photooxidation of the Tryptophyl Residues in Papain. Photochem. Photobiol. 14, 607–619 (1971) and references therein.Google Scholar
  212. 213.
    Jori, G., and G. Galiazzo: The Contribution of the Single Tryptophyl Residues to the Fluorescence Emission of Porcine Elastase. Z. Naturforsch. 29b, 261–265 (1974)Google Scholar
  213. 214.
    JoRI, G., G. Galiazzo, and O. BUsO: Photosensitized Oxidation of Elastase. Selective Modification of the Tryptophyl Residues. Arch. Biochem. Biophys. 158, 116–125 (1973)CrossRefGoogle Scholar
  214. 215.
    JoRI, G., G. Galiazzo, and G. Gennari: Photosensitized Conversion of Tryptophan to β-carboline Derivatives. Photochem. Photobiol. 9, 179–181 (1969)CrossRefGoogle Scholar
  215. 216.
    Jorkasky, D. K., S. E. Pearson, and C. L. Borders: Reversible Inactivation of Avian Lysozymes by Dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium Bromide. Biochem. Biophys. Res. Commun. 52, 987–991 (1973)CrossRefGoogle Scholar
  216. 217.
    Julian, P. L., E. W. Meyer, and H. C. Printy: The Chemistry of Indoles, in Heterocyclic Compounds (R. C. Elderfield) 3, 1–271. New York: J. Wiley. 1952Google Scholar
  217. 218.
    Julian, P. L., E. E. Dailey, H. C. Printy, H. L. Cohen, and S. Hamashige: Studies in the Indole. Series Xvi. Oxindole-3-alanine and Dioxindole-3-alanine. J. Amer. Chem. Soc. 78, 3503–3508 (1956)Google Scholar
  218. 219.
    Juneja, K. K., A. D. Sule, and V. B. Chipalkatti: Estimation of Tryptophan Content of Wool by the Barium Hydroxide Hydrolysis Method. Text. Res. J. 38, 461–466 (1968)CrossRefGoogle Scholar
  219. 220.
    Kanaoka, Y., E. Sato, and O. Yonemitsu: Amino Acids and Peptides. 11. Cyclodehydration of Some Tryptophan-Dipeptides and their Derivatives with Polyphosphate Ester. Tetrahedron 24, 2591–2594 (1968)CrossRefGoogle Scholar
  220. 221.
    Kantouch, A. A., and A. Bendak: Action of Periodic Acid and its Salts on Wool. II. Amino Acids in Periodate-oxidized Wool. Text. Res. J. 39, 851–858 (1969)Google Scholar
  221. 222.
    Katrukha, G. S., N. Zylber, and V. Keil-Dlouha: Influence of the Substitution of Tryptophan-215 in Bovine Chymotrypsinogen A on its Potential Enzymic Activity. Febs Lett. 29, 25–30 (1973)CrossRefGoogle Scholar
  222. 223.
    Kawauchi, H., T. A. Bewley, and C. H. LI: Selective Modification of Tryptophan149 in Ovine Pituitary Lactogenic Hormone. Biochemistry 12, 2124–2130 (1973)CrossRefGoogle Scholar
  223. 224.
    Kearns, D. R.: Physical Chemical Properties of Singlet Molecular Oxygen. Chem. Reviews 71, 395–427 (1971).Google Scholar
  224. 225.
    Kirby, G. W., and M. J. Varley: Synthesis of Tryptophan Stereoselectively Labelled with Tritium and Deuterium in the β-Methylene Group; the Steric Course of Hydroxylation in Sporidesmin Biosynthesis. J. C. S. Chem. Comm. 833–834 (1974)Google Scholar
  225. 226.
    Kobayashi, T., and N. Inokuchi: A New Method for the Preparation of Oxindoles from Parent Indoles. Tetrahedron 20, 2055–2058 (1964)CrossRefGoogle Scholar
  226. 227.
    Komachiya, Y., S. Suzuki, T. Yamada, H. Miyayashiki, and S. Sakurai: Dltryptophan. Nippon Kagaki Zasshi 86, 856–860 (1965)CrossRefGoogle Scholar
  227. 228.
    Korte, K., and U. Schmidt: Syntheses in the Adermine Series IV. Mechanism of the Cysteine and Tryptophan Biosynthesis. Monatsh. Chem. 102, 207–213 (1971)CrossRefGoogle Scholar
  228. 229.
    Kravchenko, N. A., and V. K. Lapuk: Isolation and Characteristics of the Products of Selective Photooxidation of Lysozyme Through Tryptophan. Biokhimiya 34, 832–838 (1969)Google Scholar
  229. 230.
    Kronman, M. J., and F. M. Robbins: Buried and Exposed Groups in Proteins, in: Fine Structure of Proteins and Nucleic Acids (G. D. Fasman and S. N. Timasheff, Eds.), Marcel Dekker 1970, 271–408.Google Scholar
  230. 231.
    Kronman, M. J., F. M. Robbins, and R. E. Andreotti: Reaction of N-Bromosuccinimide with Lysozyme. Biochim. Biophys. Acta 147, 462–472 (1967)CrossRefGoogle Scholar
  231. 232.
    Lapuk, V. K., L. A. Chistyakora, and N. A. Kravchenko: Tryptophan Determination in Lysozyme and its Photooxidation Products. Anal. Biochem. 24, 80–89 (1968)CrossRefGoogle Scholar
  232. 233.
    Liu, T.-Y.: Determination of Tryptophan, in: Methods in Enzymology (C. H. W. Hirs and S. N. Timasheff, Eds.) 25, 44–55, London-New York: Academic Press. 1972Google Scholar
  233. 234.
    Liu, T. Y., and Y. H. Chang: Hydrolysis of Proteins with p-Toluenesulfonic Acid. Determination of Tryptophan. J. Biol. Chem. 246, 2842–2848 (1971)Google Scholar
  234. 235.
    Liudskog, S., and H. Nilsson: Location of Tryptophanyl Groups in Human and Bovine Carbonic Anhydrases. Ultraviolet Difference Spectra and Chemical Modification. Biochim. Biophys. Acta 295, 117–130 (1973)CrossRefGoogle Scholar
  235. 236.
    Loudon, G. M., and D. E. Kohsland, JR.: Chemistry of a Reporter Group: 2-Hydroxy-5-nitrobenzyl Bromide. J. Biol. Chem. 245, 2247–2254 (1970)Google Scholar
  236. 237.
    Lowe, G., and A. S. Whitworth: A Kinetic and Fluorimetric Investigation of Papain Modified at Tryptophan-69 and -177 by N-Bromosuccinimide. Biochem. J. 141, 503–515 (1974)Google Scholar
  237. 238.
    Maeda, I., and R. Yoshida: The Reaction Products of the Hydroformylation of Acrolein Acetals and Acetates. Bull. Chem. Soc. Japan 41, 2969–2974 (1968)CrossRefGoogle Scholar
  238. 239.
    Maeda, I., and R. Yoshida: Synthesis of DL-Tryptophan from Acrolein. Bull. Chem. Soc. Japan 41, 2975–2978 (1968)CrossRefGoogle Scholar
  239. 240.
    Maeda, H., and J. Meienhofer: On the Tryptophan Content of Neocarzinostatin. Int. J. Protein Res. 2, 135–136 (1970)CrossRefGoogle Scholar
  240. 241.
    Maeda, H.: Chemical Reactivity and State of Tryptophan Residues in Neocarzinostatin under Physiological Conditions. J. Antibiot. 26, 776–777 (1973)CrossRefGoogle Scholar
  241. 242.
    Maeda, K., T. Mishima, and T. Hagachi: The Formation of Substituted Quinazolines from Substituted Indoles by the Sensitized Photo-oxygenation in the Presence of Ammonium Acetate. Bull. Chem. Soc. Japan 47, 334–338 (1974)CrossRefGoogle Scholar
  242. 243.
    Maigret, B., B. Pullman, and D. Perahia: Molecular Orbital Calculations of the Conformation of Polypeptides and Proteins. II. Conformational Energy Maps and Stereochemical Rotational States of Aromatic Residues. Biopolymers 10, 107–128 (1971).Google Scholar
  243. 244.
    Mandel, M.: Proton Magnetic Resonance Spectra of Some Proteins. I. Ribonuclease, Oxidized Ribonuclease, Lysozyme and Cytochrome C. J. Biol. Chem. 240, 1586–1592 (1965)Google Scholar
  244. 245.
    Mann, S.: Quinazoline Derivatives in Pseudomonas Aeruginosa. Arch. Mikrobiol. 56, 324–329 (1967)CrossRefGoogle Scholar
  245. 246.
    Marche, P., J.-P. Girma, J.-L. Morgat, and P. Fromageot: Specific Tritiation of Indole Derivatives by Catalytic Desulfenylation. Application to the Labelling of Tryptophan Containing Peptides. Eur. J. Biochem. 50, 375–382 (1975)Google Scholar
  246. 247.
    Marche, P., J. L. Morgat, and P. Fromageot: Solvent Effects on Luteinizingand Follicle-Stimulating-Hormone Releasing Factor. Polymorphism Studied by Circular Dichroism. Eur. J. Biochem. 40, 513–518 (1973).Google Scholar
  247. 248.
    Marshall, G. R.: Studies with Tryptophan in Solid-Phase Synthesis. In: Adv. Exp. Med. Biol. (N. Back, L. Martini, and R. Paoletti, Eds.), II, Pharmacology of Hormonal Polypeptides and Proteins, 48–58. New York: Plenum Press. 1968Google Scholar
  248. 249.
    Matsubara, H., and R. M. Sasakc. High Recovery of Tryptophan from Acid Hydrolyzates of Proteins. Biochem. Biophys. Res. Commun. 35, 175–181 (1969)Google Scholar
  249. 250.
    Matsunaga, Y.: Charge-Transfer and Proton-Transfer in the Formation of Molecular Complexes. V. Tryptophan Picrate. Bull. Chem. Soc. Japan. 46, 998–999 (1973)CrossRefGoogle Scholar
  250. 251.
    Matsuo, H., A. Arimura, R. M. G. Nair, and A. V. Schally: Synthesis of the Porcine LH- and Fsh-releasing Hormone by the Solid-phase Method. Biochem. Biophys. Res. Commun. 45, 822–827 (1971)CrossRefGoogle Scholar
  251. 252.
    MC Donald, C. C., and W. D. Phillips: Proton Magnetic Resonance Studies of Horse Cytochrome c. Biochemistry 12, 3170–3186 (1973)CrossRefGoogle Scholar
  252. 253.
    MC Farland, G., B. Y. Inoue, and K. Nakanishi: The Reaction of Koshland’s Protein Reagent with Tryptophan. Tetrahedron Letters 857–860 (1969)Google Scholar
  253. 254.
    MC Farland, T. M., and J. E. COlEman: Magnetic Circular Dichroism of Tryptophanyl Residues in Proteins. Azurin and Carbonic Anhydrase. Eur. J. Biochem. 29, 521–527 (1972)CrossRefGoogle Scholar
  254. 255.
    Mclaren, A. D.: Photochemistry of Enzymes, Proteins and Viruses. Adv. Enzymology 9, 75–170 (1969)Google Scholar
  255. 256.
    Mclean, S., and G. I. Dimitrienko: Autooxidation of 2,3-Dialkylindoles. Can. J. Chem. 49, 3642–3647 (1971)CrossRefGoogle Scholar
  256. 257.
    Merrifield, R. B.: Solid-phase Peptide Synthesis. Adv. in Enzymology 32, 221–296 (1969)Google Scholar
  257. 258.
    Messineo, L., and E. Musarra: A Sensitive Spectrophotometric Method for the Determination of Free or Bound Tryptophan. Intern. J. Biochem. 3, 700–704 (1972)CrossRefGoogle Scholar
  258. 259.
    Mingoia, Q.: On Arsenical Derivatives of Pyrrole and Indole. Gazz. Chim. Ital. 60, 134–140 (1930)Google Scholar
  259. 260.
    Mole, J. E., and H. R. Horton: 2-Chloromethyl-4-nitrophenyl (N-Carbobenzoxy) glycinate. A New Reagent Designed to Introduce an Environmentally Sensitive Conformational Probe near the Active Site of Papain. Biochemistry 12, 5278–5285 (1973)CrossRefGoogle Scholar
  260. 261.
    Monahan, M. W., and J. Rivier: Luteinizing Hormone Releasing Factor. The Total Solid-phase Synthesis on a Benzhydrylamine Polymer. Biochem. Biophys. Res. Commun. 48, 1100–1105 (1972)CrossRefGoogle Scholar
  261. 262.
    Mondino, A., and G. Bongiovanni : Experimental Study of Amino Acid Degradation Under Open Flask Hydrolytic Conditions. J. Chromat. 52, 405–413 (1970)CrossRefGoogle Scholar
  262. 263.
    Moon, K., and E. L. Smith: Sequence of Bovine Liver Glutamate Dehydrogenase. III. Peptides Produced by Specific Chemical Cleavages; the Complete Sequence of the Protein. J. Biol. Chem. 238, 3082–3088 (1973)Google Scholar
  263. 264.
    Morihara, K., and K. Nagami: Tryptophan Residue in the Active Site of Papain. J. Biochem. (Tokyo) 65, 321–323 (1969)Google Scholar
  264. 265.
    Morishita, M., and F. Sakkiyama: The non-enzymatic Cleavage of Peptide Bonds. H. The Chemical Cleavage of the Tryptophyl Bond in Several Synthetic Peptides. Bull. Chem. Soc. Japan 43, 524–530 (1970)CrossRefGoogle Scholar
  265. 266.
    Morishita, M., F. Sakiyama, and K. Narita: The Chemical Cleavage of the Tryptophyl Bond. Bull. Chem. Soc. Japan 40, 433–435 (1967)CrossRefGoogle Scholar
  266. 267.
    Morley, J. S.: Polypeptides. Part IV. Synthesis of Human Gastrin (HI). J. Chem. Soc. c 22, 2410–2421 (1967)Google Scholar
  267. 268.
    Moroder, L., G. Borin, F. Marchiori, and E. Scoffone: Synthetic Peptides Related to the Entire Sequence of Yeast Iso-l-cytochrome c. Biopolymers 11, 2191–2194 (1972).Google Scholar
  268. 269.
    Morris, A. J., A. J. Geddes, and B. Sheldrick: Cyclo-glycyl-tryptophyl, C13H13N3O2. Cryst. Struct. Commun. 3, 345–349 (1974)Google Scholar
  269. 270.
    Mulvey, R. S., and S. Beychok: Further Studies on the Circular Dichroism of Human Lysozyme. Implications for Structure and Comparison of Predicted Secondary Structures in Homologous Lysozymes. Biochemistry 13, 2980–2985 (1974)CrossRefGoogle Scholar
  270. 271.
    Myer, Y. P., and L. H. Macdonald: The Circular Dichroism of L-Tryptophan by an Improved Dichrograph. J. Amer. Chem. Soc. 89, 7142–7144 (1967)CrossRefGoogle Scholar
  271. 272.
    Myer, Y. P., and P. K. Pal: Conformation of Cytochromes. Viii. Spectroscopic Properties of N-Bromosuccinimide-modified Horse Heart Cytochrome C. Biochemistry 11, 4205–4216 (1972)Google Scholar
  272. 273.
    Nakagawa, M., and T. Hino: 2-Ethoxy and 2-Ethylthioindoles. Autoxidation and Nucleophilic Substitutions. Tetrahedron 26, 4491–4503 (1970)CrossRefGoogle Scholar
  273. 274.
    Nakagawa, M., T. Kaneko, H. Yamagughi, T. Kawashima, and T. Hino: Photoinduced Oxygenation of Tryptamines by Aromatic Amine N-Oxides. Tetrahedron 30, 2591–2600 (1974)Google Scholar
  274. 275.
    Nakagawa, M., T. Kaneko, K. Yoshikawa, and T. Hino: Photosensitized Oxygenation of Tryptophan Methyl Ester and Nb-Methyltryptamine. Isolation and Identi fication of 3a-Hydroxypyrroloindole and 4a-Hydroxy-1,2-oxazinoindole. J. Amer. Chem. Soc. 96, 624–625 (1974)CrossRefGoogle Scholar
  275. 276.
    Nakagawa, M., H. Yamaguchi, and T. Hino: Autoxidation of Indoles Having a Hetero-Atom at 2-Position. Decomposition of the Intermediate 3-Hydroperoxide. Tetrahedron Letters 47, 4035–4038 (1970)CrossRefGoogle Scholar
  276. 277.
    Nakamura, A., and O. Jardetzky: Systematic Analysis of Chemical Shifts in the Nuclear Magnetic Resonance Spectra of Peptide Chains. I. Glycine-Containing Peptides. Proc. Nat. Acad. Sci. U.S. 58, 2212–2219 (1967)CrossRefGoogle Scholar
  277. 278.
    Nedkov, P., and B. Meloun: Modification of Tryptophan and Tyrosine Residues of Dolphin Myoglobin. Collect. Czech. Chem. Commun. 34, 2021–2029 (1969)CrossRefGoogle Scholar
  278. 279.
    Neumann, N. P.: Oxidation with Hydrogen Peroxide, in: Methods in Enzymology (C. H. W. Hirs and S. N. Timasheff, Eds.) 25, 393–401. New York: Academic Press. 1972Google Scholar
  279. 280.
    Norman, R. O. C., and R. Taylor: Electrophilic Substitution in Benzenoid Compounds, p.282. Amsterdam: Elsevier. 1965Google Scholar
  280. 281.
    Oelshlegel, F. J., JR., J. R. Schroeder, and M. A. Stahmann: Simple Procedure for Basic Hydrolysis of Proteins and Rapid Determination of Tryptophan Using a Starch Column. Anal. Biochem. 34, 331–337 (1970)Google Scholar
  281. 282.
    O’Hern, D. J., P. K. Pal, and Y. P. Myer: Conformational and Functional Studies of Chemically Modified Cytochromes: N-Bromosuccinimide- and Formyl-Cytochromes C. Biochemistry 14, 382–391 (1975)CrossRefGoogle Scholar
  282. 283.
    Ohno, M.: personal communication, reported in ref. [124].Google Scholar
  283. 284.
    Ohno, M., T. F. Spande, and B. Witkop: Cyclization of Tryptophan and Tryptamine Derivatives to 2,3-Dihydropyrrolo [2,3-b] indoles. J. Amer. Chem. Soc. 92, 343–348 (1970)CrossRefGoogle Scholar
  284. 285.
    Ohno, M., T. F. Spande, and B. Witkop: A New Practical Synthesis of L-2-Hydroxytryptophan and Its Derivatives. J. Org. Chem. 39, 2635–2637 (1974)CrossRefGoogle Scholar
  285. 286.
    Ohno, M., S. Tsukamoto, S. Sato, and N. Izumiya: Improved Solid-Phase Synthesis of Tryptophan-Containing Peptides. 11. Use of N’-t-Butyloxycarbonyl-N’formyltryptophan. Bull. Chem. Soc. Japan. 46, 3280–3285 (1973)CrossRefGoogle Scholar
  286. 287.
    Olcott, H. S., and H. Fraenkel-Conrat: Formation and Loss of Cysteine During Acid Hydrolysis of Proteins. Role of Tryptophan. J. Biol. Chem. 171, 583–594 (1947)Google Scholar
  287. 288.
    Oldfield, E., and A. Allerhand: Identification of Tryptophan Resonance in Natural Abundance Carbon-13 Nuclear Magnetic Resonance Spectra of Proteins. Application of Partially Relaxed Fourier Trasform Spectroscopy. J. Amer. Chem. Soc. 97, 221–224 (1975)CrossRefGoogle Scholar
  288. 289.
    Omenn, G. S., A. Fontana, and C. B. Anfinsen: Modification of the Single Tryptophan Residue in Staphylococcal Nuclease by a New Mild Oxidizing Agent. J. Biol. Chem. 245, 1895–1902 (1970)Google Scholar
  289. 290.
    Omenn, G. S., and I. Parikh: Modification of Staphylococcal Nuclease with Nitrophenylsulfenyl Halides. Biochemistry 10, 1173–1177 (1971)CrossRefGoogle Scholar
  290. 291.
    Ottenheym, J. H.: Status and Prospects for Amino Acid Production by Chemical Synthesis, in: Amino Acid Fortification Protein Foods, Rep. Intern. Conf. 2, 449–466 (1969)Google Scholar
  291. 292.
    Overby, L. R.: Reciprocal Resolution of DL-tryptophan and DL-α-phenylethylamine. J. Org. Chem. 23, 1393–1394 (1958)CrossRefGoogle Scholar
  292. 293.
    Pailthope, M. T., and C. H. Nicholls: Indole Nitrogen-Hydrogen Bond Fission During the Photolysis of Tryptophan. Photochem. Photobiol. 14, 135–145 (1971)CrossRefGoogle Scholar
  293. 294.
    Pasternak, R. A.: The Crystal Structure of Glycyl-L-Tryptophan Dihydrate. Acta Cryst. 9, 341–349 (1956)CrossRefGoogle Scholar
  294. 295.
    Patchornik, A., W. B. Lawson, E. Gross, and B. Witkop: The Use of N- Bromosuccinimide and N-Bromoacctamide for the Selective Cleavage of C-Tryptophyl Peptide Bonds in Model Peptides and Glucagon. J. Amer. Chem. Soc. 82, 5923–5927 (1960)CrossRefGoogle Scholar
  295. 296.
    Patel, D. J., L. Kampa, R. G. Shulman, T. Yamane, and B. J. Wyluda: Proton Nuclear Magnetic Resonance Studies of Myoglobin in Water. Proc. Nat. Acad. Sci. U.S. 67, 1109–1115 (1970)CrossRefGoogle Scholar
  296. 297.
    Peggion, E., A. Cosani, A. S. Verdini, A. Del Pra, and M. Mammi: Conformational Studies on Poly-L-Tryptophan: Circular Dichroism and X-Ray Diffraction Studies. Biopolymers 6, 1477 1486 (1968)Google Scholar
  297. 298.
    Peggion, E., A. Fontana, and A. Cosani: Conformational Studies on a Modified Poly-L-Tryptophan: Circular Dichroism and Optical Rotatory Dispersion of Poly2-(2-nitrophenylsulfenyl)-L-tryptophan and of Random Copolymers of L-Tryptophan and 2-(2-Nitrophenylsulfeny1)-L-tryptophan. Biopolymers 7, 517–526 (1969)CrossRefGoogle Scholar
  298. 299.
    Penke, B., R. Ferenczi, and K. Kovacs: A New Acid Hydrolysis Method for Determining Tryptophan in Peptides and Proteins. Anal. Biochem. 60, 45–50 (1974)CrossRefGoogle Scholar
  299. 300.
    Peter, G., and B. Rajewsky: The Indirect Action of X-Rays on Amino Acids. II. Irradiation of Tryptophan. Z. Naturforsch. 18b, 110–114 (1969)Google Scholar
  300. 301.
    Pfaender, P., G. Feige, and TH. Wieland: Indole zum Vergleich mit AmanitaGiften. VI. Hydroxylierung von Tryptophan und Tryptophyl-peptiden. Z. Naturforsch. 23b, 926–930 (1968)Google Scholar
  301. 302.
    Phillips, D. C.: The Hen Egg-white Lysozyme Molecule. Proc. Nat. Acad. Sci. U.S. 57, 484–495 (1967)CrossRefGoogle Scholar
  302. 303.
    Pirie, A.: Formation of N’-Formylkynuremine in Proteins from Lens and Other Sources by Exposure to Sunlight. Biochem. J. 125, 203–208 (1971)Google Scholar
  303. 304.
    Pirie, A., and K. J. Dilley: Photo-Oxidation of N’-Formylkynurenine and Tryptophan Peptides by Sunlight or Simulated Sunlight. Photochem. Photobiol. 19, 115–118 (1974)CrossRefGoogle Scholar
  304. 305.
    Pisano, J. J.: Gas-Liquid Chromatography (Glc) of Amino Acid Derivatives, in: Methods in Enzymology (C. H. W. Hirs and S. N. Timashefe, Eds.) 25, 27–44. London-New York: Academic Press. 1972Google Scholar
  305. 306.
    Previero, A., and E. Bordignon: Controlled Modification of Tryptophan, Methionine, Cystine and Tyrosine in Peptides and Proteins. Gazz. Chim. Ital. 94, 630–638 (1964)Google Scholar
  306. 307.
    Previero, A., M. A. Coletti, and L. Galzigna: Modification of Tryptophan Residues in Trypsin, α-Chymotrypsin and Pepsinogen. Biochem. Biophys. Res. Commun. 16, 195–198 (1964)CrossRefGoogle Scholar
  307. 308.
    Previero, A., M. A. Coletti-Previero, and P. JolliÈS: Nonenzymic Cleavage of Tryptophyl Peptide Bonds in Peptides and Proteins. II. Release of a Chemically Modified Tryptophan Residue from Model Peptides by a Mild Basic Treatment. Biochim. Biophys. Acta 124, 400–402 (1966)CrossRefGoogle Scholar
  308. 309.
    Previero, A., M. A. Coletti-Previero, and P. JolliÈS: Localization of Non-Essential Tryptophan Residues for the Biological Activity of Lysozyme. J. Mol. Biol. 24, 261–268 (1967)Google Scholar
  309. 310.
    Previero, A., M. A. Coletti-Previero, and J. C. Cavadore: A Reversible Chemical Modification of the Tryptophan Residue. Biochim. Biophys. Acta 147, 453–461 (1967)CrossRefGoogle Scholar
  310. 311.
    Previero, A., M. A. Coletti-Previero, and P. JollÈS: Nonenzymatic Cleavage of Tryptophyl Peptide Bonds in Peptides and Proteins. I. Cleavage of C-tryptophyl Peptide Bonds in Model Peptides through their Conversion into N-Formylkynurenine Derivatives. Biochem. Biophys. Res. Commun. 22, 17–21 (1966)CrossRefGoogle Scholar
  311. 312.
    Previero, A., G. Prota, and M. A. Coletti-Previero: C-Acylation of the Tryptophan lndole Ring and its Usefulness in Protein Chemistry. Biochim. Biophys. Acta 285, 269–278 (1972)CrossRefGoogle Scholar
  312. 313.
    Previero, A., E. Scoffone, C. A. Benassi, and P. Pajetta: Modification of Tryptophan Residues in Peptides. Gazz. Chim. Ital. 93, 849–858 (1963)Google Scholar
  313. 314.
    Ponnuswamy, P. K., and V. Sasisekharan: Conformation of Amino Acids. V. Conformation of Amino Acids with δ-Atoms. Intern. J. Protein Res. 3, 9–18 (1971)CrossRefGoogle Scholar
  314. 315.
    Paulos, T. L., and P. A. Price: Identification of a Tryptophan Residue Essential to the Catalytic Activity of Bovine Pancreatic Deoxyribonuclease. J. Biol. Chem. 246, 4041–4045 (1971)Google Scholar
  315. 316.
    Ramachandran, L. K., and B. Witkkop: N-Bromosuccinimide Cleavage of Peptides, in: Methods in Enzymology (C. H. W. Hirs, Ed.) 11, 283–299. London-New York: Academic Press. 1967Google Scholar
  316. 317.
    Ramachandran, J., and V. Lee: Preparation and Properties of the o-Nitrophenyl Sulfenyl Derivative of Acth: An Inhibitor of the Lipolytic Action of the Hormone. Biochem. Biophys. Res. Commun. 38, 507–512 (1970)CrossRefGoogle Scholar
  317. 318.
    Ramamurthy, T. V., and L. Pichat: Preparation of High Specific Activity Dltryptophan-2,3-T and Its Resolution to L-Tryptophan-2,3-T. J. Label. Compounds 9, 325–330 (1973)CrossRefGoogle Scholar
  318. 319.
    Ray, W. J., JR.: Photochemical Oxidation, in: Methods in Enzymology (C. H. W. Hirs, Ed.) 11, 490–497. London-New York: Academic Press. 1967Google Scholar
  319. 320.
    Reiss, A., and A. Lukton: Reactivation of Lysozyme from Inactive Hnb-Lysozyme. Biorganic Chem. 4, 1–21 (1975)CrossRefGoogle Scholar
  320. 321.
    Richards, R. E., and N. A. Thomas: A Nitrogen-14 Nuclear Magnetic Resonance Study of Amino Acids, Peptides and other Biologically Interesting Molecules. I. Chem. Soc., Perkin II, 368–374 (1974)Google Scholar
  321. 322.
    Ridd, J. H.: Heteroaromatic Reactivity. Phys. Methods Heterocyclic Chem. 1, 109–160 (1963)Google Scholar
  322. 323.
    Riggle, W. L., J. A. Lang, and C. L. Borders, JR.: Reaction of Turkey Egg-white Lysozyme with Tnm. Modification of Tyrosin and Tryptophan. Can. J. Biochem. 51, 1433–1439 (1973)CrossRefGoogle Scholar
  323. 324.
    Riniker, B., M. Brugger, B. Kamber, P. Sieber, and W. Rittel: Thyrocalcitonin. IV. Die Totalsynthese des α-Thyrocalcitonins. Helv. Chim. Acta 52, 1058–1073 (1969)CrossRefGoogle Scholar
  324. 325.
    Rivaille, R., A. Robinson, M. Kamen, and G. Milhand: Synthese en Phase Solide de l’Hormone de Liberation de 1’Hormone Luteotrophique (LM-RH). Helv. Chim. Acta 54, 2772–2775 (1971)CrossRefGoogle Scholar
  325. 326.
    Rrvetrr, D. E., and J. F. K. Wilshire: The Periodate Oxidation of Tryptophan and Some Related Compounds. Aust. J. Chem. 24, 2717–2722 (1971)CrossRefGoogle Scholar
  326. 327.
    Rivett, D. E.: personal communication.Google Scholar
  327. 328.
    Robbins, F. M., and L. G. Holmes: Binding of N-Methylnicotinamide Chloride by Tryptophan Residues of α-Lactalbumin. J. Biol. Chem. 247, 3062–3065 (1972)Google Scholar
  328. 329.
    Robinson, G. W.: Reaction of a Specific Tryptophan Residue in Streptococcal Proteinase with 2-Hydroxy-5-nitrobenzyl Bromide. J. Biol. Chem. 245, 4832–4841 (1970)Google Scholar
  329. 330.
    Rosen, C. G., T. Gejuall, and L. O. Andersson: Reaction of Diethyl Pyrocarbonate with Indole Derivatives with Special Reference to the Reaction with Tryptophan Residues in a Protein. Biochim. Biophys. Acta. 221, 207–213 (1970)CrossRefGoogle Scholar
  330. 331.
    Ruban, E. L., N. S. Mamulina, and N. I. Yukhanova: Transformation of Dtryptophan into L-Tryptophan by Flavobacterium Butyri 331. Izv. Akad. Nauk Sssr, Ser. Biol. 150–153 (1972)Google Scholar
  331. 332.
    Sakamura, S., and Y. Obata: A New Chemical Method for the Preparation of Kynurenine by Oxidation with Peracetic Acid. Nippon Nogei-Kagaku Kaishi (Chem. Abstr. 52, 20296a, 1955) 29, 817–819 (1955)CrossRefGoogle Scholar
  332. 333.
    Sakiyama, F., and N. Masuda: Chemical Cleavage of the Peptide Bond at the Tryptophan Residue. Improved Method. Chem. Lett. 9, 949–952 (1973)CrossRefGoogle Scholar
  333. 334.
    Samy, T. S. A., M. Atrey, H. Maeda, and J. Meienhofer: Selective Tryptophan Oxidation in the Antitumor Protein Neocarzinostatin and Effects on Conformational and Biological Activity. Biochemistry 13, 1007–1014 (1974)Google Scholar
  334. 335.
    Santarius, K., und H. D. Belitz: Eine einfache Methode zur TryptophanBestimmung in Proteinen. Z. Lebensmittel-Unters. und Forsch. 150, 280–282 (1973)CrossRefGoogle Scholar
  335. 336.
    Sarges, R., and B. Witkop: Gramicidin A. VI. The Synthesis of Valine- and Isoleucine-gramicidin A. J. Amer. Chem. Soc. 87, 2020–2027 (1965).Google Scholar
  336. 337.
    Sasisekharan, V., and P. K. Ponnyswamy: Studies on the Conformation of Amino Acids. X. Conformations of Norvalyl, Leucyl and Aromatic Side Group in a Dipeptide Unit. Biopolymers. 10, 583–592 (1971)CrossRefGoogle Scholar
  337. 338.
    Savige, W. E.: Isolation and Identification of Some Photo-Oxidation. Products of Tryptophan. Aust. J. Chem. 24, 1285–1293 (1971)CrossRefGoogle Scholar
  338. 339.
    Savige, W. E.: Paper presented at the 5th Int. Wool Text. Res. Conference, Aachen (1975), Schriftenreihe, in press.Google Scholar
  339. 340.
    Savige, W. E.: New Oxidation Products of Tryptophan. Aust. J. Chem. 28, 2275–2283 (1975)CrossRefGoogle Scholar
  340. 341.
    Schechter, Y., Y. Burstein, and A. Patchornik: Sulfenylation of Tryptophan-62 in Hen Egg White Lysozyme. Biochemistry 11, 653–660 (1972)CrossRefGoogle Scholar
  341. 342.
    Schellenberg, K. A., and G. W. Mc Lean: Titration of Malate Dehydrogenase with 2-Hydroxy-5-nitrobenzyl Bromide. Biochim. Biophys. Acta 191, 727–728 (1969)CrossRefGoogle Scholar
  342. 343.
    Schellenberg, K. A.: Evidence for the Participation of Tryptophan as Intermediate in Transfer of Hydrogen between Diphosphopyridine Nucleotide and Substrate in Yeast Alcohol Dehydrogenase. J. Biol. Chem. 240, 1165–1169 (1965)Google Scholar
  343. 344.
    Schellenberg, K. A.: Participation of Tryptophan Residues in Dehydrogenase Action. II. Position of Tritium-labelled Hydrogen in Yeast Alcohol Dehydrogenase after various Means of Inactivation and Hydrolysis. J. Biol. Chem. 241, 2446–2452 (1966)Google Scholar
  344. 345.
    Schellenberg, K. A.: Tryptophan as Intermediate in Dehydrogenase Action. III. Evidence for Complete Cycle of Hydrogen Transfer between Substrate and Tryptophanyl Residues in Rabbit Muscle Lactate Dehydrogenase. J. Biol. Chem. 242, 1815–1820 (1967)Google Scholar
  345. 346.
    Schlessinger, J., A. Grafui, and I. Z. Steinberg: Optical Rotatory Power in the Ground State and Electronically Excited State of Diketopiperazines Containing Aromatic Side Chains. J. Amer. Chem. Soc. 96, 7396–7400 (1974).Google Scholar
  346. 347.
    Schlessinger, J., R. S. Roche, and I. Z. Steinberg: A Study of Subtilisin Type Novo and Carlsberg by Circular Polarization of Fluorescence. Biochemistry 14, 255–262 (1975)CrossRefGoogle Scholar
  347. 348.
    Schmir, G., L. Cohen, and B. Witkop: The oxidative Cleavage of Tyrosyl-Peptide Bonds. I. Cleavage of Dipeptides and Some Properties of the Resulting SpirodienoneLactones. J. Amer. Chem. Soc. 81, 2228–2233 (1959)CrossRefGoogle Scholar
  348. 349.
    Schroder, E., and K. LÜBke: Synthese von Peptiden und Peptidwirkstoffen, in: Progress in the Chemistry of Organic Natural Compounds (L. Zechmeister, Ed.) 26, 48–1 19. Wien-New York: Springer. 1968Google Scholar
  349. 350.
    Schwyzer, R., and P. Sieber: Total Synthesis of Adrenocorticotropic Hormone. Nature 199, 172–174.Google Scholar
  350. 351.
    Schwyzer, R., and H. Kappeler: Synthesis of a Tetracosapeptide with high corticotropic Activity: βi–24Corticotropin. Helv. Chim. Acta 46, 1550–1572 (1963)CrossRefGoogle Scholar
  351. 352.
    Schwyzer, R., B. Iselin, H. Kappeler, B. Riniker, W. Rittel, and H. Zuber: Synthesis of β-melanotropin (β-Msh) with Amino Acid Sequence of the Bovine Hormone. Helv. Chim. Acta46, 1975–1996 (1963).Google Scholar
  352. 353.
    Scoffone, E., and A. Fontana: Identification of Specific Amino Acid Residues. Protein Sequence Determination. Methods and Techniques (S. B. Needleman, Ed.), p. 185–210. New York: Springer. 1970Google Scholar
  353. 354.
    Scoffone, E., A. Fontana, and R. Rocchi: Sulfenyl Halides as Modifying Reagents for Polypeptides and Proteins. I. Modification of Tryptophan Residue. Biochemistry 7, 971–979 (1968)CrossRefGoogle Scholar
  354. 355.
    Seto, A., S. Sato, and N. Tamiya: Properties and Modification of Tryptophan in a Sea Snake Toxin Erabutoxin a. Biochim. Biophys. Acta 214, 483–489 (1970)CrossRefGoogle Scholar
  355. 356.
    Shaw, J. L. D., and W. D. Mcfarlane: The Determination of Tryptophan by Modified Glyoxylic Acid Method Employing Photoelectric Colorimetry. Can. J. Res. 16 B, 361–368 (1938)Google Scholar
  356. 357.
    Shechter, Y., A. Patchornik, and Y. Burstein: Selective Sulfenylation of Tryptophan Residues in α-Lactalbumin of Bovine Milk. J. Biol. Chem. 249, 413–419 (1974)Google Scholar
  357. 358.
    Sheinblatt, M.: Determination of Amino Acid Sequence in Di- and Tripeptides by Nuclear Magnetic Resonance Techniques. J. Amer. Chem. Soc. 88, 2845–2848 (1966)CrossRefGoogle Scholar
  358. 359.
    Shelton, K. R., and K. S. Rogers: Tryptophanyl Fluorescence of Sodium Dodecyl Sulfate Treated and 2-Mercaptoethanol Reduced Proteins: A simple Assay for Tryptophan. Anal. Biochem. 44, 134–142 (1971)CrossRefGoogle Scholar
  359. 360.
    Shinitzky, M., Y. Dudai, and I. Siluran: Spectral Evidence for the Presence of Tryptophan in the Binding Site of Acetylcholinesterase. Febs Lett. 30, 125–128 (1973)CrossRefGoogle Scholar
  360. 361.
    Skye, G. F., R. Potts, and H. G. Floss: Stereochemistry of the Tryptophan Synthetase Reaction. J. Amer. Chem. Soc. 96, 1593–1595 (1974)CrossRefGoogle Scholar
  361. 362.
    Sievertsson, H., J. K. Chang, C. Bogentoft, B. L. Currie, K. Folkers, and C. Y. Bowers: Synthesis of the Luteinizing Relasing Hormone of the Hypothalamus and its Hormonal Activity. Biochem. Biophys. Res. Commun. 44, 1566–1571 (1971).Google Scholar
  362. 363.
    Slifkin, M. A.: in: “Charge Transfer Interactions of Biomolecules” (M. A. Slifkin, Ed.), Chapter 3, Amino Acids and Proteins, p. 52–75. London-New York: Academic Press. 1971Google Scholar
  363. 364.
    Slifkin, M. A.: in: “Charge Transfer Interactions of Biomolecules” (M. A. Slifkin, Ed.), Chapter 5, Indoles and Imidazoles, p. 97–117. London-New York: Academic Press. 1971Google Scholar
  364. 365.
    Slump, P., and H. A. W. Schrender: Determination of Tryptophan in Foods. Anal. Biochem.0, 182–186 (1968)Google Scholar
  365. 366.
    Sokolovsky, M., D. Harell, and J. F. Riordan: Reactions of Tetranitromethane with Sulfhydryl Groups in Proteins. Biochemistry 8, 4740–4745 (1969)CrossRefGoogle Scholar
  366. 367.
    Sokolovsky, M., J. F. Riordan, and B. L. Vallee: Tetranitromethane. Reagent for the Nitration of Tyrosyl Residues in Proteins. Biochemistry 5, 3582–3589 (1966)CrossRefGoogle Scholar
  367. 368.
    Sokolovsky, M., M. Fuchs, and J. F. Riordan: Reaction of Tetranitromethane with Tryptophan and Related Compounds. Febs Lett. 7, 167–170 (1970)CrossRefGoogle Scholar
  368. 369.
    Spackman, D. H., W. H. Stein, and S. Moore: Automatic Recording Apparatus for Use in the Chromatography of Amino Acids. Anal. Chem. 30, 1190–1205 (1958).Google Scholar
  369. 370.
    Spande, T. F., A. Fontana, and B. Witkkop: An Unusual Reaction of Skatole with Tetranitromethane. J. Amer. Chem. Soc. 91, 6199–6200 (1969)CrossRefGoogle Scholar
  370. 371.
    Spande, T. F., and A. Fontana: unpublished results, reported in ref. 123 and 375.Google Scholar
  371. 372.
    Spande, T. F., and B. Witkop: Reactivity toward N-Bromosuccinimide as a Criterion for Buried and Exposed Tryptophan Residues in Proteins, in: Methods in Enzymology (C. H. W. HIrs, Ed.). 11, p. 522–528. London-New York: Academic Press. 1967Google Scholar
  372. 373.
    Spande, T. F., and B. Witkop: Determination of the Tryptophan Content of Proteins by N-Bromosuccinimidc, in: Methods in Enzymology (C. H. W. Hirs, Ed.). 11, p. 498–506. London-New York: Academic Press. 1967Google Scholar
  373. 374.
    Spande, T. F., and B. Witkop: Tryptophan Involvement in Binding Sites of Proteins and in Enzyme-Inhibitor Complexes as Determined by Oxidation with N-Bromosuccinimide, in: Methods in Enzymology (C. H. W. Hirs, Ed.). 11, p. 506–522. London-New York: Academic Press. 1967Google Scholar
  374. 375.
    Spande, T. F., B. Witkop, Y. Degani, and A. Patchornik: Selective Cleavage and Modification of Peptides and Proteins. II. Advan. Protein Chem. 24, 97–260 (1970)CrossRefGoogle Scholar
  375. 376.
    Spande, T. F., and G. G. Glenner: The Reaction of Indoles with a Diazonium Salt (Fast Red B). J. Amer. Chem. Soc. 95, 3400–3401 (1973)CrossRefGoogle Scholar
  376. 377.
    Spande, T. F., N. M. Green, and B. Witkop: The Reactivity toward N-bromosuccinimide of Tryptophan in Enzymes, Zymogens, and Inhibited Enzymes. Biochemistry 5, 1926–1933 (1966)CrossRefGoogle Scholar
  377. 378.
    Spande, T. F., M. Wilchek, and B. Witkop: The Reaction of Derivatives of Tryptophan, Tryptamine, and Other Indoles with 2-Hydroxy-5-nitrobenzyl Bromide (Koshland’s Reagent). J. Amer. Chem. Soc. 90, 3256–3258 (1968)CrossRefGoogle Scholar
  378. 379.
    Spies, J. R., and D. C. Chambers: Determination of Tryptophan with p-Dimethylaminobenzaldehyde Using Photochemical Development of Color. Anal. Chem. 22, 1209–1210 (1950)CrossRefGoogle Scholar
  379. 380.
    Spies, J. R., and D. C. Chambers: Chemical Determination of Tryptophan in Proteins. Anal. Chem. 21, 1249–1266 (1949)CrossRefGoogle Scholar
  380. 381.
    Steinberg, I. Z., J. Schlessinger, and A. Gafin: Application of Circular Polarization of Luminescence to the Study of Peptides, Polypeptides and Proteins, in: Peptides, Polypeptides, and Proteins (E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan, Eds.), p. 351–369. New York-London: J. Wiley. 1974Google Scholar
  381. 382.
    Steitz, T. A., R. Henderson, and D. M. Blow: Structure of Crystalline αChymotrypsin. III. Crystallographic Studies of Substrates and Inhibitors Bound to the Active Site of α-Chymotrypsin. J. Mol. Biol. 46, 337–348 (1969)CrossRefGoogle Scholar
  382. 383.
    Stellwagen, E., and S. Van Rooyan: The Structural Environement of the Tryptophanyl Residue of Horse Heart Ferricytochrome C. J. Biol. Chem. 242, 4801–4805 (1967)Google Scholar
  383. 384.
    Stevens, L., R. Townend, S. N. Timasheff, G. D. Fasman, and J. Potter: The Circular Dichroism of Polypeptide Films. Biochemistry 7, 3717–3720 (1968)CrossRefGoogle Scholar
  384. 385.
    Stewart, M., and C. H. Nicholls: Kinetic Study of the Acid Autoxidation of Tryptophan. Aust. J. Chem. 25, 2139–2144 (1972)CrossRefGoogle Scholar
  385. 386.
    Stewart, M., and C. H. Nicholls: A Kinetic Study of the Alkali Degradation of Tryptophan. Aust. J. Chem. 25, 1595–1599 (1972)CrossRefGoogle Scholar
  386. 387.
    Stewart, M., and C. H. Nicholls: A kinetic Study of the Autoxidation of Tryptophan at 100° C in the pH Range 2–7. Aust. J. Chem. 27, 205–208 (1974)CrossRefGoogle Scholar
  387. 388.
    Stohrer, G., G. Salemnick, and G. B. Brown: A Chemical Adduct of Tryptophan and the Oncogen 3-Acetoxyxanthine. Biochemistry 12, 5084–5086 (1973)CrossRefGoogle Scholar
  388. 389.
    Strickland, E. H., M. Wilchek, J. Horwitz, and C. Billups: Low Temperature Circular Dichroism of Tyrosyl and Tryptophanyl Diketopiperazines. J. Biol. Chem. 245, 4168–4177 (1970)Google Scholar
  389. 390.
    Strickland, E. H., C. Billups, and E. Kay: Effects of Hydrogen Bonding and Solvents upon the Tryptophanyl 1La Absorption Band-Studies Using 2,3-Dimethylindole. Biochemistry 11, 3657–3662 (1972)CrossRefGoogle Scholar
  390. 391.
    Strickland, E. H., and C. Billups: Oscillatory Strengths of the 1La and 1Lb Absorption Bands of Tryptophan and Several Other Indoles. Biopolymers 12, 1989–1995 (1973)CrossRefGoogle Scholar
  391. 392.
    Strickland, E. H., J. Horwitz, and C. Billups: Fine Structure in the NearUltraviolet Circular Dichroism and Absorption Spectra of Tryptophan Derivatives and Chymotrypsinogen A at 77° K. Biochemistry 8, 3205–3213 (1969)CrossRefGoogle Scholar
  392. 393.
    Sumpter, W. C., and M. Miller: The Chemistry of Heterocyclic Compounds (A. Weissberger, Ed.), lnterscience 8. New York: J. Wiley. 1954Google Scholar
  393. 394.
    Sundberg, R. J.: The Chemistry of Indoles. London-New York: Academic Press. 1970Google Scholar
  394. 395.
    Sundberg, R. J.: The Chemistry of Indoles, p. 17–18. London-New York: Academic Press. 1970Google Scholar
  395. 396.
    Sundberg, R. J.: The Chemistry of Indoles, p. 19–31. London-New York: Academic Press. 1970Google Scholar
  396. 397.
    Sundberg, R. J.: The Chemistry of Indoles, p. 39–56. London-New York: Academic Press. 1970Google Scholar
  397. 398.
    Sundberg, R. J.: The Chemistry of Indoles, p. 78–83. London-New York: Academic Press. 1970Google Scholar
  398. 399.
    Sundberg, R. J.: The Chemistry of Indoles, p. 83–85. London-New York: Academic Press. 1970Google Scholar
  399. 400.
    Sundberg, R. J.: Thc Chemistry of Indoles, p. 142–163. London-New York: Academic Press. 1970Google Scholar
  400. 401.
    Sundberg, R. J.: The Chemistry of Indoles, p. 230–235. London-New York: Academic Press. 1970Google Scholar
  401. 402.
    Sundberg, R. J.: The Chemistry of Indoles, p. 282–312. London-New York: Academic Press. 1970Google Scholar
  402. 403.
    Suzki, S., Y. Hachimori, and U. Yaoeda: Spectrophotometric Determination of Glycine with 2,4,6-trichloro-5-triazine. Anal. Chem. 42, 101–103 (1970)CrossRefGoogle Scholar
  403. 404.
    Takahashi, K.: Structure and Function of Ribonuclease T1. Viii. Reaction of 2-hydroxy-5-nitrobenzyl Bromide with the Single Tryptophan Residue in Ribonuclease T1. J. Biochem. (Tokyo) 67, 541–547 (1970)Google Scholar
  404. 405.
    Takigawa, T., T. AshiDA, Y. Sasada, and M. Kakudo: The Chrystal Structures of L-Tryptophan Hydrochloride and Hydrobromide. Bull. Chem. Soc. Japan 39, 2369–2378 (1966)CrossRefGoogle Scholar
  405. 406.
    Terui, G.: Tryptophan, in: The Microbial Production of Amino Acids (Yamada, K., S. Kinoshita, T. Tsunoda, and K. Aidda, Eds.), p. 515–531. New York: J. Wiley. 1974Google Scholar
  406. 407.
    Teuwissen, B., P. L. Masson, P. Osinski, and J. F. Hermans: Metal-combining Properties of Human Lactoferritin. Effect of Nitration of Lactoferritin with Tetranitromethane. Eur. J. Biochem. 35, 366–371 (1973)CrossRefGoogle Scholar
  407. 408.
    Toniolo, C.: Relationship among Primary Structures, Conformations, and Biological Activities of Polypeptide Antibiotics. II Farmaco, Ed. Sci. 26, 741–769 (1971)Google Scholar
  408. 409.
    Turner, D. H., I. TlNoco, JR., and M. Maestre: Fluorescence Detected Circular Dichroism. J. Amer. Chem. Soc. 96, 4340 4342 (1974)Google Scholar
  409. 410.
    Udenfriend, S.: Proteins and Peptides, in: Fluorescence Assay in Biology and Medicine, 2, Chapter 6, p. 248–283. London-New York: Academic Press. 1969Google Scholar
  410. 411.
    Udenfriend, S.: Amino Acids, Amines, and their Metabolites, in: Fluorescence Assay in Biology and Medicine. 2, Chapter 5, p. 195–247. London-New York: Academic Press. 1969Google Scholar
  411. 412.
    Ulmer, D. D.: Tyrosine and Tryptophan in Cytochrome C. Biochemistry 5, 1886–1892 (1966)CrossRefGoogle Scholar
  412. 413.
    Vallee, B. L., and J. F. Riordan: Chemical Approachs to the Properties of Active Sites of Enzymes. Ann. Rev. Biochem. 38, 733–794 (1969)CrossRefGoogle Scholar
  413. 414.
    Veatch, W. R., E. T. Fossel, and E. R. Blout: The Conformation of Gramicidin A. Biochemistry 13, 5249–5256 (1974)CrossRefGoogle Scholar
  414. 415.
    Veronese, F. M., E. BoCCÙ, C. A. Benassi, and E. Scoffone: Preferential Hydrolysis of Kynurenine Peptides. Z. Naturforsch. 24, 294–300 (1969)Google Scholar
  415. 416.
    Veronese, F. M., E. Boccu, and A. Fontana: Sulfenyl Halides as Modifying Reagents for Polypeptides and Proteins. V. The Use of 2-Nitro-4-Carboxyphenylsulfenyl Chloride. Ann. Chim. (Rome) 58, 1309–1319 (1968)Google Scholar
  416. 417.
    Veronese, F. M., E. Boccu, and A. Fontana: Sulfenyl Halides as Modifying Reagents for Polypeptides and Proteins. VI. 2,4-Dinitrophenyl-1,5-disulfenyl Chloride, a Cross-linking Reagent for Tryptophan Residues. Int. J. Protein Res. 2, 67–74 (1970)CrossRefGoogle Scholar
  417. 418.
    Veronese, F. M., E. Boccu, and A. Fontana: Modification of Tryptophan-108 of Lysozyme with 2-Nitro-4-carboxyphenylsulfenyl Chloride. Febs Lett. 21, 277–280 (1972)CrossRefGoogle Scholar
  418. 419.
    Veronese, F. M., A. Fontana, E. BoccÙ, and C. A. Benassi: Synthesis of Kynurenine Peptides. Gazz. Chim. Ital. 97, 321–331 (1967)Google Scholar
  419. 420.
    Veronese, F. M., A. Fontana, E. BoccÙ, and C. A. Benassi: Sulfenyl Halides as Modifying Reagents for Polypeptides and Proteins. IV. On the Conversion of 2-Thioaryl-Tryptophan to 2-Hydroxy-tryptophan. Z. Naturforsch. 23b, 1219–1325 (1968)Google Scholar
  420. 421.
    Voelkl, A., and G. Quadbeck: New Color Reaction to Identify Indoles. Arztl. Lab. 19, 45–50 (1973)Google Scholar
  421. 422.
    Voetter, W., G. Jung, E. Breitmaier, and E. Bayer: Carbon-13 Nmr Chemical Shifts of Amino Acids and Peptides. Z. Naturforsch. 26b, 213–222 (1971)Google Scholar
  422. 423.
    Walrant, P., and R. Santus: N-Formylkynurenine, a Tryptophan Photooxidation Product, as a Photodinamic Sensitizer. Photochem. Photobiol. 19, 411–417 (1974)CrossRefGoogle Scholar
  423. 424.
    Walrant, P., and R. Santus: Ultraviolet and N-Formyl-kynurenine Sensitized Photoinactivation of Bovine Carbonic Anhydrase: an Internal Photodinamic Effect. Photochem. Photobiol. 20, 455–460 (1974)CrossRefGoogle Scholar
  424. 425.
    Weil, L., W. G. Gordon, and A. R. Buchert: Photooxidation of Amino Acids in the Presence of Methylene Blue. Arch. Biochem. Biophys. 33, 90–109 (1951)CrossRefGoogle Scholar
  425. 426.
    Westhead, E. K.: Dye-Sensitized Photooxidation, in: Methods in Enzymology (C. H. W. Hirs and S. N. Timasheff, Eds.), 25, p. 401–409. London-New York: Academic Press. 1972Google Scholar
  426. 427.
    Wieland, T. H.: Aspects on Syntheses of Biologically Active Peptides, in: Peptides, Proc. 12th Eur. Symp. Reinhardsbrunn Castle 1972 (H. Hanson and H.-D. Jakubke, Eds.), p. 38–49. Amsterdam: North Holland Publ. Co. 1973Google Scholar
  427. 428.
    Wieland, TH., C. Jochum, and H. Faulstich: Optimization of the Synthesis of 2-Indole Thioethers from Derivatives of Tryptophan and Cysteine. Liebigs Ann. Chem. 727, 138–142 (1969)CrossRefGoogle Scholar
  428. 429.
    Wieland, TH., M. P. Jordan DE Urries, H. Indest, H. Faulstich, A. Gieren, M. Sturm, and W. Hoppe: Components of the Green Deathcap Toadstoal, Amanita phalloides, Xlv. The Absolute Configurations of the Toxic and Nontoxic Phalloidin Sulfoxide and of the Amatoxins. Liebigs Ann. Chem. 1974, 1570–1579.Google Scholar
  429. 430.
    Wieland, TH., and B. Sarges: Synthesis of Tryptathionine Peptides. Liebigs Ann. Chem. 658, 181–193 (1962)CrossRefGoogle Scholar
  430. 431.
    Wieland, TH., O. Weiberg, W. Dilger, and E. Fischer: Synthesis of 2-hydroxytryptophan and 2-mercaptotryptophan. Liebigs Ann. Chem. 592, 69–80 (1955)CrossRefGoogle Scholar
  431. 432.
    Wilchek, M., and T. Miron: The Isolation of Tryptophan-containing Peptides by Affinity Chromatography. Biochim. Biophys. Acta 278, 1–7 (1972)CrossRefGoogle Scholar
  432. 433.
    Wilchek, M., and T. Miron: Conversion of Tryptophan to 2-Thioltryptophan in Peptides and Proteins. Biochem. Biophys. Res. Commun. 47, 1015–1020 (1972)CrossRefGoogle Scholar
  433. 434.
    Wilchek, M., T. Spande, G. Milne, and B. Witkoe: The Nonenzymatic Conversion of Tyrosine into Mono- and Dihydroxyindoles. Biochemistry 7, 1777–1786 (1968)CrossRefGoogle Scholar
  434. 435.
    Wilchek, M., and B. Witkop: Protection of Tryptophan During Cleavage of Tyrosine Peptide Bonds by N-Bromosuccinimide. Biochem. Biophys. Res. Commun. 26,296–300.Google Scholar
  435. 436.
    Williams, D. C., and J. R. Whitaker: Kinetics of Papain-catalyzed Hydrolyses of Neutral Substrates. Biochemistry 6, 3711–3717 (1967).Google Scholar
  436. 437.
    Witkop, B.: Directed Oxidations in the Indole Series. II. A New Method of Reaction of Perbenzoic Acid. Liebigs Ann. Chem. 558, 91–98 (1947)CrossRefGoogle Scholar
  437. 438.
    Witkop, B.: Selective Modification and Cleavage of Proteins. Advan. Protein Chem. 16, 221–321 (1961)CrossRefGoogle Scholar
  438. 439.
    Witkop, B.: Miscellaneous Nonenzymatic Cleavages of the Peptide Bond, in: Methods in Enzymology (C. H. W. Hirs, Ed.), 11, 308–315. London-New York: Academic Press. 1967Google Scholar
  439. 440.
    Witkop, B.: Chemical Cleavage of Proteins. Selective Fragmentations Reveal Structure. Science 162, 318–322 (1968)CrossRefGoogle Scholar
  440. 441.
    Witkop, B., and G. Graser: Decomposition of Indole Derivatives by Means of Ozone. Liebigs Ann. Chem. 556, 103–114 (1944).Google Scholar
  441. 442.
    Witkop, B., and J. B. Patrick: Mechanism of Oxidation. I. New Type of Peroxide Rearrangement Catalyzed by Acid. J. Amer. Chem. Soc. 73, 2196–2200 (1951)Google Scholar
  442. 443.
    Witkop, B., and L. K. Ramachandran: Progress in Nonenzymic Selective Modification and Cleavage of Proteins. Metabolism 13, 1016–1025 (1964).Google Scholar
  443. 444.
    Witzemann, V., R. Koberstein, H. Sund, L Rasched, H. Jornvall, and K. Noack: Studies on Glutamate Dehydrogenase: Chemical Modification and Quantitative Determination of Tryptophan Residues. Eur. J. Biochem. 43, 319–325 (1974)CrossRefGoogle Scholar
  444. 445.
    Wolf, H.: Studies on Tryptophan Metabolism in Man, Virum Costars Bogstrykkeri (1974)Google Scholar
  445. 446.
    WÜÜNsch, E.: Die Totalsynthese des Pankreas-Hormons Glucagon. Z. Naturforsch. 226, 1269–1276 (1967)Google Scholar
  446. 447.
    WÜÜNsch, E., A. Fontana und F. Drees: Zur Entacyclierung von Nα-(2-Nitrophenylsulfenyl)-Peptiden bei Anwesenheit von Tryptophan in der Peptidsequenz. Z. Naturforsch. 22b, 607–609 (1967)Google Scholar
  447. 448.
    Yamada, S., M. Yamamoto, and I. Chibata: Optical Resolution of DL-Amino Acids by Preferential Crystallization Procedure. J. Org. Chem. 38, 4408–4412 (1973)CrossRefGoogle Scholar
  448. 449.
    Yamada, H., H. Yoshida, H. Nakazawa, and H. Kumagai: Microbiological Synthesis of Tryptophan and its Related Amino Acids. 1st Inter. Symp. on Tryptophan Metabolism, Acta Vitam. et Enzymologica (Milan) (1975), in press.Google Scholar
  449. 450.
    Yamamoto, Y., and J. Tanaka: Polarized Absorption Spectra of Crystals of Indole and its Related Compounds. Bull. Chem. Soc. Japan. 45, 1362–1366 (1972)CrossRefGoogle Scholar
  450. 451.
    Yamashiro, D., and C. H. LI: Protection of Tryptophan with the Formyl Group in Peptide Synthesis. J. Org. Chem. 38, 2594–2597 (1973)CrossRefGoogle Scholar
  451. 452.
    Yanaihara, N., T. Hashimoto, C. Yanaihara, K. Tsuji, Y. Kenmochi, F. Ashizawa, T. Kaneko, H. Oka, S. Saito, A. Arimura, and A. V. Schally: Syntheses and Biological Evaluation of Analogs of Luteinizing Hormone-Relasing Hormone (Lhrh) modified in Position 2, 3, 4 or 5. Biochem. Biophys. Res. Commun. 52, 64–73 (1973)Google Scholar
  452. 453.
    Yanaihara, N., C. Yanaihara, G. Dupuis, J. Beacham, R. Camble, and K. Hofmann: Studies on Polypeptides. Xlii. Synthesis and Characterization of Seven Fragments Spanning the Entire Sequence of Ribonuclease T1. J. Amer. Chem. Soc. 91, 2184–2185 (1969)CrossRefGoogle Scholar
  453. 454.
    Yonemitsu, O., K. Miyashita, Y. Ban, and Y. Kanaoka: Polyphosphate Ester as a Synthetic Agent. XI. A Novel Synthesis of Ethylindolenincs by Ethylation of 2,3Disubstituted Indoles with Polyphosphate Ester. Tetrahedron 25, 95–100 (1969)CrossRefGoogle Scholar
  454. 455.
    Yutaka, 1H., H. Hiroo, K. Kenzo, and S. Kazoo: States of Amino Acid Residues in Proteins. V. Different Reactivities with H2O2 of Tryptophan Residues in Lysozyme, Protcinases, and Zymogens. Biochim. Biophys. Acta 93, 346–360 (1964)CrossRefGoogle Scholar
  455. 456.
    Zahnley, J. C., and J. G. Davis: Effect of High Tyrosine Content on the Determination of Tryptophan in Protein by the Acidic Ninhydrin Method. Application to Chicken Ovoinhibitor. Biochem. J. 135, 59–61 (1973)Google Scholar
  456. 457.
    Zaporozhets, E. V., I. A. Avrutskaya, K. K. Babievskii, V. M. Belikov, and M. Fioshin: Electrochemical Reduction of the Methyl Ester of α-nitro-3(3-indolyl)acrylic acid. Elektrokhimiya 8, 1243–1245 (1972)Google Scholar
  457. 458.
    Zaporozhets, E. V., I. A. Avrutskaya, M. YA. Fioshin, K. K. Babievskii, and V. M. Belikov: Effect of Electrode Material on the Electroreduction of Indolylnitroacrylate. Elektrokhimiya 9, 72–76 (1973)Google Scholar
  458. 459.
    Enfield, D. L., L. H. Ericsson, K. A. Walsh, H. Neurath, and K. Titani: Bovine Factor X1 (Stuart Factor). Primary Structure of the Light Chain. Proc. Nat. Acad. Sci. Usa 72, 1619 (1975)Google Scholar
  459. 460.
    Jesty, J., A. K. Spencer, Y. Nakashima, Y. Nemerson, and W. Konigsberg: The Activation of Coagulation Factor X. Identity of Cleavage Sites in the Alternative Activation Pathways and Characterization of the Cooh- Terminal Peptide. J. Biol. Chem. 250, 4497–4504 (1975)Google Scholar
  460. 461.
    Karkhanis, Y. D., D. J. Carlo, S. W. Brostoff, and E. H. Eylar: Allergic Encephalomyelitis. Isolation of an Encephalitogenic Peptide Activc in the Monkey. J. Biol. Chem. 250, 6141–6150 (1975)Google Scholar
  461. 462.
    Levy, P. L., M. K. Pangburn, Y. Burstein, L. H. Ericsson, H. Neurath, and K. A. Walsh: Evidence of Homologous Relationship between Thermolysin and neutral Protease A of Bacillus subtilis. Proc. Nat. Acad. Sci. Usa 72, 4341–4345 (1975)CrossRefGoogle Scholar
  462. 463.
    Rynbrandt, R. M.: The Reaction of Sulfoxides with Hydrogen Chloride. Tetrahedron Letters 381, 3553–3555 (1971)Google Scholar
  463. 464.
    Savige, W. E., and A. Fontana: paper in preparation (1975)Google Scholar
  464. 465.
    Scorrano, G.: Equilibria and Reactions of Organic Sulfoxides in Moderately Concentrated Acids. Accounts Chem. Res. 6, 132–138 (1973)Google Scholar
  465. 466.
    Spande, T. F., and G. G. Glenner: The Reaction of a Tryptophan Derivative with the Diazonium Salt, “Fast Red B”, unpublished work (1975)Google Scholar
  466. 467.
    Titani, K., L. H. Ericsson, K. A. Walsh, and H. Neurath: Amino Acid Sequence of Bovine Carboxypeptidase B. Proc. Natl. Acad. Sci. Usa 72, 1666–1670 (1975)Google Scholar

Copyright information

© Springer-Verlag Wien 1976

Authors and Affiliations

  • A. Fontana
    • 1
  • C. Toniolo
    • 1
  1. 1.Istituto di Chimica Organica dell’UniversitàPadovaItaly

Personalised recommendations