The ansamycins constitute a class of antibiotics characterized by an aliphatic bridge linking two non-adjacent positions of an aromatic nucleus. The name, originally suggested by Prelog, is derived from the term “ansa compounds” coined by Lüttringhaus in 1942 (71). It is the structures of the ansamycins which have provided the name for these antibiotics and their structures are remarkably complex, as we shall see in the next section, but it is the bioactivities which have attracted the greatest attention. A derivative of one of the rifamycins, rifampicin, is marketed widely for treatment of tuberculosis and other infections caused by gram-positive organisms (69), while other derivatives of rifamycin and streptovaricin are biological probes because of their binding to DNA-dependent RNA polymerase (42a, 103, 162) and their inhibition of reverse transcriptases (3, 8, 15, 33, 40, 92, 103, 135). Maytansine and related compounds are powerful anti-tumor agents (61, 62, 63, 150). Bioactivities of the ansamycins have been reviewed extensively elsewhere (4, 69, 101, 111, 119, 153) and need not be exhaustively described here, although they will be noted in the section of this review dealing with reactions of individual antibiotics. Instead, the present review will stress the chemistry of the compounds, attempting to correlate the properties of related members of the class. The literature coverage of this review includes articles appearing through April, 1975. No attempt has been made to review patents in any comprehensive way.


Antibacterial Activity Aromatic Nucleus Tetracarboxylic Acid Quinone Ring Enol Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antosz, F. J.: University of Illinois, unpublished results.Google Scholar
  2. 2.
    Balerna, M., W. Keller-Schierlein, C. Martius, H. Wolf, and H. Zahner: Stoffwechselprodukte von Mikroorganismen: Naphthomycin, ein Antimetabolit von Vitamin K. Arch. Mikrobiol. 65, 303 (1969).Google Scholar
  3. 3.
    Baltimore, D.: Rna-Dcpendent Dna Polymerase in Virions of Rna Tumour Viruses. Nature (London) 226, 1209 (1970).Google Scholar
  4. 4.
    Bergamini, N., and G. Fowst: Rifamycin SV. A Review. Arzneim. Forsch. 15, 951 (1965).Google Scholar
  5. 5.
    Bickel, H., F. KNÜsEL, W. Kump, and L. Neipp: New Derivatives of Rifamycin Antibiotics. Antimicrob. Agents Chemother. 1966, 352 (1967).Google Scholar
  6. 6.
    Bissel, J., C. Hatie, A. N. Tischler, and M. Calvin: Preferential Inhibition of the Growth of Virus-Transformed Cells in Culture by Rifazone-82, a New Rifamycin Derivative. Proc. Nat. Acad. Sci. Usa 71, 2520 (1974).Google Scholar
  7. 7.
    Borden, E. C., W. W. Brockman, and W. A. Carter: Selective Inhibition by Streptovaricin of Splenomegaly Induced by Rauscher Leukaemia Virus. Nature 232, 214 (1971).Google Scholar
  8. 8.
    Brockman, W. W., W. A. Carter, L.-H. LI, F. Reusser, and F. R. Nichol: Streptovaricins Inhibit Rna Dependent Dna Polymerase Present in an Oncogenic Rna Virus. Nature (London) 230, 249 (1971).Google Scholar
  9. 9.
    Brufani, M., S. Cerrini, W. Fedeli, and A. Vaciago: Rifamycins: An Insight into Biological Activity Based on Structural Investigations. J. Mol. Biol. 87, 409 (1974).Google Scholar
  10. 10.
    Brufani, M., W. Fedeli, G. Giacomello, and A. Vaciago: Struttura cristallina e molecolare della rifamicine: dati preliminari. Chemotherapia 7, 145 (1963).Google Scholar
  11. 11.
    Brufani, M., W. Fedeli, G. Giacomello, and A. Vaciago The X-Ray Analysis of the Structure of Rifamycin B. Experienta 20, 339 (1964).Google Scholar
  12. 12.
    Brufani, M., W. Fedeli, G. Giacomello, and A. Vaciago The X-Ray Analysis of the Structure of Rifamycin Y. Experientia 23, 508 (1967).Google Scholar
  13. 13.
    Brufani, M., D. Kluepfel, G. C. Lancini, J. Leitich, A. S. Mesentsev, V. Prelog, F. P. Schmook, and P. Sensi: Über die Biogenese des Rifamycins S. Helv. Chim. Acta 56, 2315 (1973).Google Scholar
  14. 14.
    Bryan, R. F., C. J. Gilmore, and R. C. Haltiwanger: Crystal and Molecular Structure and Absolute Configuration of Maytansine (3-Bromopropyl) Ether. J. Chem. Soc., Perkin Trans. 2, 7, 897 (1973).Google Scholar
  15. 15.
    Byrd, D. M., and W. A. Carter: Ansamycins. (B) Streptovaricins. In: W. A. Carter (Edit.), Selective Inhibitors of Viral Functions. Cleveland: Crc Press, Inc. 1973.Google Scholar
  16. 16.
    Carter, W. A., W. W. Brockman, and E. C. Borden: StreptovaricinS Inhibit Focus Formation by Msv (Mlv) Complex, Nature 232, 212 (1971).Google Scholar
  17. 17.
    Carter, W. A., P. M. Pitha, W. W. Brockman, E. C. Borden, and L. W. Marshall: Selective Inhibition of Viral Functions: The Antiviral Action of Interferon and Streptovaricin. Medicine 51, 181 (1972).Google Scholar
  18. 18.
    Corcoran, J. W.: Speculation on the Origin of Macrolide Antibiotics. In: Z. Vanek and Z. Hostalek (Edit.), Biogenesis of Antibiotic Substances, p. 131. Prague: Czechoslovak Academy of Sciences. 1965.Google Scholar
  19. 19.
    Corcoran, J. W., and M. Chick: Biochemistry of the Macrolide Antibiotics. In: J. F. Snell (Edit.), Biosynthesis of Antibiotics, Vol. 7, p. 159. New York: Academic Press. 1966.Google Scholar
  20. 20.
    Coverdale, C. E.: Structural Studies on Streptovaricin C. Ph. D. Thesis, University of Illinois, Urbana, 1965.Google Scholar
  21. 21.
    Cricchio, R., G. Lancini, G. Tamborini, and P. Sensi: Oximes of 3-Formylrifamycin SV. Synthesis, Antibacterial Activity, and Other Biological Properties. J. Med. Chem. 17, 396 (1974).Google Scholar
  22. 22.
    Deboer, C., P. A. Meulman, R. J. Wnuk, and D. H. Peterson: Geldanamycin, A New Antibiotic. J. Antibiot. 23, 442 (1970).Google Scholar
  23. 23.
    Deshmukh, P. V., K. Kakinuma, J. J. Ameel, K. L. Rinehart, JR., P. F. Wiley, and L. H. LI: Protostreptovaricins I-V. J. Am. Chem. Soc. 98, 870 (1976).Google Scholar
  24. 24.
    Dezulian, V., M. G. Serralunga, and G. Maffii: Pharmacology and Toxicology of Rifamide. Appl. Toxicol. Pharmacol. 8, 126 (1966).Google Scholar
  25. 25.
    Duchamp, D. J and K. L. Rinehart, JR.: Unpublished results.Google Scholar
  26. 26.
    Fietta, A. M., and L. G. Silvestri: Mechanism of Action of Rifamazine, a Member of a New Class of (Dimeric) Rifamycins. Eur. J. Biochem. 52, 391 (1975).Google Scholar
  27. 27.
    Fuhrer, H.: Zuordnung des 13C-Nmr-Spektrums von Rifamycin-S aufgrund der selektiven Protonen-Entkopplung. Helv. Chim. Acta 56, 2377 (1973).Google Scholar
  28. 28.
    FÜREsZ, S., V. Arioli, and R. Pallanza: Antimicrobial Properties of New Derivatives of Rifamycin SV. Antimicrob. Agents Chemother. 1965, 770 (1966).Google Scholar
  29. 29.
    FÜÜREsZ, S., V. Arioli, and R. ScotrL Rifamycin B Diethylamide (Rifamide): Activity in Experimental Infections, Absorption and Elimination in Man. Arzneim. Forsch. 15, 802 (1965).Google Scholar
  30. 30.
    Resz, S., and R. Scotti: Some Laboratory and Clinical Experiences with Rifamycin B. Antibiot. Annu. 1959—1960, 285 (1960).Google Scholar
  31. 31.
    Resz, S., and R. Scotti Further Studies on Rifamicin SV: In Vitro Activity and Elimination in Man. Farmaco Ed. Sci. 16, 262 (1961).Google Scholar
  32. 32.
    FÜREsz, S., and M. T. Timbal: Antibacterial Activity of Rifamycins. Chemotherapia 7, 200 (1963).Google Scholar
  33. 33.
    Gallo, R. C.: Reverse Transcriptase, the Dna Polymerase of Oncogenic Rna Viruses. Nature (London) 234, 194 (1971).Google Scholar
  34. 34.
    Gallo, G. G., E. Martinelli, V. Pagani, and P. Sensi: The Conformation of Rifamycin S in Solution by 1H Nmr Spectroscopy. Tetrahedron 30, 3093 (1974).Google Scholar
  35. 35.
    Gallo, G. G., C. R. Pasqualucci, N. Maggi, R. Ballotta, and P. Sensi: Rifamycins. Xlii. Rifazine, a New Phenazinic Derivative of Rifamycins. Farmaco Ed. Sci. 21, 68 (1966).Google Scholar
  36. 36.
    Ganguly, A. K., S. Szmulewicz, O. Z. Sarre, D. Greeves, J. Morton, and J. Mcglotten: Structure of Halomicin B. Chem. Commun. 395 (1974).Google Scholar
  37. 37.
    Greco, A. M., R. Ballotta, and P. SensI: Rifomicina. Xxi. Su una serie di prodotti derivanti dalla condensazione della rifomicina O con amine, idrazidi, amidrazoni e aminoguanidine. Farmaco Ed. Sci. 16, 755 (1961).Google Scholar
  38. 38.
    Green, M., J. Bragdon, and A. Rankin: 3-Cyclic Amine Derivatives of Rifamycin: Strong Inhibitors of the Dna Polymerase Activity of Rna Tumor Viruses. Proc. Nat. Acad. Sci. Usa 59, 1294 (1972).Google Scholar
  39. 39.
    Gurgo, C., D. P. Grandgenett, G. F. Gerard, and M. Green: Interaction of Purified Ribonucleic Acid Directed Deoxyribonucleic Acid Polymerase of Avian Myeloblastosis Virus and Murine Sarcoma-Leukemia Virus with a Rifamycin SV Derivative. Biochem. 13, 708 (1974).Google Scholar
  40. 40.
    Gurgo, C., R. Ray, and M. Green: Inhibitors of Tumor Virus Rna-Dna Polymerase. J. Nat. Cancer Inst. 49, 61 (1972).Google Scholar
  41. 41.
    Haber, A., R. D. JohnsON, and K. L. Rinehart, JR.: Geldanamycin. Iii. Carbon-13 Magnetic Resonance Study. To be submitted for publication.Google Scholar
  42. 42.
    Haber, A., R. D. JohnsON, and K. L. Rinehart Geldanamycin. IV. Carbon-13 and Carbon-14 Biosynthetic Study. To be submitted for publication.Google Scholar
  43. 42a.
    Hartmann, G., W. Behr, K.-A. Beissne.R, K. Honikel, and A. Sippel: Antibiotica als Hemmstoffe der Nucleinsäure- und Proteinsynthese. Angew. Chem. 80, 710 (1968).Google Scholar
  44. 43.
    Hasegawa, T.: Tolypomycin, A New Antibiotic. Vii. Assay Method for Tolypomycin Y. J. Antibiot. 25, 25 (1972).Google Scholar
  45. 44.
    Hasegawa, T., E. Higashide, and M. Shibata: Tolypomycin, A New Antibiotic. II. Production and Preliminary Identification of Tolypomycin Y. J. Antibiot. 244, 817 (1971).Google Scholar
  46. 45.
    Horoszewicz, J. S., K. L. Rinehart, JR., S. S. Leong, and W. A. Carter: Activity of Pure Streptovaricins and Fractionated Streptovaricin Complex Against Friend Virus. Antimicrob. Agents Chemother. 7, 281 (1975).Google Scholar
  47. 46.
    Johnson, R. D., A. Haber, and K. L. Rinehart, JR.: Geldanamycin Biosynthesis and Carbon Magnetic Resonance. J. Amer. Chem. Soc. 96, 3316 (1974).Google Scholar
  48. 47.
    Kakinuma, K.: University of Illinois, unpublished results.Google Scholar
  49. 48.
    Kakinuma, K., and P. V. Deshmukh: University of Illinois, unpublished results.Google Scholar
  50. 49.
    Kakinuma, K., B. I. Milavetz, and K. L. Rinehart, JR.: Carbon-13 Nuclear Magnetic Resonance Spectra of the Streptovaricins and Related Compounds. J. Org. Chem., in press.Google Scholar
  51. 50.
    Kamiya, K., T. Sugino, Y. Wada, M. Nishikawa, and T. KIsHI: The X-Ray Analysis of Tolypomycinone Tri-m-bromobenzoate. Experientia 25, 901 (1969).Google Scholar
  52. 51.
    Karlsson, A., G. Sartori, and R. J. White: Rifamycin Biosynthesis: Further Studies on Origin of the Ansa Chain and Chromophore. Eur. J. Biochem. 47, 251 (1974).Google Scholar
  53. 52.
    KIsHI, T., M. AsAI, M. Muroi, S. Harada, E. Mizuta, S. Terao, T. Miki, and K. Mizuno: Tolypomycin. I. Structure of Tolypomycinone. Tetrahedron Lett. 2, 91 (1969).Google Scholar
  54. 53.
    KIsHI, T., S. Harada, M. AsAI, M. Muroi, and K. Mizuno: Tolypomycin. II. Structures of Tolyposamine and Tolypomycin Y. Tetrahedron Lett. 2, 97 (1969).Google Scholar
  55. 54.
    KIsHI, T., H. Yamana, M. Muroi, S. Harada, M. AsAI, T. Hasegawa, and K. Mizuno: Tolypomycin, a New Antibiotic. Iii. Isolation and Characterization of Tolypomycin Y. J. Antibiot. 25, 11 (1972).Google Scholar
  56. 55.
    Kluepfel, D., G. C. Lancini, and G. Sartori: Metabolism of Barbital by Streptomyces mediterranei. Appl. Microbiol. 13, 600 (1965).Google Scholar
  57. 56.
    KNÖLL, W. M. J.: University of Illinois, unpublished results.Google Scholar
  58. 57.
    Kondo, M., T. OIsHI, and K. Tsuchiya: Tolypomycin, A New Antibiotic. V. In Vitro and In Vivo Antimicrobial Activity. J. Antibiot. 25, 16 (1972).Google Scholar
  59. 58.
    Kradolfer, F., L. Neipp, and W. Sackmann: Chemotherapeutic Activity of New Derivatives of Rifamycin. Antimicrob. Agents Chemother. 1966, 359 (1967).Google Scholar
  60. 59.
    Kump, W., and H. Bickel: Zur Kenntnis von Rifamycin-S. Reaktionen des Ansaringes. Helv. Chim. Acta 56, 2323 (1973).Google Scholar
  61. 60.
    Kump, W., and H. Bickel Zur Kenntnis von Rifamycin-S. Reaktionen des chinoiden Nucleus. Helv. Chim. Acta 56, 2348 (1973).Google Scholar
  62. 61.
    Kupchan, S. M., Y. Komoda, A. R. Branfman, R. G. Dailey, JR., and V. A. Zimmerly: Novel Maytansinoids. Structural Interrelations and Requirements for Antileukemic Activity. J. Amer. Chem. Soc. 96, 3706 (1974).Google Scholar
  63. 62.
    Kupchan, S. M., Y. Komoda, W. A. Court, G. J. Thomas, R. M. Smith, A. Karim, C. J. Gilmore, R. C. Haltiwanger, and R. F. Bryan: Maytansine, a Novel Antileukemic Ansa Macrolide from Maytenus ovatus. J. Amer. Chem. Soc. 94, 1354 (1972).Google Scholar
  64. 63.
    Kupchan, S. M., Y. Komoda, G. J. Thomas, and H. P. J. Hintz: Maytanprine and Maytanbutine, New Antileukemic Ansa Macrolides from Maytenus buchananii. Chem. Commun. 1065 (1972).Google Scholar
  65. 64.
    Lancini, G. C., G. G. Gallo, G. Sartori, and P. Sensi: Isolation and Structure of Rifamycin L and Its Biogenetic Relationship with Other Rifamycins. J. Antibiot. 22, 369 (1969).Google Scholar
  66. 65.
    Lancini, G., and C. Hengeller: Isolation of Rifamycin SV from a Mutant Streptomyces mediterranei Strain. J. Antibiot. 22, 637 (1969).Google Scholar
  67. 66.
    Lancini, G. C., J. E. Thiemann, G. Sartori, and P. Sensi: Biogenesis of Rifamycins. The Conversion of Rifamycin B into Rifamycin Y. Experientia 23, 899 (1967).Google Scholar
  68. 67.
    Leitich, J., W. Oppolzer, and V. Prelog: Über die Konfiguration des Rifamycins B und verwandter Rifamycine. Experientia 20, 343 (1964).Google Scholar
  69. 68.
    Leitich, J., V. Prelog, and P. Sensi: Rifamycin Y und seine Umwandlungsprodukte. Experientia 23, 505 (1967).Google Scholar
  70. 69.
    Lester, W.: Rifampin: A Semisynthetic Derivative of Rifamycin - A Prototype for the Future. Annu. Rev. Microbiol. 26, 85 (1972).Google Scholar
  71. 70.
    LI, L. H., C. H. Cowie, L. G. Gray, D. M. Moran, T. D. Clark, and K. L. Rinehart, JR.: Effects of Streptovaricins and Their Degradation Products on Rnadirected Dna Polymerase of Rauscher Leukemia Virus. Submitted for publication.Google Scholar
  72. 71.
    Ttringhaus, A., and H. Gralheer: Über eine neue Art atropisomerer Verbindungen. Justus Liebigs Ann. Chem. 550, 67 (1942).Google Scholar
  73. 72.
    Maffii, G., G. Bianchi, P. Schiatti, and G. G. Gallo: Absorption, Biliary Excretion and Distribution of Rifomycin SV. Farmaco Ed. Sci. 16, 246 (1961).Google Scholar
  74. 73.
    Maffii, G., and P. Schiatti: Distribution and Excretion of Rifamide in Rats and Dogs. Toxicol. Appl. Pharmacol. 8, 138 (1966).Google Scholar
  75. 74.
    Maffii, G., P. Schiatti, G. Bianchi, and M. G. Serralunga: Rifomycin. Xviii. Pharmacological Studies with Rifomycin SV. Farmaco Ed. Sci. 16, 235 (1961).Google Scholar
  76. 75.
    Maffh, G., and M. T. Timbal: Pharmacology of Rifamycin B. Antibiot. Annu. 1959—1960, 277(1960).Google Scholar
  77. 76.
    Maggi, N., V. Arioli, and P. Sensi: Rifamycins. Xli. A New Class of Active Semisynthetic Rifamycins. N-Substituted Aminomethyl Derivatives of Rifamycin SV. J. Med. Chem. 8, 790 (1965).Google Scholar
  78. 77.
    Maggi, N., G. G. Gallo, and P. Sensi: Rifamicine. Xxxvi. Proprietà chimiche e chimico-fisiche della dietilamide della rifamicina B. Farmaco Ed. Prat. 20, 147 (1965).Google Scholar
  79. 78.
    Maggi, N., R. Pallanza, and P. Sensi: New Derivatives of Rifamycin SV. Antimicrob. Agents Chemother. 1965, 765 (1966).Google Scholar
  80. 79.
    Maggi, N., C. R. Pasqualucci, R. Ballotta, and P. Sensi: Rifampicin: A New Orally Active Rifamycin. Chemotherapia 11, 285 (1966).Google Scholar
  81. 80.
    Maggi, N., A. Vigevani, G. G. Gallo, and C. R. Pasqualucci: Acetyl Migration in Rifampicin. J. Med. Chem. 11, 936 (1968).Google Scholar
  82. 81.
    Maggi, N., A. Vigevani, and R. Pallanza: Desacetyl-Rifamycins: Preparation and Antibacterial Properties. Experientia 24, 209 (1968).Google Scholar
  83. 82.
    Margalith, P., and H. Pagani: Rifomycin. Xiii. Fermentation and Production of Rifomycin Complex. Appl. Microbiol. 9, 320 (1961).Google Scholar
  84. 83.
    Margalith, P., and H. Pagani Rifomycin. Xiv. Production of Rifomycin B. Appl. Microbiol. 9, 325 (1961).Google Scholar
  85. 84.
    Martin, P. K.: Structural Studies on the Streptovaricin Antibiotics. Ph.D. Thesis, University of Illinois, Urbana, Illinois, 1965.Google Scholar
  86. 85.
    Martinelli, E., G. G. Gallo, P. Antonini, and R. J. White: Structure of Rifamycin W. A Novel Ansamycin from a Mutant of Nocardia mediterranei. Tetrahedron 30, 3087 (1974).Google Scholar
  87. 86.
    Martinelli, E., R. J. White, G. G. Gallo, and P. J. Beynon: Carbon-13 Nmr Spectra of Rifamycins. Tetrahedron 29, 3441 (1973).Google Scholar
  88. 87.
    Martinelli, E., R. J. White, G. G. Gallo, and P. J. Beynon Carbon-I3 Nmr Spectrum of Rifamycin S: A Re-examination of the Assignments with Special Reference to their Biogenetic Implication. Tetrahedron Lett. 15, 1367 (1974).Google Scholar
  89. 88.
    Mcmillan, M. W.: Studies on the Antibiotic Geldanamycin and Biologically Active Derivatives and Analogues. Ph.D. Thesis, University of Illinois, Urbana, I1linois, 1974.Google Scholar
  90. 89.
    Milavetz, B. I.: Biosynthesis of the Streptovaricins. Ph.D. Thesis, University of Illinois, Urbana, Illinois, 1975.Google Scholar
  91. 90.
    Milavetz, B., K. Kakinuma, K. L. Rinehart, JR., J. P. Rolls, and W. J. Haak: Carbon-13 Magnetic Resonance Spectroscopy and the Biosynthesis of Streptovaricin. J. Amer. Chem. Soc. 95, 5793 (1973).Google Scholar
  92. 91.
    Milavetz, B. L, K. L. Rinehart, JR., F. J. Antosz, P. V. Desmukh, K. Kakinuma, P. K. Martin, K. Sasaki, T. R. Witty, L. H. LI, and F. ReussER: Identification and Preparation of Damavaricins, Biologically Active Precursors of Streptovaricins. J. Antibiot. 29, 201 (1976).Google Scholar
  93. 92.
    Moss, B.: Ansamycins: (A) Rifamnycin SV Derivatives. In: W. A. Carter (Edit.), Selective Inhibitors of Viral Functions, p. 313. Cleveland: Crc Press, Inc. 1973.Google Scholar
  94. 93.
    Oppolzer, W., and V. Prelog: ÜJber die Konstitution und die Konfiguration der Rifamycine B, O, S und SV. Helv. Chim. Acta 56, 2287 (1973).Google Scholar
  95. 94.
    Oppolzer, W., V. Prelog, and P. Sensi: Konstitution des Rifamycins B und Verwandter Rifamycine. Experientia 20, 336 (1964).Google Scholar
  96. 95.
    Pallanza, R., S. FÜResz, M. T. Timbal, and G. Carniti: In Vitro Bacteriological Studies on Rifamycin B Diethylamide (Rifamide). Arzneim. Forsch. 15, 800 (1965).Google Scholar
  97. 96.
    Peterson, D. H., K. L. Rinehart, JR., and R. Pandey: Unpublished results. The Upjohn Company and the University of Illinois.Google Scholar
  98. 97.
    Prelog, V.: Constitution of Rifamycins. Pure Appl. Chem. 7, 551 (1963).Google Scholar
  99. 98.
    Prelog, V., and W. Oppolzer: Ansamycine, eine neuartige Klasse von mikrobiellen Stoffwechselprodukten. Helv. Chim. Acta 56, 2279 (1973).Google Scholar
  100. 99.
    Quinn, F. R., and J. S. DrisColl: Structure-Activity Correlations among Rifamycin B Amides and Hydrazides. J. Med. Chem. 18, 4 (1975).Google Scholar
  101. 100.
    Rhuland, L. E., K. F. Stern, and H. R. Reames: Streptovaricin. Iii. In vivo Studies in the Tuberculous Mouse. Am. Rev. Tuberc. Pulm. Dis. 75, 588 (1957).Google Scholar
  102. 101.
    Rinehart, K. L., JR.: Antibiotics with Ansa Rings. Acc. Chem. Res. 5, 57 (1972).Google Scholar
  103. 102.
    Rinehart, K. L., JR., and F. J. Antosz: Chemistry of the Streptovaricins. Vii. Revised Structures for Streptovarone and Streptovaricin C. J. Antibiot. 25, 71 (1972).Google Scholar
  104. 103.
    Rinehart, K. L., JR., F. J. Antosz, K. Sasaki, P. K. Martin, M. L. Maheshwari, F. Reusser, L. H. LI, D. Moran, and P. F. Wiley: Relative Biological Activities of Individual Streptovaricins and Streptovaricin Acetates. Biochemistry 13, 861 (1974).Google Scholar
  105. 103a.
    Rinehart, K. L., JR., J. C. Cook, JR., K. H. Maurer, and U. Rapp: Field Desorption Mass Spectra of Antibiotics. J. Antibiot. 27, l(1974).Google Scholar
  106. 104.
    Rinehart, K. L., JR., C. E. Coverdale, and P. K. Martin: Chemistry of the Streptovaricins. II. Streptovarone and Prestreptovarone. J. Amer. Chem. Soc. 88, 3150 (1966).Google Scholar
  107. 105.
    Rinehart, K. L., JR., W. M. J. Knoll, K. Kakinuma, F. J. Antosz, I. C. Paul, A. H.-J. WA N G, F. Reuss ER, L. H. LI, and W. C. K RU Eger: Atropisomeric Streptovaricins. J. Amer. Chem. Soc. 97, 196 (1975).Google Scholar
  108. 106.
    Rinehart, K. L., JR., W. M. J. Knoll, B. Milavetz, and K. Kakinuma: Carbon-13 in Biosynthetic Studies of Antibiotics. In: P. D. Klein and S. V. Peterson (Edit.), Proceedings of the First International Conference on Stable Isotopes in Chemistry, Biology, and Medicine (Conf-730525), p. 20. Springfield, Va.: National Technical Information Service, U. S. Department of Commerce. 1973.Google Scholar
  109. 107.
    Rinehart, K. L., JR., M. L. Maheshwari, F. J. Antosz, H. H. Mathur, K. Sasaki, and R. J. Schacht: Chemistry of the Streptovaricins. VIlI. Structures of Streptovaricins A, B, D, E, F, and G. J. Amer. Chem. Soc. 93, 6273 (1971).Google Scholar
  110. 108.
    Rinehart, K. L., JR., P. K. Martin, and C. E. Coverdale: Chemistry of the Streptovaricins. I. Characterization of Streptovaricins A, B, C, D, E, and G. J. Amer. Chem. Soc. 88, 3149 (1966).Google Scholar
  111. 109.
    Rinehart, K. L., JR., and H. H. Mathur: Chemistry of the Streptovaricins. IV. Structure of Varicinal A. J. Amer. Chem. Soc. 90, 6241 (1968).Google Scholar
  112. 110.
    Rinehart, K. L., JR., H. H. Mathur, K. Sasaki, P. K. Martin, and C. E. Coverdale: Chemistry of the Streptovaricins. V. Structures of Streptovaricins A and C. J. Amer. Chem. Soc. 90, 6241 (1968).Google Scholar
  113. 111.
    Riva, S., and L. G. Silvestri: Rifamycins: A General View. Annu. Rev. Microbiol. 62, 199 (1972).Google Scholar
  114. 112.
    Sasaki, K.: University of Illinois, unpublished results.Google Scholar
  115. 112a.
    Sasaki, K., T. Naito, T. Satomi, and K. Onodera: Chemical Modification of Streptovaricin C. I. 19-Substituted Damavaricin C. J. Antibiot., in press.Google Scholar
  116. 112b.
    Sasaki, K., T. Naito, T. Satomi, and K. Momoki: Chemical Modification of Streptovaricin C. II. The Intramolecular Aldol Condensation of 19-O-Acetonyldamavaricin C and its Analogs. J. Antibiot., in press.Google Scholar
  117. 113.
    Sasaki, K., K. L. Rinehart, JR., and F. J. Antosz: Chemistry of the Streptovaricins. VI. Oxidation Products from Streptovaricin C. J. Antibiot. 25, 68 (1972).Google Scholar
  118. 114.
    Sasaki, K., K. L. Rinehart, JR., G. Slomp, M. F. Grostic, and E. C. Olson: Geldanamycin. I. Structure Assignment. J. Amer. Chem. Soc. 92, 7591 (1970).Google Scholar
  119. 115.
    Schacht, R. J.: Studies in the Photochemical Derivatives of the Streptovaricin Antibiotics. Ph. D. Thesis, University of Illinois, Urbana, Illinois. 1969.Google Scholar
  120. 116.
    Schacht, R. J., and K. L. Rinehart, JR.: Chemistry of the Streptovaricins. Iii. Photostreptovarone, a Phenalenone from Photolytic Loss of Acetic Anhydride. J. Amer. Chem. Soc. 89, 2239 (1967).Google Scholar
  121. 117.
    Schlegel, D. C.: Part One. Synthetic and Degradative Studies of Two Streptovaricin Degradation Products, Streptovarone and Dapmavarone. Part Two. Synthetic and Spectral Studies of Highly Substituted 1,4-Naphthoquinones. Ph.D. Thesis, University of Illinois, Urbana, Illinois. 1969.Google Scholar
  122. 118.
    Schwarz, J. S. P.: Identification of Rifamycin B as Nancimycin. J. Antibiot. 20, 238 (1967).Google Scholar
  123. 119.
    Sensi, P.: A Family of New Antibiotics, the Rifamycins. Prog. Org. Biol. Med. Chem. 1, 337 (1964).Google Scholar
  124. 120.
    Inhibitors of the Transcribing Enzymes. Pure Appl. Chem. 35, 383 (1973).Google Scholar
  125. 121.
    Sensi, P., R. Ballotta, and A. M. Greco: Rifomycin. V. Rifomycin O, a New Antibiotic of the Rifomycin Family. Farmaco Ed. Sci. 15, 228 (1960).Google Scholar
  126. 122.
    Sensi, P., R. Ballotta, A. M. Greco, and G. G. Gallo: Rifomycin. XV. Activation of Rifomycin B and Rifomycin O. Production and Properties of Rifomycin S and Rifomycin SV. Farma co Ed. Sci. 16, 165 ( 1961).Google Scholar
  127. 123.
    SensI, P., A. M. Greco, and R. Ballotta: Rifomycin. I. Isolation and Properties of Rifomycin B and Rifomycin Complex. Antibiot. Annu. 1959—1960, 262(1960).Google Scholar
  128. 124.
    Sensi, P., A. M. Greco, G. G. Gallo, and M. T. Timbal: Rifomycin. VI. Chemical and Biological Correlations between some Derivatives of Rifomycin B and Rifomycin O. Farmaco Ed. Sci. 15, 235 (1960).Google Scholar
  129. 125.
    Sensi, P., N. Maggi, R. Ballotta, S. FüRÉsZ, R. Pallanza, and V. Arioli: Rifamycins. Xxxv. Amides and Hydrazides of Rifamycin B. J. Med. Chem. 7, 596 (1964).Google Scholar
  130. 126.
    Sensi, P., N. Maggi, S. FÜRÉsZ, and G. Maffii: Chemical Modifications and Biological Properties of Rifamycins. Antimicrob. Agents Chemother. 1966, 699 (1967).Google Scholar
  131. 127.
    Sensi, P., P. Margalith, and M. T. Timbal: Rifomycin, A New Antibiotic - Preliminary Report. Farmaco Ed. Sci. 14, 146 (1959).Google Scholar
  132. 128.
    Sensi, P., M. T. Timbal, and G. Maffn: Rifomycin. IX. Two New Antibiotics of Rifomycin Family: Rifomycin S and Rifomycin SV. Experientia 16, 412 (1960).Google Scholar
  133. 129.
    Sihbata, M., T. Hasegawa, and E. Higashide: Tolypomycin, A New Antibiotic. I. Streptomyces tolypophorus nov. sp., a New Antibiotic, Tolypomycin-Producer. J. Antibiot. 24, 810 (1971).Google Scholar
  134. I30.
    Siminoff, P., R. M. Smith, W. T. Sokolski, and G. M. Savage: Streptovaricin. I. Discovery and Biologic Activity. Am. Rev. Tuberc. Pulm. Dis. 75, 576 (1957).Google Scholar
  135. 131.
    Smith, R. G., and R. C. Gallo: Minireview. Agents Which Inhibit Reverse Transcriptases. Life Sci. 15, 1711 (1974).Google Scholar
  136. 132.
    Smith, R. G., J. Whang-Peng, R. C. Gallo, P. Levine, and R. C. 11NG: SelectiveGoogle Scholar
  137. Toxicity of Rifamycin Derivatives for Leukaemic Human Leucocytes. Nature (London) New Biol. 236, 166 (1972).Google Scholar
  138. 133.
    Sokolski, W. T., N. J. Eilers, and P. Siminoff: Paper Chromatography and Assay of Components of Streptovaricin. Antibiot. Annu. 1957—1958, 119(1958).Google Scholar
  139. 134.
    Sugarawa, S.. K. Karasawa, M. Watanabe, and T. Hidaka: Production of Rifamycin O by Streptomyces 4107A2. J. Antibiot. Ser. A, 17, 29 (1964).Google Scholar
  140. 135.
    Temin, H. M., and S. Mizutani: Rna-Dependent Dna Polymerase in Virions of Rous Sarcoma Virus. Nature (London) 226, 1211 (1970).Google Scholar
  141. 136.
    Thiemann, J. E., G. Zucco, and G. Pelizza: A Proposal for the Transfer of Streptomyces mediterranei Margalith and Beretta 1960 to the Genus Nocardia as Nocardia mediterranei (Margalith and Beretta) Comb. Nov. Arch. Mikrobiol. 67, 147 (1969).Google Scholar
  142. 137.
    Thiry, L., and G. Lancini: Mode of Action of Rifamycin and Aminopiperazine Derivatives on Animal Viruses and Cells. Febs Sym. 22, 177 (1972).Google Scholar
  143. 138.
    Thompson, F. M., L. J. Libertini, U. R. Joss, and M. Calvin: Detergent Effects on a Reverse Transcriptase Activity and on Inhibition by Rifamycin Derivatives. Science 178, 505 (1972).Google Scholar
  144. 139.
    Thompson, F. M., A. N. Tischler, J. Adams, and M. Calvin: Inhibition of Three Nucleotide Polymerases by Rifamycin Derivatives. Proc. Nat. Acad. Sci. Usa, 71, 107 (1974).Google Scholar
  145. 140.
    Timbal, M. T.: Rifomycin. II. Antibacterial Activity of Rifomycin B. Antibiot. Annu. 1959—1960, 271 ( 1960).Google Scholar
  146. 141.
    Timbal, M. T., and A. Brega: Rifomycin. Xvii. Rifomycin SV, Treatment of Experimental lnfections. Farmaco Ed. Sci. 16, 191 (1961).Google Scholar
  147. 142.
    Timbal, M. T., R. Pallanza, and G. CarntrL Rifomycin. Xvi. Bacteriological Studies of Rifomycin SV in vitro. Farmaco Ed. Sci. 16, 181 (1961).Google Scholar
  148. 143.
    Ting, R. C., S. S. Yang, and R. C. Gallo: Reverse Transeriptase, Rna Tumour Virus Transformation and Derivatives of Rifamycin SV. Nature (London) New Biol. 236, 163 (1972).Google Scholar
  149. 144.
    Tipton, C. D.: Structural and Synthetic Studies of the Antibiotics Lomofungin and Geldanamycin. Ph. D. Thesis. University of Illinois, Urbana. 1971.Google Scholar
  150. 145.
    Tischler, A. N., U. R. Joss, F. M. Thompson, and M. Calvin: Synthesis of Some Rifamycin Derivatives as Inhibitors of an Rna-Instructed Dna Polymerase Function. J. Med. Chem. 16, 1071 (1973).Google Scholar
  151. 146.
    Tischler, A. N., F. M. Thompson, L. J. Libertini, and M. Calvin: Rifamycin Derivatives as Inhibitors of a Ribonucleic Acid Instructed Deoxyribonucleic Acid Polymerase Function. Effect of Lipophilicity. J. Med. Chem. 17, 948 (1974).Google Scholar
  152. 147.
    Vanek, Z., and J. Majer: Macrolide Antibiotics. In: D. Gottlieb and P. D. Shaw (Edit.), Antibiotics. Vol. H. Biosynthesis, p. 154. New York: Springer-Verlag. 1967.Google Scholar
  153. 148.
    Wang, A. H.-J., and I. C. Paul: Structure of a Derivative of Streptovaricin C Triacetate: Crystal and Molecular Structure of the Atropisomer of the Cyclic p-Bromobenzeneboronate Ester of Streptovaricin C Triacetate. To be submitted for publication.Google Scholar
  154. 149.
    Wang, A. H.-J., I. C. Paul, K. L. Rinehart, JR., and F. J. AntosZ: Chemistry of the Streptovaricins. IX. X-Ray Crystallographic Structure of a Streptovaricin C Derivative. J. Amer. Chem. Soc. 93, 6275 (1971).Google Scholar
  155. 150.
    Wani, M. C., H. L. Taylor, and M. E. Wall: Plant Antitumour Agents: Colubrinol Acetate and Colubrinol, Antileukaemic Ansa Macrolides from Colubrina texensis. Chem. Commun. 390 (1973).Google Scholar
  156. 151.
    Wehrli, W., F. KNÜSel, K. Schmid, and M. Staehelin: Interaction of Rifamycin with Bacterial Rna Polymerase. Proc. Nat. Acad. Sci. Usa 61, 667 (1968).Google Scholar
  157. 152.
    Wehrli, W., and M. SrAehelin: The Rifamycins - Relation of Chemical Structure and Action on Rna Polymerase. Biochim. Biophys. Acta 182, 24 (1969).Google Scholar
  158. 153.
    Wehrli, W., and M. SrAehelin Actions of the Rifamycins. Bacteriol. Rev. 35, 290 (1971).Google Scholar
  159. 154.
    Weinstein, M. J., G. M. Luedemann, E. M. Oden, and G. H. Wagman: Halomicin, A New Micromonospora-produced Antibiotic. Antimicrob. Agents Chemother. 1967, 435 (1968).Google Scholar
  160. 155.
    White, R. J., and E. Martinelli: Ansamycin Biogenesis: Incorporation of [113C]Glucose and [I-13C]Glycerate into the Chromophore of Rifamycin S. Febs Lett. 49, 233 (1974).Google Scholar
  161. 156.
    White, R. J., E. Martinelli, G. G. Gallo, G. Lancini, and P. Beynon: Rifamycin Biosynthesis Studied with 13C Enriched Precursors and Carbon Magnetic Resonance. Nature (London) 243, 273 (1973).Google Scholar
  162. 157.
    White, R. J., E. Martinelli, and G. Lancini: Ansamycin Biogenesis: Studies on a Novel Rifamycin Isolated from a Mutant Strain of Nocardia mediterranei. Proc. Nat. Acad. Sci. Usa 71, 3260 (1974).Google Scholar
  163. 158.
    Whitfield, G. B., E. C. Glson, R. R. Herr, J. A. Fox, M. E. Bergy, and G. A. Boyack: Streptovaricin. II. Isolation and Properties. Am. Rev. Tuberc. Pulm. Dis. 75, 584 (1957).Google Scholar
  164. 159.
    Williams, T. H.: Naphthomycin, A Novel Ansa Macrocyclic Antimetabolite. Proton Nmr Spectra and Structure Elucidation Using Lanthanide Shift Reagent. J. Antibiot. 28, 85 (1975).Google Scholar
  165. 160.
    Witty, T. R.: Unpublished results. University of Illinois.Google Scholar
  166. 161.
    Wolpert-Defilippes, M. K., R. H. Adamson, R. L. Cysyk, and D. G. Johns: Initial Studies on Cytotoxic Action of Maytansine, a Novel Ansa Macrolide. Biochem. Pharmacol. 24, 751 (1975).Google Scholar
  167. 162.
    Yamazaki, H., S. Mizuno, K. Nitta, R. Utahara, and H. Umezawa: Biochemical Mechanism of Action of Substance B44P. J. Antibiot. 21, 63 (1968).Google Scholar
  168. 163.
    Yang, S. S., F. M. Herrera, R. G. Smith, M. S. Reitz, G. Lancini, R. Ting, and R. C. Gallo: Rifamycin Antibiotics: Inhibitors of Rauscher Murine Leukemia Virus Reverse Transcriptase and of Purified Dna Polymerases from Human Normal and Leukemic Lymphoblasts. J. Nat. Cancer Inst. 49, 7(1972).Google Scholar
  169. 164.
    Zerilli, L. F., and G. G. Gallo: Eur. Report 4765, f.i.e., 217 (1971).Google Scholar
  170. 165.
    Zerilli, L. F., M. Landi, G. G. Gallo, K. H. Maurer, and U. Rapp: EI and FD Mass Spectra of Rifamycins. 23rd Annual Conference on Mass Spectrometry and Allied Topics, Houston, 1975.Google Scholar
  171. 166.
    Zerrlli, L. F., M. Landi, N. Rimorini, and G. G. Gallo: Spettri di Massa delle Rifamicine. Ann. Chim. (Rome) 64, 199 (1974).Google Scholar

Copyright information

© Springer-Verlag Wien 1976

Authors and Affiliations

  • K. L. RinehartJr.
    • 1
  • L. S. Shield
    • 1
  1. 1.Roger Adams LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations