Advertisement

Abstract

A remarkable characteristic of naturally occurring terpenes is the bewildering array of carbocyclic structures. As of 1970 more than 200 different carbon skeletons had been identified (excluding nor metabolites), the structures varying from acyclic chains to hexacyclic ring systems and containing almost all ring sizes from three to fourteen members (1). Although a considerable number of the 200 are produced by oxidative transformations (e. g., ring cleavage) of pre-existing terpenes, a majority nevertheless represent primary structures formed in nature through multistep cyclization and rearrangement sequences originating from five basic acyclic precursors.

Keywords

Tetrahedron Letter Ring Contraction Hydrogen Shift Terpene Biosynthesis Hydride Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Devon, T. K. , and A. I. ScOTr: Handbook of Naturally Occurring Compounds, Vol. II Terpenes. New York: Academic Press. 1972Google Scholar
  2. 2.
    Ružička, L. , A. Eschenmoser und H. Heusser: The Isoprene Rule and the Biogenesis of Terpenic Compounds. Experientia 9, 357 (1953)Google Scholar
  3. 3.
    EscIienmoser, A. , L. Ružička, O. Jeger, und D. Arigoni: Zur Kenntnis der Triterpene. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. Helv. Chim. Acta 38, 1890 (1955)Google Scholar
  4. 4.
    Ružička, L. : Bedeutung der theoretischen organischen Chemie füür die Chemie der Terpenverbindungen. In: A. Todd (ed. ), Perspectives in Organic Chemistry, p. 265. New York: Interscience. 1956Google Scholar
  5. 5.
    Ružička, 1. : Faraday Lecture — History of the Isoprene Rule. Proc. Chem. Soc. (London) 1959, 341.Google Scholar
  6. 6.
    Ružička, L. : Perspektiven der Biogenese und der Chemie der Terpene. Pure Appl. Chem. 6, 493 (1963)Google Scholar
  7. 7.
    Ncholas, H. J. : The Biogenesis of Terpenes in Higher Plants. ln: P. Bernfeld (ed. ). Biogenesis of Natural Compounds. New York: MacMillan Company. 1963Google Scholar
  8. 8.
    Richards, J. H. , and J. B. Hendrickson: The Biosynthesis of Steroids, Terpenes, and Acetogenins. New York: W. A. Benjamin, Inc. 1964Google Scholar
  9. 9.
    JoHNsoN, W. S. : Nonenzymic Biogenetic-like Olefinic Cyclizations. Accounts Chem. Res. 1, 1 (1968)Google Scholar
  10. 10.
    Van Tamelen, E. E. : Bioorganic Chemistry: Sterols and Acyclic Terpene Terminal Epoxides. Accounts Chem. Res. 1, 1 I I(1968)Google Scholar
  11. 11.
    Goldsmith, D. : Biogenetic-type Synthesis of Terpenoid Systems. In: W. Herz, H. Griesebach, and G. W. Kirby (eds. ), Progress in the Chemistry of Organic Natural Products, Vol. 29, p. 363. Vienna: Springer. 1971Google Scholar
  12. 12.
    Money, T. : Biogenetic-Type Synthesis of Terpenes. In: W. Carruthers and J. K. Sutherland (eds. ), Progress in Organic Chemistry, Vol. 8, p. 29. New York: J. Wiley and Sons. 1973Google Scholar
  13. 13.
    Harding, K. E. : On the Stereochemistry of Biogenetic-Like Olefin Cyclizations. Bioorganic Chemistry 2, 248 (1973)Google Scholar
  14. 14.
    Van Tamelen, E. E. : Bioorganic Chemistry: Total Synthesis of Tetra- and Pentacyclic Triterpenoids. Accounts Chem. Res. 8, 152 (1975)Google Scholar
  15. 15.
    King, J. F. , and P. DE Mayo: Terpenoid Rearrangements. In: P. DE Mayo (ed. ), Molecular Rearrangements, Part Two, p. 771. New York: Interscience. 1963Google Scholar
  16. 16.
    Yammam Ura, S. , and Y. Hirata: A Naturally-occurring Bromo-compound, Aplysin-20 from AplySia kurodai. Bull. Chem. Soc. Japan 44, 2560 (1971)Google Scholar
  17. 17.
    Sims, J. J. , G. H. Y. Lin, R. M. Wing, and W. FenicAL: Marine Natural Products. Concinndiol, A Bromo-diterpene Alcohol from the Red Alga, Laurencia concinna. Chem. Commun. 1973, 470.Google Scholar
  18. 18.
    Suzuki, M. , E. Kurosawa, and T. Irie: Olanduliferol, A New Halogenated Sesquiterpenoid from Laurencia glandulifera Kützing. Tetrahedron Letters 1974, 1807.Google Scholar
  19. 19.
    Mcmillan, J. A. , I. C. Paul, R. H. White, and L. P. Hager: Molecular Structure of Acetoxyintricatol: A New Bromo Compound from Laurencia intricata. Tetrahedron Letters 1974, 2039.Google Scholar
  20. 20.
    Corbella, A. , P. Gariboldi, G. Jommi, and M. SIsTI: Biosynthesis of the Terpenoid Dendrobine. Early Stages of the Pathway. Chem. Commun. 1975, 288.Google Scholar
  21. 21.
    Achilladelis, B. , and J. R. Hanson: Studies in Terpenoid Biosynthesis. Part V. Biosynthesis of Rosenonolactone. J. Chem. Soc. (C) 1969, 2010.Google Scholar
  22. 22.
    Achilladelis, B. , and J. R. Hanson: Studies in Terpenoid Biosynthesis. I. The Biosynthesis of Metabolites of Trichothecium Roseumn. Phytochem. 7, 589 (1968)Google Scholar
  23. 23.
    Upper, C. D. , and C. A. West: Biosynthesis of Gibberellins. II. Enzymic Cyclization of Geranylgeranyl Pyrophosphate to Kaurene. J. Biol. Chem. 242, 3285 (1967)Google Scholar
  24. 24.
    Schechter, I. , and C. A. West: Biosynthesis of Gibberellins. IV. Biosynthesis of Cyclic Diterpenes from trans-Geranylgeranyl Pyrophosphate. J. Biol. Chem. 244, 3200 (1969)Google Scholar
  25. 25.
    Clayton, R. B. : Biosynthesis of Sterols, Steroids, and Terpenoids. Part I. Biogenesis of Cholesterol and the Fundamental Steps in Terpenoid Biosynthesis. Quart. Rev. (Chem. Soc. London) 19, 168 (1965)Google Scholar
  26. 26.
    Mulheirn, L. J. , and P. J. Ramm: The Biosynthesis of Stereols. Chem. Soc. Rev. 1, 259 (1972)Google Scholar
  27. 27.
    GoodwIN, T. W. : Biosynthesis of Carotenoids and Plant Triterpenes (Ciba Lecture). Biochem. J. 123, 293 (1971)Google Scholar
  28. 28.
    Giger, R. : Analogien und Unterschiede in der Biosynthese von α- und ββ-Amyrin. Ph. D. Thesis, Eth, Zurich, 1973Google Scholar
  29. 29.
    Immer, H. , und K. Huber: Synthese und Biologische Auswertung von 3β,20(R)Dihydroxy-Protost-24-en. Helv. Chim. Acta 54, 1346 (1971)Google Scholar
  30. 30.
    Barton, D. H. R. , G. Mellows, D. A. Widdowson, and J. J. Wright: Biosynthesis of Terpenes and Steroids. Part IV. Specific Hydride Shifts in the Biosynthesis of Lanosterol and ββ-Amyrin. J. Chem. Soc. (C) 1971, 1142Google Scholar
  31. 31.
    Van Tamelen, E. E. , R. G. Lees, and A. Grieder: Cyclization of a Terpenoid Diene with Preformed A-B-D Rings and Its Significance for the Mechanism of Terpcnoid Terminal Epoxide Cyclizations. J. Amer. Chem. Soc. 96, 2255 (1974)Google Scholar
  32. 32.
    Bartlett, P. A. , J. I Brauman, W. S. Johnson, and R. A. Volkmann: Concerning the Mechanism of a Nonenzymic Biogenetic-Like Olefinic Cyclization. J. Amer. Chem. Soc. 95, 7502 (1973)Google Scholar
  33. 33.
    ArigoNI, D. : Some Studies in the Biosynthesis of Terpenes and Related Compounds. Pure Appl. Chem. 17, 331 (1968)Google Scholar
  34. 34.
    Cornforth, J. W. : Olefin Alkylation in Biosynthesis. Angew. Chem. Intern. Ed. 7, 903 (1968)Google Scholar
  35. 35.
    Arigoni, D. , D. E. Cane, B. Muller, and C. Tamm: The Mode of Incorporation of Farnesyl Pyrophosphate into Verrucarol. Helv. Chim. Acta 56, 2946 (1973)Google Scholar
  36. 36.
    Forrester, J. M. , and T. Money: Sequence Studies in Biosynthesis: Trichothecin. Canad. J. Chem. 50, 3310 (1972)Google Scholar
  37. 37.
    Mulheirn, T. J. , and E. Caspi: Mechanism of Squalene Cyclization. The Biosynthesis of Fusidic Acid. J. Biol. Chem. 246, 2494 (1971)Google Scholar
  38. 38.
    Ebersole, R. C. , W. O. Godtfredsen, S. Vangedal, and E. Caspi: Mechanism of Oxidative Cyclization of Squalene. Concerning the Mode of Formation of the 17(20) Double Bond in the Biosynthesis of Fusidic Acid by Fusidium coccineum. J. Amer. Chem. Soc. 96, 6499 (1974)Google Scholar
  39. 39.
    Sargent, G. D. : The 2-Norbornyl Cation. In: G. A. Olah and P. Von R. Schlever (eds. ), Carbonium Ions, Vol. Iii, pp. 1099—1200, especially p. 1177. New York: Wiley-Interscience. 1972Google Scholar
  40. 40.
    Brown, H. C. : The Question of σ Bridging in the Solvolysis of 2-Norbornyl Derivatives. Accounts Chem. Res. 6, 377 (1973)Google Scholar
  41. 41.
    Brown, H. C. , and K. -T. Liu: Additions to Bicyclic Olefins. Vii. Electrophilic Addition of Hydrogen Chloride and Deuterium Chloride to Norbornene, 2-Methylnorbornene, and Related Bicyclic Olefins. Evidence for a Carbonium Ion Process and the Capture of Unsymmetrical (Classical) 2-Norbornyl Cations. J. Amer. Chem. Soc. 97, 600 (1975)Google Scholar
  42. 42.
    Goering, H. L. , and G. N. Fickes: Ionic Reactions in Bicyclic Systems. VI. Solvolytic Studies of Bicyclo[3. 2. 1]octan-2-y1 and Bicyclo[2. 2. 2]octan-2-yl Systems. J. Amer. Chem. Soc. 90, 2856 (1968)Google Scholar
  43. 43.
    Goering, H. L. , and G. N. Fickes Ionic Reactions in Bicyclic Systems. V. Solvolysis of endo-Bicyclo[3. 2. 1]octan2-y1 (Equatorial) p-Toluenesulfonate. J. Amer. Chem. Soc. 90, 2848 (1968)Google Scholar
  44. 44.
    Goering, H. L. , and G. N. Fickes Ionic Reactions in Bicyclic Systems. Vii. Solvolysis of Optically Active exoBicyclo[3. 2. 1]octan-2-yl and Bicyclo[2. 2. 2]octan-2-y1 p-Toluenesulfonate. J. Amer. Chem. Soc. 90, 2862 (1968)Google Scholar
  45. 45.
    Berson, J. A. : Memory Effects and Stereochemistry in Multiple Carbonium Ion Rearrangements. Angew. Chem. Intern. Ed. 7, 779 (1968)Google Scholar
  46. 46.
    Berson, J. A. , M. S. Poonian, and W. J. Libbey: Memory Effects in Multiple Carbonium Ion Rearrangements. II. Behavior of the Potentially Symmetrical Cation in the Ring-Expansion Reactions of 7-Norbornylcarbinyl Systems. J. Amer. Chem. Soc. 91, 5567 (1969)Google Scholar
  47. 47.
    Becker, K. B. , and C. A. Grob: Nucleophilic Reactions at Tertiary Carbon. Part 1. The I,2-Dimcthyl-l-Cyclohexyl Cation. Helv. Chim. Acta 56, 2723 (1973) and pertinent references cited therein.Google Scholar
  48. 48.
    Traylor, T. G. , W. Hanstein, H. J. Berwin, N. A. Clinton, and R. S. Brown: Vertical Stabilization of Cations by Neighboring σ Bonds. General Considerations. J. Amer. Chem. Soc. 93, 5715 (1971)Google Scholar
  49. 49.
    Sargent, G. D. , and T. J. Mason: Solvolysis of 8-Vinyl-exo-8-bicyclo[3. 2. 1]octyl3,5-Dinitrobenzoate. Evidence for Stabilization by Carbon-Carbon-Hyperconjugation in the Transition State for Formation of a Tertiary Allylic Cation. J. Amer. Chem. Soc. 96, 1063 (1974)Google Scholar
  50. 50.
    ITô, S. , K. Endo, and T. NOzOE: Stereochemistry of Widdrol. Tetrahedron Letters 1964, 3375.Google Scholar
  51. 51.
    Herz, W. , A. K. Pinder, and R. N. Mirrington: Resin Acids. IX. Cationic Cyclization of Pimaric Acid Derivatives. Partial Synthesis of (—)-Hibaene. J. Organ. Chem. (Usa) 31, 2257 (1966)Google Scholar
  52. 52.
    Halsall, T. G. , E. R. H. Jones, E. L. Tan, and G. R. Chaudhry: The Chemistry of Triterpenes and Related Compounds. Part Xlv. The Acid-catalysed Rearrangements of the 5α,6α-Diols and 5,6-Epoxides of Some 4,4-Dimethylsteroids. J. Chem. Soc. (C) 1966, 1374.Google Scholar
  53. 53.
    Blunt, J. W. , M. P. Hartsihorn, and D. N. Kirk: Reactions of Epoxides. Part XV. Boron Trifluoride-catalysed Rearrangements of 5,6-Epoxides in the 4,4-Dimethylcholcstane Series. J. Chem. Soc. (C) 1968, 635.Google Scholar
  54. 54.
    CoxON, J. M. , M. P. Hartshorn, and C. N. Muir: Reactions of Epoxides — Xxi. Boron Trifluoride Catalysed Rearrangements of Some 3α-Substituted-5,6-Oxidocholestanes. Tetrahedron 25, 3925 (1969)Google Scholar
  55. 55.
    Epstein, W. W. , and C. D. Poulter: A Survey of Some Irregular Monoterpenes and Their Biogenetic Analogies to Presqualene Alcohol. Phytochem. 12, 737 (1973)Google Scholar
  56. 56.
    Banthorpe, D. V. , B. V. CharlwOod, and M. J. O. Francis: The Biosynthesis of Monoterpenes. Chem. Rev. 72, 115 (1972)Google Scholar
  57. 57.
    Banthorpe, D. V. , and B. V. Charlwood: Biogenesis of Terpenes. In: A. A. NEwMan (ed. ), Chemistry of Terpenes and Terpenoids, p. 337. London: Academic Press. 1972Google Scholar
  58. 58.
    Bates, R. B. , and S. K. Paknikar: Terpenoids. IX. Biogenesis of Some Monoterpenoids Not Derived from a Geranyl Precursor. Tetrahedron Letters 1965, 1453.Google Scholar
  59. 59.
    Banthorpe, D. V. , and B. V. Charlwood: Biosynthesis of Artemisia Ketone. Nature New Biology 231, 285 (1971)Google Scholar
  60. 60.
    Pattenden, G. , and R. Storer: Studies on the Biosynthesis of Chrysanthemum Monocarboxylic Acid. Tetrahedron Letters 1973, 3473.Google Scholar
  61. 61.
    Suga, T. , T. ShisHibori, K. Kotera, and R. Fuju: The Biosynthesis of a NonHead to Tail Monoterpene, Artemisia Ketone. Chemistry Letters 1972, 533.Google Scholar
  62. 62.
    ClosS, G. L. , R. A. Moss, and S. H. Goh: Formation of Cyclopropanes in AcidCatalyzed Decomposition of Phenyldiazomethane in Olefins. J. Amer. Chem. Soc. 88, 364 (1966)Google Scholar
  63. 63.
    Closs, G. L. , and S. H. Goh: The Acid-Induced Reaction of Aryldiazomethanes with Olefins. Mechanism of Reaction. J. Organ. Chem. (Usa) 39, 1717 (1974)Google Scholar
  64. 64.
    Crombie, L. , P. A. Firth, R. P. Hougiiton, D. A. Whiting, and D. K. Woods: Cyclopropane Cleavage of Chrysanthemic Acid Relatives to Santolinyl, Artemisyl, and Lavandulyl Structures: Acid-catalyzed and Biosynthetic Experiments. J. Chem. Soc. Perkin I 1972, 642.Google Scholar
  65. 65.
    Bates, R. B. , and D. Feld: Terpenoids. Xiii. Conversion of Chrysanthemyl Alcohol to a Triene with the Artemesia Ketone Skeleton. Tetrahedron Letters 1967, 4875.Google Scholar
  66. 66.
    Poulter, C. D. , S. G. Moesinger, and W. W. Epsteln: Solvolysis of N-methyl 4-(chrysanthemyloxy)pyridinium Iodide - A Model for Non-head-to-tail Monoterpene Biosynthesis. Tetrahedron Letters 1972, 67.Google Scholar
  67. 67.
    Poulter, C. D. : Model Studies in Terpene Biosynthesis. J. Agr. Food Sci. 22, 167 (1974)Google Scholar
  68. 68.
    Poulter, C. D. Model Studies of Terpene Biosynthesis. Stereoselective Ionization of N-Methyl4-[(αS,1R,3R)-chrysanthemyloxy]pyridinium-di Iodide. J. Amer. Chem. Soc. 94, 5515 (1972)Google Scholar
  69. 69.
    Sasaki, T. , S. EgucHI, M. Ohno, and T. Umemura: Studies on Chrysanthemic Acid Vii. Thermal Decomposition of Chrysanthemyl Oxalate and Deamination of Chrysanthemylamine. J. Organ. Chem. (Usa) 36, 1968 (1971)Google Scholar
  70. 70.
    Sasaki, T. , S. EgucHI, M. Ohno, and T. Umemura Solvolysis of cis- and trans-Chrysanthemyl 3,5-Dinitrobenzoates. The Conjugative Transmission Ability of Cyclopropane Ring. Chemistry Letters 1972, 503.Google Scholar
  71. 71.
    Thomas, A. F. , and W. Pawlak: The Synthesis and Reactions of Yomogi Alcohol. Conversion of the Artemisyl Skeleton to the Santolinyl Skeleton by a 1,2-Shift of a Vinyl Group. Synthesis of Santolinatriene. Helv. Chim. Acta 54, 1822 (1971)Google Scholar
  72. 72.
    Trost, B. M. , P. Conway, and J. Stanton: Some Aspects of Terpene Biosynthesis - A Model. Chem. Commun. 1971, 1639.Google Scholar
  73. 73.
    Poulter, C. D. , R. J. Goodfellow, and W. W. Epstein: The Absolute Configuration of Santolina Alcohol from Ormenis Multicaulus. Tetrahedron Letters 1972. 71.Google Scholar
  74. 74.
    Wiberg, K. B. , and G. SzEimies: Acid-Catalyzed Solvolyses of Bicyclobutane Derivatives. Stereochemistry of the Cyclopropylcarbinyl-Cyclopropylcarbinyl and Related Rearrangements. J. Amer. Chem. Soc. 92, 571 (1970)Google Scholar
  75. 75.
    Majerski, Z. , and P. Von R. Schleyer: The Stereochemistry of Cyclopropylcarbinyl Rearrangements. Synthesis and Solvolysis of Cyclopropylcarbinyl-1,1’, 1’-trans-2,3,3-d6 Methanesulfonate. J. Amer. Chem. Soc. 93, 665 (1971)Google Scholar
  76. 76.
    Wiberg, K. B. , B. A. Hess, JR. , and A. J. Ashe Iii: Cyclopropylcarbinyl and Cyclobutyl Cations. In: G. A. Olah and P. von R. Schleyer (eds. ), Carbonium Ions Vol. Iii, p. 1295. New York: Wiley-Interscience. 1972.Google Scholar
  77. 77.
    Cramer, F. , und W. Rittersdorf: Die Hydrolyse von Phosphaten und Pyrophosphaten einiger Monoterpenalkohole. Modellreaktionen zur Biosynthese der Monoterpene. Tetrahedron 23, 3015 (1967)Google Scholar
  78. 78.
    Rittersdorf, W. , und F. Cramer: Die Hydrolyse von 2,3-Dihydroterpenyl-Phosphaten und -Pyrophosphaten. Tetrahedron 23, 3023 (1967)Google Scholar
  79. 79.
    Rittersdorf, W. , und F. Cramer Cyclization of Nerol and Linalool on Solvolysis of Their Phosphate Esters. Tetrahedron 24, 43 (1968)Google Scholar
  80. 80.
    Winstein, S. , A. Valkanas, and C. F. Wilcox: The Solvolysis of Linalyl p-Nitrobenzoate and the Stereochemical Aspects of the Resulting 1–3 and 1–5 Rearrangements. J. Amer. Chem. Soc. 94, 2286 (1972)Google Scholar
  81. 81.
    Stephan, K. : Über eine Umwandlung von Linalool in Terpineol vom Schmelp. 35’. J. prakt. Chem. 58, 109 (1898)Google Scholar
  82. 82.
    Zeitschel, O. : Über das Nerol und seine Darstellung aus Linalool. Ber. dtsch. chem. Ges. 39, 1780 (1906)Google Scholar
  83. 83.
    Bunton, C. A. , D. L. Hachey, and J. P. Leresche: Deamination of Nerylamine and Geranylamine. J. Organ. Chem. (Usa) 37, 4036 (1972)Google Scholar
  84. 84.
    Whittaker, D. : The Monoterpenes. In: A. A. Newman (ed. ), Chemistry of Terpenes and Terpenoids, Chapter 2. London: Academic Press. 1972Google Scholar
  85. 85.
    Stork, G. , and W. N. White: The Stereochemistry of the SN2’ Reaction II. J. Amer. Chem. Soc. 78, 4609 (1956)Google Scholar
  86. 86.
    Wilcox, C. F. , and S. S. Chibber: Solvolysis of 3-Cyclohexenylcarbinyl Derivatives. J. Organ. Chem. (Usa) 27, 2332 (1962)Google Scholar
  87. 87.
    Fairlie, J. C. , G. L. Hodgson, and T. Money: Synthesis of (±)-Camphor. J. Chem. Soc. Perkin I 1973, 2109.Google Scholar
  88. 88.
    Musos, H. , K. Naumann, und K. Grychtol: Asterane, IV. Synthesen des Norpinans (Bicyclo[3. 1. 1]heptan). Chem. Ber. 100, 3614 (1967)Google Scholar
  89. 89.
    Thomas, M. T. , and A. G. Fallis: The Total Synthesis of (±)α- and (±)β-Pinene: A General Route to the Bicy clo[3. 1. 1]heptanes. Tetrahedron Letters 1973, 4687.Google Scholar
  90. 90.
    Berson, J. A. : Carbonium Ion Rearrangements in Bridge Bicyclic Systems. In: P. DE Mayo (ed. ): Molecular Rearrangements, Part One, p. 111. New York: Inter science 1963Google Scholar
  91. 91.
    Meerwein, H. , und K. Van Emster: Untersuchungen in der Camphcn-Reihe, I: Über den Reaktionsmechanismus der Isoborneol Camphen-Umlagerung. Chem. Ber. 53, 1815 (1920)Google Scholar
  92. 92.
    Meerwein, H. , und K. Van Emster Über die Gleichgewichts-Isomerie zwischen Bornylchlorid, IsobOrnylchlorid und Camphen-Chlorhydrat. Chem. Ber. 55, 2500 (1922)Google Scholar
  93. 93.
    Meerwein, H. , und J. Vorster: Über das Pinenchlorhydrat. J. prakt. Chem. 147, 83 (1936)Google Scholar
  94. 94.
    Olah, G. A. , J. R. Demember, C. Y. Lui, and R. D. Porter: Stable Carbonium Ions. CX. The 1,2-Dimethylnorbornyl Cation. J. Amer. Chem. Soc. 93, 1442 (1971)Google Scholar
  95. 95.
    Banthorpe. D. V. , and D. Whittaker: Rearrangements of Pinane Derivatives. Quart. Rev. (Chem. Soc. London) 20, 373 (1966)Google Scholar
  96. 96.
    Salmon, J. R. , and D. Whittaker: Rearrangements of Pinane Derivatives. Part Iii. Solvolysis of the 2-Pinanyl p-Nitrobenzoates. J. Chem. Soc. (B) 1971, 1249.Google Scholar
  97. 97.
    Valkanas, G. , und N. IcOnomou: Reaktionen in der Terpen-Reihe. 1. Mitteilung. Hydratisierung von α-Pinen. Helv. Chimn. Acta 46, 1089 (1963)Google Scholar
  98. 98.
    HiÜcKel, W. , und H. -J. Kern: Anderung des Molekülhaus bei chemischen Reaktionen, Xxi. Desaminierung in der Bicyclo[2. 2. 1]heptan-Reihe. Liebigs Ann. Chem. 728, 49 (1969)Google Scholar
  99. 98a.
    Kirmse, W. , und G. Arend: Bornyl- und Fenchyldiazonium-Ionen in alkalischen Medien. Chem. Ber. 105, 2738 (1972)Google Scholar
  100. 98b.
    Kirmse, W. , und G. Arend Umlagerung 1-substituierter Apobornyldiazonium-loncn. Chem. Ber. 105, 2746 (1972)Google Scholar
  101. 99.
    Paukstelis, J. V. , and B. W. Macharia: Trans-Coplanar Rearrangements. inc Conversion of Camphor to Nopinone. Tetrahedron 29, 1955 (1973)Google Scholar
  102. l00. Banthorpe, D. V. , J. Mann, and K. W. Turnbull: erpene Biosynthesis. Part II. Biosynthesis of Thujane Derivatives in Thuja, Tanacetum and Juniperus Species. J. Chem. Soc. (C) 1970, 2689.Google Scholar
  103. Hanack, M. , and H. -J. Schneider: Neighboring-Group Effects and Rearrangements in Reactions of Cyclopropylmethyl, Cyclobutyl, and Homoallyl Systems. Angew. Chem. Intern. Ed. 6, 666 (1967)Google Scholar
  104. 102.
    Story, P. R. , and B. C. Clark, JR. : Homoallylic and Homoaromatic Cations. In: G. A. Olah and P. Von R. Schleyer (eds. ), Carbonium Ions Vol. Iii, p. 1007. New York: Wiley-Interscience. 1972Google Scholar
  105. 103.
    Bloss, A. S. , P. R. Brook, and R. M. Ellam: The Formation of the 2-Bicyclo[3. 1. 0]hexyl Cation by Deamination and Solvolysis, and the Effect of Methyl Substitution at C-5. J. Chem. Soc. Perkin lI 1973, 2165.Google Scholar
  106. 104.
    Hanack, M. , und W. Keberle: Uber die Bildung von Bicyclo13. 1. 0Jhexanot-(2) aus A3-Cyclohexenyl-Derivaten. Chem. Ber. 96, 2937 (1963)Google Scholar
  107. 105.
    Lebel, N. A. , and J. E. Huber: The Tricyclo[2. 2. 2. 02. Joctan-3-ols and Derivatives. Preparation, Structure and Reactivity Studies. J. Amer. Chem. Soc. 85, 3193 (1963)Google Scholar
  108. 106.
    Gaoni, Y. : Base Induced Isomerizations of γ,δ-Epoxyketones - II. Synthcses in the Thujane Series. D,L-Sabina Ketone and D,L-Cis Sabinene Hydrate. Tetrahedron 28, 5525 (1972)Google Scholar
  109. 107.
    Norin, T. , and L. -A. Smedman: The Cyclopropylcarbinyl Rearrangements in Sabinene and α-Thujene. Acta Chem. Scand. 25, 2010 (1971)Google Scholar
  110. 108.
    Parker, W. , J. S. Roberts, and R. Ramage: Sesquiterpene Biogenesis. Quart. Rev. (Chem Soc London) 21, 331 (1967)Google Scholar
  111. 109.
    Arigoni, D. : Stereochemical Aspects of Sesquiterpene Biosynthesis. 9th Iupac Conference on Natural Products, Ottawa, Canada, June 24–28, 1974Google Scholar
  112. 110.
    Marshall, J. A. , ST. F. Brady, and N. H. Andersen: The Chemistry of Spiro[4. 5]Decane Sesquiterpenes. In: Herz, Grisebach, Kirby (eds. ) Progress in the Chemistry of Organic Natural Products, Vol. 31, p. 283, 1974Google Scholar
  113. 111.
    L. RUŽIČKA, und E. Capato: Hohere Terpenverbindungen Xxiv. Ringbildungen bei Sesquiterpenen. Totalsynthese des Bisabolens und eines Hexahydro-Cadalins. Helv. Chim. Acta 8, 259 (1925)Google Scholar
  114. 112.
    Gutsche, C. D. , J. R. Maycock, and C. T. Chang: Acid-catalyzed Cyclization of Farnesol and Nerolidol Tetraheddron 24, 859 (1968)Google Scholar
  115. 113.
    Andersen, N. H. , and D. D. Syrdal: Chemical Simulation of the Biogenesis of Cedrene. Tetrahedron Letters 1972, 2455.Google Scholar
  116. 114.
    Ohta, Y. , and Y. Hirose: Electrophile Induced Cyclization of Farnesol. Chemistry L erters 1972, 263Google Scholar
  117. 115.
    Hikino, H. , N. Suzki, and T. Takemoto: Structure and Absolute Configuration of Campherenone and Campherenol, Sesquiterpcnoids of Cinnamomum camphora. Chem. Pharm. Bull. (Japan) 19, 87 (1971)Google Scholar
  118. 116.
    Hodgson, G. L. , D. F. Macsweeney, and T. Money: Synthesis of (±)-Campherenone, (±)-Epicampherenone, (±)-β-Santalene, (±)-epi-β-Santalene, (±)-αSantalene, (±)-Ylangocamphor, (±)-Copacamphor, and (±)-Sativene. J. Chem. Soc. Perkin I 1973, 2113.Google Scholar
  119. 117.
    Eck, C. R. , G. L. Hodgson, D. F. Macsweeney, R. W. Mills, and T. Money: A Stereospecific Synthetic Route to Campherenone, Campherenol, Epicampherenone, β-Santalene, Epi-β-santelene, Ylangocamphor, Copacamphor, Sativene, and Copacamphene. J. Chem. Soc. Perkin I 1974, 1938.Google Scholar
  120. 118.
    SouČEK, M. : On Terpenes. Cxlviii. Biosynthesis of Carotol in Daucus carota L. A Contribution to Configuration of Carotol and Daucol. Collect. Czech. Chem. Comm. 27, 2929 (1962)Google Scholar
  121. 119.
    Demole, E. , P. Enggist et C. Borer: Application synthétiques de la cyclisation d’alcools tertiaires y-éthyléniques en α-bromotetrahydrofurannes sous l’action du Nbromosuccinimidc. II. Cyclisation du (±)-nérolidol en dimćthyl-2,5-(méthyl-4penténe-3-yl)-2-cycloheptène-4-one, tetramethyl-3,3,7,10-oxa-2-tricyclo[5. 5. 0. 01•4]-dodecène-9, β-acoratiene, cédradiène-2,8-epi-2-α-cédréne et α-cèdrène. Helv. Chim. Acta 54. 1845 (1971)Google Scholar
  122. 120.
    Hendrickson, J. B. : Stereochemical Implications in Sesquiterpene Biogenesis. Tetrahedron 782 (1959)Google Scholar
  123. 121.
    Sutherland, J. K. : Regio- and Stereo-Specificity in the Cyclisation of Medium Ring 1,5-Dienes. Tetrahedron 30. 1651 (1974)Google Scholar
  124. 122.
    Wharton, P. S. , R. A. Kretchmer, R. J. Kilian, and T. Oda: Ten-Membered Rings. Transannular Double-Bond Participation in Acid-Promoted Cyclizations. J. Organ. Chem. (Usa) 39. 3755 (1974)Google Scholar
  125. 123.
    Brown, E. D. , M. D. Solomon, J. K. Sutherland, and A. Torre: A Possible Intermediate in Sesquiterpene Biosynthesis. Chem. Commun. 1967, I1 1.Google Scholar
  126. 124.
    Brown, E. D. , and J. K. Sutherland: The Conversion of a Germacrane into Guaiane Derivatives Chem Commun. 1968 1060Google Scholar
  127. 125.
    Heathcock, C. H. , and R. Ratcliffe: A Stereoselective Total Synthesis of the Guaiazulenic Sesquiterpenoids α-Bulnesene and Bulnesol. J. Amer. Chem. Soc. 93, 1746 (1971)Google Scholar
  128. 126.
    Kato, M. , H. KOsUgi, and A. Yoshikoshi Solvolytic Rearrangement of 1β-Tosyloxy4α, 8aβ-dimethyldecalin Derivatives; A Synthesis of (±) Bulnesol. Chem. Commun. 1970, 185.Google Scholar
  129. 127.
    Marshall, J. A. , and J. J. Partridge: The Total Synthesis of (±)-Bulnesol and Related Studies. Tetrahedron 25, 2159 (1969)Google Scholar
  130. 128.
    Heathcock, C. H. , R. Ratcliffe, and J. Van: Synthesis of Hydroazulenes by Solvolytic Rearrangement of 9-Methyl-l-decalyl Tosylates. J. Organ. Chem. (Usa) 37, 1796 (1972)Google Scholar
  131. 129.
    Watkins, S. F. , N. H. Fischer, and I. Bernal: Neutron Diffraction Structure of Melampodin. Its Role in the Reclassification of the Germacranolides. Proc. Nat. Acad. Sci. (Usa) 70, 2434 (1973)Google Scholar
  132. 130.
    Anderson, G. D. , R. Gttany, R. S. Mcewen, and W. Herz: Relative and Ahsolute Confi tion nf Psendo valin Tetrahedron L etters 1973 2409Google Scholar
  133. 131.
    Dittmann, W. , und F. STÜRzenhofecker: Synthese von racem. (1S:4S:9R) (1R:4R:9 S0-cis-Decalin-diol-(1. 4). Liebigs Ann. Chem. 688, 57 (1965)Google Scholar
  134. 132.
    Traynham, J. G. , and H. H. Hsieh: Addition Reactions of cis,trans-1,5-Cyclodecadiene. J. Organ. Chem. (Usa) 38, 868 (1973)Google Scholar
  135. 133.
    Trayhnham, J. G. , G. R. Franzen, G. A. Knesel, and D. J. Northington, Jr. : Addition Reactions of cis, trans-1,5-Cyclodecadiene. J. Organ. Chem. (Usa) 32, 3285 (1967)Google Scholar
  136. 134.
    IgucHI, M. , M. Niwa, and S. Yamamura: Biogenetic Model Reactions of Epoxygermacrone. Chem. Commun. 1972, 689.Google Scholar
  137. 135.
    Nozoe, S. , and C. Kaneko: Personal communication cited in reference 108.Google Scholar
  138. 136.
    Hortmann, A. G. , D. S. Daniel, and J. E. Martinelli: Biogenetically Patterned Total Synthesis of (±)-Occidentalol and 7-Epi-(—)-occidentalol. J. Organ. Chem. (Usa) 38, 728 (1973)Google Scholar
  139. 137.
    Ohta, Y. , K. Ohara, and Y. Hirose: Acid Catalyzed Isomerization of α-Cubebene, α-Copaene, and α-Ylangene. Tetrahedron Letters 1968, 4181.Google Scholar
  140. 138.
    Andersen, N. H. : Biogenetic Implications of the Antipodal Sesquiterpenes in Vetiver Oil. Phvtochem. 9, 145 (1970)Google Scholar
  141. 139.
    Andersen, N. H. , and D. D. Syrdal: Terpenes and Sesquiterpenes of Chamaecyparis nootkatensis Leaf Oil. Phytochem. 9, 1325 (1970)Google Scholar
  142. 140.
    Corbella, A. , P. Gariboldi, and G. Jommi: Aspects of the Biosynthesis of the Terpenoid Dendrobine. Chem. Comm. 1973, 729.Google Scholar
  143. 141.
    Nishimura, K. , N. Shinoda, and Y. Hirose: A New Sesquiterpene Bicyclogermacrene. Tetrahedron Letters 1969, 3097.Google Scholar
  144. 142.
    Yoshihara, K. , Y. Ohta, T. Sakai, and Y. Hirose: Germacrene D, A Key Intermediate of Cadinene Group Compounds and Bourbonenes. Tetrahedron Letters 1969, 2263Google Scholar
  145. 143.
    Marshall, J. A. , W. F. Huffman, and J. A. Ruth: Stcreoselective Synthesis of Hydroazulenes from Cyclodecadienols. J. Amer. Chem. Soc. 94, 4691 (1972)Google Scholar
  146. 144.
    Wharton, P. S. , and M. D. Baird: Conformation and Reactivity in the cis, trans 2,6-Cyclodecadienyl System. J. Organ. Chem. (Usa) 36, 2932 (1971)Google Scholar
  147. 145.
    Iguchi, M. , M. Niwa, and S. Yamamura: Biogenetic Model Reactions of Germacrone-type Sesquiterpenes. Chem. Commun. 1971, 974.Google Scholar
  148. 146.
    Iguchi, M. , M. Niwa, and S. Yamamura Biogenetic-type Reactions of Acoragermacrone. Tetrahedron Letters 1973, 4367.Google Scholar
  149. 147.
    Greenwood, J. M. , M. D. Solomon, J. K. Sutherland, and A. Torre: A Cyclisation of Humulene. J. Chem. Soc. (C) 1968, 3004.Google Scholar
  150. 148.
    Mckervey, M. A. , and J. R. Wright: The Acid-catalysed Cyclisation of 1,2Humulene Epoxide, a Possible Intermediate in the Biosynthesis of Caryophyllene. Chem. Commun. 1970, 117.Google Scholar
  151. 149.
    Naya, Y. , and M. Kotake: Natural Occurrence of Humulol and Tricyclohumuladiol. Bull. Chem. Soc. Japan 42, 2405 (1969)Google Scholar
  152. 150.
    Baines, D. , J. Forrester, and W. Parker: Acid-catalysed Cyclisation of Humulene. J. Chem. Soc. Perkin I 1974, 1598Google Scholar
  153. 151.
    Nickon, A. , T. Iwadare, F. J. Mcguire, J. R. Mahajan, S. A. Narang, and B. UmezawA: The Structure, Stereochemistry, and Genesis of α-Caryophyllene Alcohol (Apollan-11-ol). J. Amer. Chem. Soc. 92, 1688 (1970)Google Scholar
  154. 152.
    Naya, Y. , and Y. HirosE: Acid Catalyzed Isomerization of Humulene (Part I). Chemistry Letters 1973, 133.Google Scholar
  155. 153.
    Naya, Y. , and Y. HirosE Acid Catalyzed Isomerization of Humulene (Part 2). Stereochemistry and the Reaction Pathways. Chemistry Letters 1973, 727.Google Scholar
  156. 154.
    Dauben, W. G. , J. P. Hubbell, and N. D. Vietmeyer: Acid-Catalyzed Rearrangements of Humulene. J. Organ. Chem. (Usa) 40, 479 (1975)Google Scholar
  157. 155.
    Mckillop, T. F. W. , J. Martin, W. Parker, J. S. Roberts, and J. R. Stevenson: The Synthesis of Neoclovene. J. Chem. Soc. (C) 1971, 3375.Google Scholar
  158. 156.
    Baines, D. , C. Eck, and W. Parker: Epi-Clovene - An Acid Catalysed Rearrangement Product of Carvolan-l-ol. Tetrahedron Letters 1973, 3933.Google Scholar
  159. 157.
    Bisarya, S. C. , and S. Dev: Studies in Sesquiterpenes - Xxxiv. Structure of Allohimachalol. Tetrahedron 24, 3869 (1968)Google Scholar
  160. 157a.
    Fry, J. L. , and G. J. Karabatsos: Intramolecular Hydride Shifts in Carbonium Ions. In: G. A. Olah and P. Von R. Schleyer (eds. ) Carbonium Ions Vol. II, p. 521. New York: Wiley-Interscience. 1970Google Scholar
  161. 158.
    Rcasiu, D. , C. Kascheres, and L. H. Schwartz: Nitrous Acid Deamination of 2-(Aminomethyl)cyclohexanol. The Question of a 1,3-Hydride Shift or Two Consecutive 1,2-Hydride Shifts. J. Amer. Chem. Soc. 94, 180 (1972)Google Scholar
  162. 159.
    Olah, G. A. , and J. Lukas: Stable Carbonium Ions. Xlvii. Alkylcarbonium Ion Formation from Alkanes via Hydride (Alkide) Ion Abstraction in Fluorosulfonic Acid-Antimony Pentafluoride-Sulfuryl Chlorofluoride Solution. J. Amer. Chem. Soc. 89, 4739 (1967)Google Scholar
  163. 160.
    Olah, G. A. , J. R. Demember, A. Commeyras, and J. L. Bribes: Stable Carbonium IonS. Lxxxv. Laser Raman and Infrared Spectroscopic Study of Alkylcarbonium Ions. J. Amer. Chem. Soc. 93, 459 (1971)Google Scholar
  164. 161.
    Olah, G. A. , and J. A. Olah: Alkylcarbonium Ions: In: G. A. Olah and P. Von R. Schleyer (eds. ), Carbonium Ions Vol. II, p. 715. New York: Wiley-Interscience. 1970Google Scholar
  165. 162.
    Saunders, M. , and P. Vogel: Equilibrium Deuterium Isotope Effects in Systems Undergoing Rapid Rearrangements. Methyl Interchange in Dimethylisopropylcarbonium Ion. J. Amer. Chem. Soc. 93, 2561 (1971)Google Scholar
  166. 163.
    Saunders, M. , P. Vogel, E. L. Hagen, and J. Rosenfeld: Evidence for Protonated Cyclopropane Intermediates from Studies of Stable Solutions of Carbonium Ions. Accounts Chem. Res. 6, 53 (1973)Google Scholar
  167. 164.
    Saunders, M. , E. L. Hagen, and J. Rosenfeld: Rearrangement Reactions of Secondary Carbonium Ions. Protonated Cyclopropane Intermediates Formed from sec Butyl Cation. J. Amer. Chem. Soc. 90, 6882 (1968)Google Scholar
  168. 165.
    Saunders, M. , P. Von R. Schleyer, and G. A. Olah: Stable Carbonium Ions. XI. The Rate of Hydride Shifts in the 2-Norbornyl Cation. J. Amer. Chem. Soc. 86, 5680 (1964)Google Scholar
  169. 166.
    Olah, G. A. : Carbocations and Electrophilic Reactions. Angew. Chem. Intern. Ed. 12, 173 (1973)Google Scholar
  170. 167.
    Brouwer, D. M. , and H. Hogeveen: The Importance of Orbital Orientation as a Rate-Controlling Factor in Intramolecular Reactions of Carbonium Ions. Rec. trav. chim. Pays-Bas 89, 211 (1970)Google Scholar
  171. 168.
    Vogel, P. , M. Saunders, W. Thielecke, and P. Von R. Schleyer: Exceptionally High Barriers to 1,2-Hydride Shifts in the 1-Adamantyl Cation. Tetrahedron Letters 1971, 1429Google Scholar
  172. 169.
    Cohen, T. , G. Herman, T. M. Chapman, and D. Kuhn: A Laboratory Model for the Biosynthesis of Cyclopropane Rings. Copper-Catalyzed Cyclopropanation of Olefins by Sulfur Ylides. J. Amer. Chem. Soc. 96. 5627 (1974)Google Scholar
  173. 170.
    Epstein, W. W. , and H. C. Rilling: Studies on the Mechanism of Squalene Biosynthesis. The Structure of Presqualene Pyrophosphate. J. Biol. Chem. 245, 4597 (1970)Google Scholar
  174. 171.
    PopjÁK, G. , J. Edmond, and S. -M. Wong: Absolute Configuration of Presqualene Alcohol. J. Amer. Chem. Soc. 95, 2713 (1973)Google Scholar
  175. 172.
    Altman, L. J. , L. Ash, R. C. Kowerski, W. W. Epstein, B. R. Larsen, H. C. Rilling, F. MUsCio, and D. E. Gregonis: Prephytoene Pyrophosphate. A New Intermediate in the Biosynthesis of Carotenoids. J. Amer. Chem. Soc. 94, 3257 (19720Google Scholar
  176. 173.
    Govindachari, T. R. , P. A. Mohamed, and P. C. Parthasarathy: Ishwarane and Aristolochene, Two New Sesquiterpene Hydrocarbons from Aristolochia IndÜca. Tetraheddrnn 26615 (1970)Google Scholar
  177. 174.
    Irie, T. , M. Suzuki, E. Kurosawa, and T. Masamune: Laurinterol, Debromolaurinterol and Isolaurinterol, Constituents of Laurencia Intermedia Yamada. Tetra hed rnn 3771 (1970)Google Scholar
  178. 175.
    Fenical W. , and J. J. Sims: Cycloeudesmol, An Antibiotic Cyclopropane Containing Sesquiterpene from the Marine Alga, Chondria Oppositiclada Dawson. Tetrahedron Letters 1974, 1137.Google Scholar
  179. 176.
    Turnbull, K. W. , W. Acklin, D. Arigoni, A. Corbella, P. Gariboldi, and G. Jommi: Biological Conversion of Copaborneol into Tutin. Chem. Commun. 1972, 598.Google Scholar
  180. 177.
    Corbella, A. , P. Gariboldi, and G. Jommi: Biosynthesis of Tutin from (4R)[43H1]Mevalonic Acid. Chem. Commun. 1972, 600.Google Scholar
  181. 178.
    Hanson, J. K. , and R. Nypeler: The Mevalonoid Origin of the Hydrogen Atoms of Culmorin. Chem. Commun. 1975. 171.Google Scholar
  182. 179.
    Keating, J. T. , and P. S. Skell: Free Carbonium Ions. In: G. A. Olah and P. Von R. Schleyer (eds. ), Carbonium Ions Vol. II, p. 573. New York: WileyInterscience. 1970Google Scholar
  183. 180.
    Friedman, L. : Carbonium Ion Formation from Diazonium Ions. In: G. A. Olah and P. Von R. Schleyer (eds. ), Carbonium Ions Vol. II, p. 655. New York: WileyInterscience. 1970Google Scholar
  184. 181.
    Karabatsos, G. J. , C. E. Orzech, J. L. Fry, and S. Meyerson: Carbonium Ions. XI. Deamination of 1-Aminopropanc and the Question of Protonated Cyclopropane vs. the 1-Propyl Cation. J. Amer. Chem. Soc. 92, 606 (1970)Google Scholar
  185. 182.
    Friedman, L. , and J. H. Bayless: Aprotic Diazotization of Aliphatic Amines. Hydrocarbon Products and Reaction Parameters. J. Amer. Chem. Soc. 91, 1790 (1969)Google Scholar
  186. 183.
    Tanida, H. , and H. Matsumura: Solvolyses of Aryldineopentylcarbinyl, Aryl-tert butylneopentylcarbinyl, and Aryldi-tert-butylcarbinyl p-Nitrobenzoates. Effects of the Bulky Alkyl Groups at the Reaction Center and Substituents in the Aryl Ring. J. Amer Chem Soc 95. 1586 (19730Google Scholar
  187. 184.
    Abruscato, G. J. , and T. T. Tidwell: Steric Crowding in Organic Chemistry. VI. Reactivity of Tri-tert-butylethylene and Related Compounds. J. Organ. Chem. (Usa) 37, 4151 (1972)Google Scholar
  188. 185.
    Gream, G. E. , D. Wege, and M. Mular: The Camphenehydro (Methylcamphenilyl) and Isobornyl (Bornyl) Cations. I. Generation of the Enantiomeric Cations by the π- and σ-Routes of Solvolysis. Austral. J. Chem. 27, 567 (1974)Google Scholar
  189. 186.
    Bunton, C. A. , and C. O’Connor: Structure of the Trimethylnorbornyl Carbonium Ion. Chem. and Ind. 1965, 1182.Google Scholar
  190. 187.
    Shapiro, R. IH. , J. H. Duncan, and J. C. Clopton: The Effect of Base Concentra tion and Solvent Polarity on the Base Catalyzed Decomposition of Camphor Tosylhydrozone under Aprotic Conditions. J. Amer. Chem. Soc. 89, 1442 (1967)Google Scholar
  191. 188.
    Edwards, O. E. , and M. Lesage: The Deamination of Alicyclic α-Aminoketones. Canad. J. Chem. 41, 1592 (1963)Google Scholar
  192. 189.
    Westman, T. L. : Studies in the 9-Substituted Decalins. Ph. D. Thesis, University of California, Berkeley, California, 1961Google Scholar
  193. 190.
    Dauben, W. G. , and P. Lang: The Preparation of 14β,18-Cyclosteroids from NDesmethyl-N(20)-Conene Derivatives and 18-Aminosteroids. Tetrahedron 20, 1259 (1964)Google Scholar
  194. 191.
    Nickon, A. , and N. H. Werstiuk: 1,3-Eliminations. I. Stereochemical Considerations and Terminology. J. Amer. Chem. Soc. 89, 3914 (1967)Google Scholar
  195. 192.
    Collins, C. J. : Protonated Cyclopropanes. Chem. Rev. 69, 543 (1969)Google Scholar
  196. 193.
    Lee, C. C. : Protonated Cyclopropanes. In: S. G. Cohen, A. Streitwieser, and R. W. Taft, Progress in Physical Organic Chemistry, Vol. 7, p. 129. New York: Interscience. 1970Google Scholar
  197. 194.
    Friedman, L. , and A. T. Jurewlcz: Factors Affecting the Formation and Stability of the Equilibrating Protonated Cyclopropane. J. Amer. Chem. Soc. 91, 1800 (1969)Google Scholar
  198. 195.
    Friedman, L. , and A. T. Jurewlcz Hydrocarbon Forming Pathways from Amine Diazotizations. J. Amer. Chem. 91I803 (1969)Google Scholar
  199. 196.
    Depuy, C. H. , A. H. Andrist, and P. C. FÜNfschilling: Stereochemistry of the Electrophilic Ring Opening of Cyclopropanes by D+. Evidence for an Unsymmetrical, Nonrotating, Corner-Protonated Cyclopropane. J. Amer. Chem. Soc. 96, 948 (1974).Google Scholar
  200. 197.
    Depuy, C. H. : Stereochemistry and Reactivity in Cyclopropane Ring-Cleavage by Electrophiles. Fortschr. chem. Forsch. 40, 73 (1973)Google Scholar
  201. 198.
    Colter, A. , E. C. Eriedrich, N. J. Holness, and S. Winstein: The ApoiSobornylexo-Camphenilvl Nonclassical Cation. J. Amer. Chem. Soc. 87. 378 (1965)Google Scholar
  202. 199.
    Lee, C. C. , and B. -S. Hahn: Rearrangement Studies with Carbon-14. Xxxiv. The π Route to the Norbornyl Cation from Solvolyses of 2-(03-Cyclopentenyl)-2-14C-pNitrobenzenesulfonate. J. Amer. Chem. Soc. 91, 6420 (1969)Google Scholar
  203. 200.
    Bly, R. S. , R. K. Bly, A. O. Bedenbaugh, and O. R. Vail: π-Electron Participation in the Acetolysis of β-(syn-7-Norbornenyl) ethyl p-Bromobenzenesulfonate. J. Amer. Chem. Soc. 89, 880 (1967)Google Scholar
  204. 201.
    Spurlock, L. A. , and K. P. Clark: Nature of the Carbonium Ion. X. The 2Protoadamantyl Cation J Amer Chem Soc 94. 5349 (1972)Google Scholar
  205. 202.
    Wendler, N. L. , R. P. Graber, C. S. Snoddy, JR. , and F. W. Bollinger: Transannular Hydrogen Transfer in the Steroid Series. J. Amer. Chem. Soc. 79. 4476 (1957)Google Scholar
  206. 203.
    Olah, G. A. , G. Liang, G. D. Mateescu, and J. L. Riemenschneider: Stable Carbocations. CL. Fourier Transform13C Nuclear Magnetic Resonance and X-Ray Photoelectron Spectroscopic Study of the 2-Norbornyl Cation. J. Amer. Chem. Soc. 95. 8698 (1973)Google Scholar
  207. 204.
    BrouwER, D. M. , and J. A. Van Doorn: Spectroscopic Observation of a 1,3Hydrogen Shift in 2,4-Dimethylpentyl Cation. Rec. tray. chim. Pays-Bas 88, 573 (19690Google Scholar
  208. 205.
    Saunders, M. , and J. J. Stofko, JR. : Intramolecular Hydride Shifts in Carbonium Ions. J. Amer. Chem. Soc. 95, 252 (1973)Google Scholar
  209. 206.
    Stofko, J. J. , Jr. : Nmr Studies I. Hydride Shifts in Alkyl Carbonium Ions. II. Nitrogen Inversion in Tertiary Amines. Ph. D. Thesis, Yale University, New Haven, Conn 1972Google Scholar
  210. 207.
    Achilladelis, B. A. , P. M. Adams, and J. R. Hanson: Studies in Terpenoid Biosynthesis. Part Viii. The Formation of the Trichothecane Nucleus. J. Chem. Soc. Perkin I 1972, 1425.Google Scholar
  211. 208.
    Muller, B. , and CH. Tamm: Biosynthesis of the Verrucarins and Roridins. Part 4. The Mode of Incorporation of (3R)-[(5R)-5 -3H]-Mevalonate into Verrucarol. Evidence for the Identity of the C(11)-Hydrogen Atom of the Trichothecane Skeleton with the (5R)-Hydrogen Atom of (3R)-Mevalonic Acid. Helv. Chim. Acta 58, 483 (1975)Google Scholar
  212. 209.
    Tamm, CH. : The Antibiotic Complex of the Verrucarins and Riordins. In: W. Herz, H. GrisEbach, and G. W. Klrby (eds. ), Progress in the Chemistry of Organic Natural Prodncts Vnl 3 1 p 63 Vienna• Springer-Verlag 1974Google Scholar
  213. 210.
    Adams, P. M. , and J. R. Hanson: Studies in Terpenoid Biosynthesis. Part Vii. The Biosynthesis of Helicobasidin. J. Chem. Soc. Perkin I 1972, 586.Google Scholar
  214. 211.
    Cordell, G. A. : The Occurrence, Structure Elucidation, and Biosynthesis of the Sesterpenes. Phytochem. 13, 2343 (1974)Google Scholar
  215. 212.
    Wilder, P. , Jr. , D. J. Cash, R. C. Wheland, and G. W. Wright: Rearrangements of Dihydrodicyclopentadiene Derivatives in Phosphoric Acid. J. Amer. Chem. Soc. 93. 791 (1971)Google Scholar
  216. 213.
    Corey, E. J. , and R. D. Balanson: A Simple Synthesis of (±)-Cedrene and (±)Cedrol Using a Synchronous Double Annulation Process. Tetrahedron Letters 1973, 3153.Google Scholar
  217. 214.
    Cope, A. C. , M. M. Martin, and M. A. Mckervey: Transannular Reactions in Medium-sized Rings. Quart. Rev. (Chem. Soc. London) 20, 119 (1966)Google Scholar
  218. 215.
    Prelog, V. , and J. G. Traynham: Transannular Hydride Shifts. In: P. DE Mayo (ed. ), Molecular Rearrangements, Part One, p. 593. New York: Interscience. 1963Google Scholar
  219. 216.
    Branca, Q. : Saurekatalysierte 1,5-Hydridverschiebungen in Substraten mit flexibler Konformation: Modellverbindungen und Tetracyclische Triterpene. Ph. D. Dissertation (Nr. 4575) Eidgenossische Technische Hochschule Züürich, 1970Google Scholar
  220. 217.
    Stéhelin, L. , J. Lhomme, and G. OurissON: Transannular Hydride Shifts. A Mechanistic Study in the Longifolene Series. J. Amer. Chem. Soc. 93, 1650 (1971)Google Scholar
  221. 218.
    Stéhelin, L. , L. Kanellias, and G. Ourisson: Solvolysis of 7-Substituted Bicyclo[3. 3. 1]non-3-yl Tosylates. A Kinetic Proof of σ(C-H) Participation. J. Organ. Chem. (Usa) 38, 847 (1973)Google Scholar
  222. 219.
    Stéhelin, L. , L. Kanellias, and G. Ourisson Solvolysis of 9,9-Dimethylbicyclo[3. 3. 1]non-3-yl Tosylate. Enhancement of σ(C-H)Participation by Steric Blocking. J. Organ. Chem. (Usa) 38, 851 (1973)Google Scholar
  223. 220.
    Hill, R. K. , and R. M. Carlson: Acid-catalyzed 1,5-Hydride Transfer in Acyclic Molecnles Merhanism and Stereorhemistrv J Amer Chem Sor 87, 2772 (1965)Google Scholar
  224. 221.
    Branca, Q. , und D. Arigoni. Saurekatalysierte 1,5-Hydridverschiebungen in Svstemen mit flexibler Konformation. Chimia 23. 189 (1969)Google Scholar
  225. 222.
    Atkinson, R. S. , and R. H. Green: 1,5-Hydride Shifts in Acyclic Systems Containing α,β-Unsaturated Ketones and p-Methoxyphenyl Groups. J. Chem. Soc. Perkin I 1974, 394.Google Scholar
  226. 223.
    Andersen, N. H. , M. S. Falcone, and D. D. Syrdal: Structures of Vetivenenes and Vetispirenes. Tetrahedron Letters 1970, 1759.Google Scholar
  227. 224.
    Robinson, R. : The Structural Relations of Natural Products, p. 12. Oxford: Clarendon Press. 1955Google Scholar
  228. 225.
    Penfold, A. R. , and J. L. Simonsen: The Constitutions of Eremophilone, Hydroxyeremophilone, and Hydroxydihydroeremophilone. Part Iii. J. Chem. Soc. 1939, 87.Google Scholar
  229. 226.
    Sulser, H. , J. R. Scherer, and K. L. Stevens: The Structure of Paradisiol, a New Sesquiterpene Alcohol from Grapefruit Oil. J. Organ. Chem. (Usa) 36, 2422 (1971)Google Scholar
  230. 227.
    Brooks, C. J. W. , and R. A. B. Keates: Biosynthesis of Petasin in Petasites hybridus. Phytochem. 11, 3235 (1972)Google Scholar
  231. 228.
    Birnbaum, G. I. , A. Stoessl, S. H. Grover, and J. B. Stothers: The Complete Stereostructure of Capsidiol. X-Ray Analysis and13C Nuclear Magnetic Resonance of Eremophilane Derivatives Having trans-Vicinal Methyl Groups. Canad. J. Chem. 52, 993 (1974)Google Scholar
  232. 229.
    Baker, F. C. , C. J. W. Brooks, and S. A. Hutchinson: Biosynthesis of Capsidiol in Sweet Peppers (Capsium frutescens) Infected with Fungi: Evidence for Methyl Group Migration from 13C Nuclear Magnetic Resonance Spectroscopy. Chem. Commun. 1975, 293.Google Scholar
  233. 230.
    Kitagawa, I. , H. Shibuya, Y. Yamazoe, H. Takeno, and I. Yosioka: Conversion of Dihydroalantolactone to Tetrahydroligularenolide. A Biogenetic-type Transformation of Eudesmanolide to Eremophilanolide. Tetrahedron Letters 1974, 111.Google Scholar
  234. 231.
    BÜcHI, G. , F. Greuter, and T. Tokkoroyama: Terpenes — Xvii. Structure of Calarene and Stereochemistry of Aristolone. Tetrahedron Letters 1962, 827.Google Scholar
  235. 232.
    Streith, J. , P. Pesnelle, et G. OurisSon: Le β-gurjunene. Identification avec la calarene. Bull. soc. chim. France 1963, 518.Google Scholar
  236. 233.
    Ourisson, G. : Molecular Rearrangements of Terpenes. Proc. Chem. Soc. (London) 1964, 274.Google Scholar
  237. 234.
    Kirk, D. N. , and M. P. Hartshorn: Steroid Reaction Mechanisms. Chapter 8. Amsterdam: Elsevier Publishing Company. 1968Google Scholar
  238. 235.
    Snatzke, G. , und A. Veithen: 19-Nor-5β-methyl-steroide, IV. Die Hno2-Desaminierung von 5α-Amino-Steroidén. Liebigs Ann. Chem. 703, 159 (1967)Google Scholar
  239. 236.
    Heathcock, C. H. , and T. R. Kelly: Sesquiterpenoids — IV. Acid-Catalyzed Methyl Migration in the 9-Methyl Decalins. Tetrahedron 24, 3753 (1968)Google Scholar
  240. 237.
    HeathcOcK, C. H. , and Y. Amano: Sesquiterpenoids — V. The Synthesis and Formolysis of 4aβ,8β-Dimethyl-8aα-Hydroxydecahydronaphth-2β-oic Acid and 4aβ,8βDimethyl-8aα-Hydroxydecahydronaphth-2α-oic Acid Lactone. Tetrahedron 24, 4917 (1968)Google Scholar
  241. 238.
    Dunhham, D. J. , and R. G. Lawton: Spiro Intermediates in Sesquiterpene Rearrangements and Synthesis. J. Amer. Chem. Soc. 93, 2075 (1970)Google Scholar
  242. 239.
    Hochstetler, A. R. : Acid-Catalyzed Angular Methyl Migration in a Substituted Octalin. J. Organ. Chem. (Usa) 39, 1400 (1974)Google Scholar
  243. 240.
    Huffman, J. W. : Attempted Duplication of the Methyl Shift in Eremophilane Biosynthesis. J. Organ. Chem. (Usa) 37, 2736 (1972)Google Scholar
  244. 241.
    Hikino, H. , K. Aota, D. Kuwano, and T. Takemoto: Sesquiterpenoids. Xli. Structure and Absolute Configuration of α-Rotunol and β-Rotinol, Sesquiterpenoids of Cyperus rotundus. Tetrahedron 27, 4831 (1971)Google Scholar
  245. 242.
    Caine, D. , and J. B. DAwSon: The Synthesis and Acid-catalysed Rearrangement of a Spiro[4. 5]dec-6-en-2-one. Chem. Commun. 1970, 1232.Google Scholar
  246. 243.
    Hikino, H. , N. Suzuki, and T. Takemoto: Synthesis of Cyperolone and 3-epi Cyperolone. Chem. Pharm. Bull. (Japan) 15, 1395 (1967)Google Scholar
  247. 244.
    Hikino, H. , T. Kohama, and T. Takemoto: Rearrangement of 4,5-Epoxy-Eudesmanes with Boron Trifluoride. Tetrahedron 25, 1037 (1969)Google Scholar
  248. 245.
    Mehta, G. , G. L. Chetty, U. R. Nayak, and S. Dev: Studies in Sesquiterpenes — Xxviii. BF3-Induced Rearrangement of Eudesmane- and 7-Epieudesmane-based 1,2Epoxides. Tetrahedron 24, 3775 (1968)Google Scholar
  249. 246.
    Hartshorn, M. P. , and D. N. Kirk: Reactions of Epoxides — IV. The Rearrangements of 4α,5α- and 4β,5ββ-Epoxy-4-Methylcholestanes with Boron Trifluoride, and a Novel Ketone Rearrangement. Tetrahedron 20, 2943 (1964)Google Scholar
  250. 247.
    Hartshorn, M. P. , and D. N. Kirk: Reactions of Epoxides — VI. A Conformational Analysis of Re arrangements of Tetra-substituted Epoxides. Tetrahedron 21, 1547 (1965)Google Scholar
  251. 248.
    Dauben, W. G. , and P. Oberhänslr: Constituents of Hiba Wood Oil. The Isolation and Synthesis of Two Isomeric Cuprenenes. J. Organ. Chem. (Usa) 31, 315 (1966)Google Scholar
  252. 249.
    ITô, S. , K. Endo, and H. Narita: α-Pseudowiddrene, A New Sesquiterpene Hydrocarbon from Thujopsis dolabrata Sieb. et Zucc. Tetrahedron Letters 1974, 1041.Google Scholar
  253. 250.
    ITO, S. , K. Endo, T. Yoshida, M. Yotagai, and M. Kodama: Chamigrene, a Sesquiterpene Hydrocarbon of a Novel Carbon Skeleton. Chem. Commun. 1967, 186.Google Scholar
  254. 251.
    Nagahama, S. : Hydration of Thujopsene to Widdrol. Bull. Chem. Soc. Japan 33, 1467 (1960)Google Scholar
  255. 252.
    Dausen, W. G. , and L. E. Friedrich: The Mechanism of the Transformation of Thujopsene to Widdrol. Tetrahedron Letters 1964, 2675.Google Scholar
  256. 253.
    Dausen, W. G. , and L. E. Friedrich Cyclopropylcarbinyl Rearrangements in the Thujopsene Series. Tetrahedron Letter tt 1967 1735Google Scholar
  257. 254.
    Dauben, W. G. , and E. I. Aoyagi: Stereochemistry of Cyclopropylcarbinyl Rearrangements Thujopsene-Widdrol Interconversion. Tetrahedron 26, 1249 (1970)Google Scholar
  258. 255.
    Dauben, W. G. , L. E. Friedrich, P. Oberhansli, and E. I. Aoyagi: Thujopsene Rearrangements. The Cyclopropylcarbinyl System. J. Organ. Chem. (Usa) 37, 9 (1972)Google Scholar
  259. 256.
    Ito, S. , M. Yatagai, and K. Endo: Acid-catalyzed Rearrangement of Thujopsene. I. Structure Determination of New Compounds. Tetrahedron Letters 1971, 1149.Google Scholar
  260. 257.
    Itô, S. , M. Yatagai, K. Endo, and M. Kodama: Acid-catalyzed Rearrangement of Thulopsene II. The Reaction Pathway. Tetrahedron Letters 1971, 1153.Google Scholar
  261. 258.
    Dauben, W. G. , and L. E. Friedrich: Thujopsene Rearrangements. The Ring System via Methyl Group Rearrangements. J. Organ. Chem. (Usa) 37, 241 (1972)Google Scholar
  262. 259.
    Dauben, W. G. , and E. I. Aoyagi: Thujopsene Rearrangements. The Ring System via Ring Contraction. J. Organ. Chem. (Usa) 37, 251 (1972)Google Scholar
  263. 260.
    Daeniker, H. U. , A. R. Hochstetler, K. Kaiser, and G. C. Kitchens: The Acid-Catalyzed Isomerization of Thujopsene. J. Organ. Chem. (Usa) 37, 1 (1972)Google Scholar
  264. 261.
    Kato, T. , S. Kanno, and Y. Kitahara: Cyclization of Polyenes - V. Synthesis of α-Chamigrene by the Cyclization of cis- and trans-Monocyclofarnesols. Tetrahedron 26, 4287 (1970)Google Scholar
  265. 262.
    Wolfe, G. , et G. Ourisson: Le Seychellene Isolement et Structure. Tetrahedron 25, 4903 (1969)Google Scholar
  266. 263.
    Bates, R. B. , and R. C. Slagel: Conversion of Bulnesol to Patchouli Alcohol, Guaiol, and “8-Guaiene”. J. Amer. Chem. Soc. 84, 1307 (1962)Google Scholar
  267. 264.
    BÜÜcH, G. , R. E. Erickson, and N. Wakabayashi: Terpenes. Xvi. Constitution of Patchouli Alcohol and Absolute Configuration of Cedrene. J. Amer. Chem. Soc. 83, 927 (1961)Google Scholar
  268. 265.
    BÜcHI, G. , W. D. Macleod, and J. Padilla O. : Terpenes. Xix. Synthesis of Patchouli Alcohol. J. Amer. Chem. Soc. 86, 4438 (1964)Google Scholar
  269. 266.
    Bang, L. , 1. G. Guest, et G. Ourisson: Transpositions a Etapes Multiples de L’Epoxide du β-Patchoulene. Tetrahedron Letters 1972, 2089.Google Scholar
  270. 267.
    Bang, L. , M. A. Diaz-Parra, et G. Ourisson: Transpositions a Etapes Multiples d’Epoxydes Sesquiterpeniquies - I. Action de L’acide Formique sur L’Epoxyde de Cyperene. Correlation entre le Cyperene et L’α-Cedrene. Tetrahedron 29, 2087 (1973)Google Scholar
  271. 268.
    Bang, L. , et G. Ourisson: Transpositions a Etapes Multiples D’Epoxydes Sesquiterpenique - II. Action D’Acides de Lewis sur L’Epoxyde de Cyperene. Tetrahedron 29, 2097 (1973)Google Scholar
  272. 269.
    Terhune, S. J. , J. W. Hogg, and B. M. Lawrence: Cycloseychellene, A New Tetracyclic Sesquiterpene from Pogostemon Cablin. Tetrahedron Letters 1973, 4705.Google Scholar
  273. 270.
    Stork, G. , and P. A. Grieco: Olefin Participation in the Acid-Catalyzed Opening of Acylcyclopropanes. IV. Cyclization of 5-Methyl-6-endo-(trans-3-pentenyl)hicyclo[3. 1. 0]hexan-2-one. Tetrahedron Letters 1971, 1807.Google Scholar
  274. 271.
    Mayo, P. DE, R. E. Williams, G. BÜChi, and S. H. Feairheller: The Absolute Stereostructure of Copaene. Tetrahedron 21, 619 (1965)Google Scholar
  275. 272.
    Kapadia, V. H. , B. A. Nagasampagi, V. G. Naik, and S. Dev: Studies in Sesquiterpenes — Xxii. Structure of Mustakone and Copaene. Tetrahedron 21, 607 (1965)Google Scholar
  276. 273.
    Westfelt, L. : β-Copaene and β-Ylangene, Minor Sesquiterpenes of the Wood of Pinus silvestris L. and of Swedish Sulphate Turpentine. Acta Chem. Scand. 21, 152 (1967)Google Scholar
  277. 274.
    Ohloff, G. , und M. Pawlak: Saurekatalysierte Isomerisierung von (— )-a-Copaenepoxide. Helv. Chim. Acta 53, 245 (1970)Google Scholar
  278. 275.
    Ohta, Y. , and Y. Hirose: The Acid-catalyzed Isomerization of α-Ylangene and αYlangene Epoxide. Bull. Chem. Soc. Japan 46, 1535 (1973)Google Scholar
  279. 276.
    Westfelt, L. : α,y, and ε-Muurolene, Major Sesquiterpenes of the Wood of Pinus silvestris L. and of Swedish Sulphate Turpentine. Acta Chem. Scand. 20, 2852 (1966)Google Scholar
  280. 277.
    Kolbe-HauowITz, M. , and L. Westfelt: Copaborneol, Constitution and Synthesis. Acta Chem. Scand. 24. 1623 (1970)Google Scholar
  281. 278.
    Mcmurry, J. E. : The Total Synthesis of Copacamphene and Its Acid-catalyzed Interconversion with Sativene J Organ Chem (Usa) 362826 (1971)Google Scholar
  282. 279.
    Smedman, L. A. , E. Zavarin, and R. Teranishi: Composition of Oxygenated Monoterpenoids and Sesquiterpenoid Hydrocarbons from the Cortical Oleoresin. of Abies Magnifia A Mnrr Phvtorhem 81457 (19690Google Scholar
  283. 280.
    Westfelt, L. : The Structure of α-Longipinene, a Minor Sesquiterpene of the Wood of Pinus silvestris L. and of Swedish Sulphate Turpentine. Acta Chem. Scand. 21, 159 (1967)Google Scholar
  284. 281.
    Naffa, P. , et G. Ourisson: Le Longifolene. (Iii. ) — Addition des hydracides halogénés sur le longifolène. Les halogénures de longibornyle. Bull. Soc. Chim. France 1954, 1410Google Scholar
  285. 282.
    Nayak, U. R. , and S. DEv: Studies in Sesquiterpenes — Xxxv. Longicyclene, the First Tetracyclic Sesquiterpene. Tetrahedron 24, 4099 (1968)Google Scholar
  286. 283.
    Ouriss ON, P. , et. G. Ourisson: Le Longifolene (IV). Mécanisme de l’addition des hydracides halogénes sur le longifoléne. Mécanisme de la solvolyse des halogénures de longihornyle Bull Soc Chim France 1954, 1415Google Scholar
  287. 284.
    Ranganathan, R. , U. R. Nayak, T. S. Santhanakrishnan, and S. Dev: Studies in Sesquiterpenes — XL Isolongifolene (Part I): Structure. Tetrahedron 26, 621 (1970)Google Scholar
  288. 285.
    TomirA, B. , and Y. Hirose: Terpenoids. Xxvi. Acoradiene and Acorenol, Key Intermediates of Cedrane Group Sesquiterpenoids, and Their Transformation into ( — )-αCedrene. Tetrahedron Letters 1970, 143.Google Scholar
  289. 286.
    Corey, E. J. , N. N. Girotra, and C. T. Mathew: Total Synthesis of dl-Cedrene and dl-Cedrol. J. Amer. Chem. Soc. 91, 1557 (1969)Google Scholar
  290. 287.
    Crandall, T. G. , and R. G. Lawton: A Biogenetic-Type Synthesis of Cedrene. J. Amer. Chem. Soc. 91, 2127 (1969)Google Scholar
  291. 288.
    Lansbury, P. T. , V. R. Haddon, and R. C. Stewart: Latent Homoallylic Ions in Carbocyclic Ring Construction. α-Cedrene. J. Amer. Chem. Soc. 96, 896 (1974)Google Scholar
  292. 289.
    Andersen, N. H. , and D. D. Syrdal: The Alaskenes — Precursors of Tricyclic Sesquiterpenes. Tetrahedron Letters 1970, 2277Google Scholar
  293. 290.
    Andersen, N. H. , and D. D. Syrdal The Absolute Stereochemistry of the Alaskenes and Acorone-related Sesquiterpenes. Tetrahedron Letters 1972, 899.Google Scholar
  294. 291.
    Kido, F. , H. Uda, and A. YosHikoshi: The Structure of Zizanoic Acid, A Novel Sesquitcrpene in Vetiver Oil. Tetrahedron Letters 1967, 2815Google Scholar
  295. 292.
    Kido, F. , H. Uda, and A. YosHikoshi The Stereochemistry of Zizanoic Acid. Tetrahedron Letters 1968, 1247Google Scholar
  296. 293.
    Andersen, N. H. , and M. S. Falcone: Prezizaene and the Biogenesis of Zizaene. Chem. and Ind. 1971, 62.Google Scholar
  297. 294.
    Macsweeney, D. F. , R. Ramage, and A. Sattar: Biogenetic Relationships of the Vetiver Sesquiterpenes. Tetrahedron Letters 1970, 557.Google Scholar
  298. 295.
    Kido, F. , H. Uda, and A. Yoshikoshi: Synthetic Study of Zizaane-type Sesquiterpenoids. J. Chem. Soc. Perkin I 1972, 1755.Google Scholar
  299. 296.
    Macsweeney, D. F. , and R. Ramage: A Stereospecific Total Synthesis of Zizanoic and Isozizanoic Acids. Tetrahedron 27, 1481 (1971)Google Scholar
  300. 297.
    Tomita, B. , T. Isono, and Y. Hirose: Terpenoids. Xxviii. Acorane Type Sesquiterpenoids from Juniperus Rigida and Hypothesis for the Formation of New Tricarbocyclic Sesquiterpenoids. Tetrahedron Letters 1970. 1371.Google Scholar
  301. 298.
    Tomita, B. , and Y. Hirose: A llo-cedrol: A New Tricarbocyclic Sesquiterpene Alcohol. Phytochem. 12, 1409 (1973)Google Scholar
  302. 298a.
    Andersen, N. H. : From Nerdidol to Cedrene and Vetiver Tricyclics: Chemical Realization of the Step-wise Processes. Paper No. 159, VI International Congress of Essential Oils, San Francisco, California, September 11, 1974Google Scholar
  303. 299.
    Andersen, N. H. , S. E. Smith, and Y. Ohta: Rearrangement of Zizaene-related Sesquiterpenes. Chem. Commun. 1973, 447.Google Scholar
  304. 300.
    Hanson, J. R. : The Biosynthesis of the Diterpenes. In: W. Herz. H. Griesebach, and G. W. Kirby (eds. ), Progress in the Chemistry of Organic Natural Products, Vol. 29p. 395. Vienna: Springer. 1971Google Scholar
  305. 301.
    Hadley, M. S. , and T. G. Halsall: Rearrangement of Epoxides. Part I. Preparation and Rearrangement of the α- und β-Epoxides of 14,15-Bisnorlahd-8-en-13(R and S)-yl Acetates and of Related Epoxides. J. Chem. Soc. Perkin I 1974, 1334.Google Scholar
  306. 302.
    Sharpless, K. B. , and E. E. Van Tamelen: Terpene Terminal Epoxides. Skeletal Rearrangement Accompanying Bicyclization of Squalene 2,3-Oxide. J. Amer. Chem. Soc. 91, 1848 (1969)Google Scholar
  307. 303.
    Kitadani, M. , C. Kabuto, K. Sakai, A. Yosnikoshi, and Y. Kitahara: Backbone Rearrangement of Dolabradiene. Chemistry Letters 1974, 963.Google Scholar
  308. 304.
    Connolly, J. D. , R. Mccrindle, R. D. H. Murray, A. J. Renfrew, K. H. Overton, and A. Malera: Constituents of Erythroxylon monogynum Roxb. Part II. Erythroxydiols X, Y, and Z; Two Novel Skeletal Types of Diterpenoids. J. Chem. Soc. (C) 1966, 268.Google Scholar
  309. 305.
    Mccrindle, R. , and E. Nakamura: Constituents of Solidago Species. Part VI. The Constitution of Diterpenoids from a Chemically Distinct Variety of Solidago serotina. Canad. J. Chem. 52, 2029 (1974)Google Scholar
  310. 306.
    Marshall, J. A. , and A. R. Hochstetler: Photosensitized Isomerizations of 10Methyl-1(9)-octalins. J. Amer. Chem. Soc. 91, 648 (1969)Google Scholar
  311. 307.
    Saucy, G. , R. E. Ireland, J. Bordner, and R. E. Dickerson: Acid-Catalyzed Cyclization of 4-(2,6,6-Trimethylcyclohexenyl)-2-methylbutanal. X-Ray Structure Analysis of the Major Product. J. Organ. Chem. (Usa) 36, 1195 (1971)Google Scholar
  312. 308.
    Fall, R. R. , and C. A. West: Purification and Properties of Kaurene Synthetase from Fusarium moniliforme. J. Biol. Chem. 246, 6913 (1971)Google Scholar
  313. 309.
    Dolby, L. J. , and R. H. IwAmmoto: Studies of Terpene Chemistry. II. Model Studies of the Synthesis of the C-D Ring System of Gibberellic Acid. J. Organ. Chem. (Usa) 30, 2420 (1965)Google Scholar
  314. 310.
    Edwards, O. E. , and R. S. RosicH: Cationic Cyclization of Bicyclic Diterpenes. Canad. J. Chem. 46, 1113 (1968)Google Scholar
  315. 311.
    Wenkert, E. , and Z. KumazawA: Manool-derived Diterpenic Hydrocarbons and Related Products. Chem. Commun. 1968, 140.Google Scholar
  316. 312.
    Mccreadie, T. , and K. H. Overton: The Conversion of Labdadienols into Pimaraand Rosa-dienes. J. Chem. Soc. (C) 1971, 312.Google Scholar
  317. 313.
    Hali. , S. F. , and A. C. Oehlschlager: Cationic Rearrangements and Cyclizations of Diterpenoid Olefins. Tetrahedron 28, 3155 (1972)Google Scholar
  318. 314.
    Connolly, J. D. , R. Mccrindle, R. D. H. Murray, and K. H. OvErton: The Constitution and Stereochemistry of Rimuene. J. Chem. Soc. (C) 1966, 273.Google Scholar
  319. 315.
    Herz, W. , and H. J. Wahlborg: Resin Acids. Iii. 9-Hydroxyabietic Acid and Its Transformation Products. J. Organ. Chem. (Usa) 30, 1881 (1965) 316. Apsimon, J. W. , and H. Krehm: Diterpene Chemistry Iii. Chemistry of Some Epoxides Derived from Methyl Pimarate. Canad. J. Chem. 47, 2859 (1969)Google Scholar
  320. 317.
    Hancock, W. S. , L. N. Mander, and R. A. Massy-Westropp: A Synthesis of Rosenonolactone from Podocarpic Acid. J. Organ. Chem. (Usa) 38, 4090 (1973)Google Scholar
  321. 318.
    Mccreadie, T. , K. H. Overton, and A. J. Allison: A Synthesis of Rosenonolactone and Deoxvrosenonolactone. J. Chem. Soc. (C) 1971, 317.Google Scholar
  322. 319.
    Zinkel, D. F. , and B. P. Spalding: Structure of Strobic Acid. Tetrahedron 29, 1441 (1973)Google Scholar
  323. 320.
    Herz, W. , and A. L. Hall: Resin Acids Xxvi. Biogenetic-Type Rearrangements of the Homoallylic Cation from Methyl 15(R)-Hydroxypimar-8(14)-en-18-oate. J. Organ. Chem. (Usa) 39. 14 (1974)Google Scholar
  324. 321.
    Wenkert, E. , and J. W. Chamberlin: The Stereochemistry of Some Resin Acid Derivatives J Amer Chem Soc81 688 (1959)Google Scholar
  325. 322.
    Johnston, J. P. , and K. H. Overton: The PimaraneCassane Rearrangement. Synthesis of a Potential Intermediate from Isopimaric Acid. J. Chem. Soc. Perkin I 1973, 853.Google Scholar
  326. 323.
    Ellestad, G. A. , M. P. Kunstmann, and G. O. Morton: Conversion of a Pimarane Diterpene into the Cleistanthane Ring System. Chem. Commun. 1973, 312.Google Scholar
  327. 324.
    Wenkert, E. : Structural and Biogenetic Relationships in the Diterpene Series. Chem. and Ind. 1955, 282.Google Scholar
  328. 325.
    Briggs, L. H. , and G. W. White: Constituents of the Essential Oil Araucaria araucana. Tetrahedron 31, 1311 (1975)Google Scholar
  329. 326.
    Chin, W. J. , R. E. Corbetr, D. R. Lauren, and R. A. J. Smith: The Dehydration Products of Sandaracopimar-15-en-8β-ol. Austral. J. Chem. 22, 2033 (1969)Google Scholar
  330. 327.
    Fourrey, J. -L. , J. Polonsky, and E. Wenkert: The Mechanism of the Transformation of Manool into 14α-Hibyl Formate. Chem. Commun. 1969, 714.Google Scholar
  331. 328.
    Edwards, O. E. , and B. S. Mootoo: Cationic Cyclization of Deuteratcd Manool. Can. J. Chem. 47, 1189 (1969)Google Scholar
  332. 329.
    Hugel, G. , L. Lods, J. M. Mellor, et G. Ourisson: Diterpenes de trachylobium. Iii. Reactions des dérivés trachylobaniques. Bull. soc. chim. France 1965, 2894.Google Scholar
  333. 330.
    Appleton, R. , A. J. Mcalees, A. Mccormick, R. Mccrindle, and R. D. H. Murray: The Acid-catalysed Rearrangement of Diterpene Hydrocarbons. Part I. Kaurene, Isoatisirene, Stachene, and Trachylobane. J. Chem. Soc. (C) 1966, 2319.Google Scholar
  334. 331.
    Fairlie, J. C. , A. J. Mcalees, R. Mccrindle, and E. Neidert: Rinc C Functionalized DiterPenoids. Part Iii. 12-Substituted ent-Beveranes. Canad. J. Chem. 52, 706 (1974)Google Scholar
  335. 332.
    Yoshikoshi, A. , M. Kitadani, and Y. Kitahara: Interconversion Between Hibaene and Kaurene. Tetrahedron 23, 1175 (1967)Google Scholar
  336. 333.
    Mori, K. , and M. Matsui: Diterpenoid Total Synthesis-Viii (±)-Kaur-16-en-19-oic Acid, (±)-Kaur-16-en-19-ol, (± )-Monogynol, and Some Oxygenated Kauranes. Tetrahedron 24, 3095 (1968)Google Scholar
  337. 334.
    Kapadi, A. H. , and S. Dev: Chemical Transformation of (+)-Hibaene into (-)Kaurene. Tetrahedron Letters 1965, 1255.Google Scholar
  338. 335.
    Hanson, J. R. : The Chemistry of the Tetracyclic Diterpenoids - V, Stereochemical Studies in the Stachene Series. Tetrahedron 23, 793 (1967)Google Scholar
  339. 336.
    Hanson, J. R. The Chemistry of the Tetracyclic Diterpenoids - X, Some Beyerene 2 and 3-Alcohols. Tetrahedron 26, 2711 (1970)Google Scholar
  340. 337.
    Gunn, P. A. , R. Mccrindle, and R. G. RoY: Synthesis of a Neoatiseranone, the Enantiomer of a Ketone Obtained by the Acid-catalyzed Rearrangement of Isophyllocladene Epoxide. J. Chem. Soc. (C) 1971, 1018.Google Scholar
  341. 338.
    Baker, K. M. , L. H. Briggs, J. G. ST. C. Buchanan, R. C. Cambie, B. R. Davis, R. C. Hayward, G. A. S. Long, and P. S. Rutledge: Diterpencs. Part X. Some Transformations of Phyllocladene and Isophyllocladene. J. Chem. Soc. Perkin I 1972, 190Google Scholar
  342. 339.
    Macmillan, J. , and E. R. H. Walker: Terpenoids. Part V. Rearrangement of ent Kaurane 15β,16β-Epoxide to ent-(16R)-Atisan-15-one. J. Chem. Soc. Perkin I 1972, 127dGoogle Scholar
  343. 340.
    Murray, R. D. H. , R. W. Mills, A. J. Mcalees, and R. Mccrindle: The Acid Catalysed Rearrangement of a Diterpenoid Epoxide. Tetrahedron 30, 3399 (1974)Google Scholar
  344. 341.
    Sobti, R. R. , and S. Dev: Biogenetic-type Transformations in Diterpenoids. Tetrahedron Letters 1966, 3939.Google Scholar
  345. 342.
    Ghisalberti, E. L. , and P. R. Jefferies: The Chemistry of the Euphorbiaceae. Xvi. A Rearrangement of the Beyerane Skeleton. Austral. J. Chem. 19, 1759 (1966)Google Scholar
  346. 343.
    Appleton, R. A. , J. C. Fairlie, R. Mccrindle, and W. Parker: The Solvolytic Behavior of exo- and endo-Bicyclo[3. 2. 1]octane-6-toluene-p-sulphonates. J. Chem. Soc. (C) 1968, 1716.Google Scholar
  347. 344.
    Appleton, R. A. , P. A. Gunn, and R. Mccrindle: Buffered Acetolyses of the Toluene-p-Sulphonates of exo- and endo-17-Norkauran- and 17-Norphyllocladan-16ols. J. Chem. Soc. (C) 1970, 1148.Google Scholar
  348. 345.
    Coates, R. M. , and E. F. Bertram: Structural Modifications of Isosteviol. Partial Synthesis of Atiserene and lsoatiserene. J. Organ. Chem. (Usa) 36, 2625 (1971)Google Scholar
  349. 346.
    Coates, R. M. , and E. F. Bertram Biogenetic-Like Rearrangements of Tetracyclic Diterpenes. J. Organ. Chem. (Usa) 36, 3722(1971)Google Scholar
  350. 347.
    Kitadani, M. , K. lTô, and A. Yoshikoshi: Synthesis and the Iodine-Catalyzed Rearrangement of Isohibaene. Bull. Chem. Soc. Japan 44, 3431 (1971)Google Scholar
  351. 348.
    Von Carstenn-Lichterfelde, C. , F. M. Panizo, T. G. DE Quesada, B. Rodriguez, S. Valverde, W. A. Ayer, and J. -A. H. Ball: CorreJation of the Diterpenoids Sideritol and Jativatriol. Canad. J. Chem. 53, 1172 (1975).Google Scholar
  352. 349.
    Hanson, J. R. , J. Hawker, and A. F. White: Studies in Terpenoid Biosynthesis. Part IX. The Sequence of Oxidation on Ring B in Kaurene-Gibberellin Biosynthesis. J. Chem. Soc. Perkin 1 1972, 1892.Google Scholar
  353. 350.
    Graebe, J. E. , P. Hedden, and J. Macmillan: The Ring Contraction Step in Gibberellin Biosynthesis. Chem. Commun. 1975, 161.Google Scholar
  354. 351.
    Hedden, P. , J. Macmillan, and B. O. Phinney: Fungal Products. Part Xii. Gibberellin A14-aldehyde, an Intermediate in Gibberellin Biosynthesis in Gibberella fujikuroi. J. Chem. Soc. Perkin I1974, 587.Google Scholar
  355. 352.
    Galt, R. H. B. , and J. R. Hanson: New Mctabolites of Gibberella fujikuroi. Part Vii. The Preparation of Some Ring-B Norderivatives. J. Chem. Soc. 1965, 1565.Google Scholar
  356. 353.
    Cross, B. E. , Norton, K. , and J. C. Stewart: The Biosynthesis of the Gibberellins. Part Iii. J. Chem. Soc. (C) 1968, 1054.Google Scholar
  357. 354.
    Cross, B. E. , and I. L. Gatfield: New Metabolites of Gibberella fujikuroi. Part Xvii. The Partial Synthesis of Gibberellin A15 Norketone from 7-Hydroxykaurenolide. J. Chem. Soc. (C) 1971, 1539.Google Scholar
  358. 355.
    Hanson, J. R. , and J. Hawker: Preparation of [14C]-Gibberellic Acid. Phytochemistry 12, 1073 (1973)Google Scholar
  359. 356.
    Bearder, J. R. , J. Macmhlan, and B. O. PH’Nney: 3-Hydroxylation of Gibberellin A122-Aldehyde in Gibberella Fujikuroi Strain Rec-193 A. Phytochemistry 12, 2173 (1973)Google Scholar
  360. 357.
    Huneck, S. : Triterpene Viii. Die Umlagerung von 1-substituierten Triterpenen in A-Nor-B-Homo-Triterpene. Tetrahedron Letters 1963, 1977Google Scholar
  361. 358.
    Shoppee, C. W. , R. E. Lack, S. C. Sharma, and L. R. Smith: Steroids and Walden Inversion. Part LX. Some Reactions of the Epimeric 5α-Cholestan-1-ols and the Solvolysis of their Toluene-p-Sulphonates. J. Chem. Soc. (C) 1967, 1155.Google Scholar
  362. 359.
    Okuno, T. , and T. Matsumoto: Synthesis of a cis-Perhydroazulene Derivative Related to Gravanotoxin. Tetrahedron Letters 1969. 4077.Google Scholar
  363. 360.
    Von Carstenn-Lichterfelde, C. , S. Valverde, and B. Rodriguez: Studies on Diterpenes from Genus Sideritis. Xiii. Two New Stachene Derivatives from Sideritis angustifolia (Labiatae). Austral. J. Chem. 27, 517 (1974)Google Scholar
  364. 361.
    Whitlock, H. W. , P. B. Reichardt, and F. M. Silver: Synthesis and Solvolytic Rearrangement ofEpimerie4-Methanesulfonyloxy-4a-met hyl-trans- 1, 2, 3,4,4a,9, l 0,10a octahydrophenanthrene and Their 7-Methoxy and 1,1-Dimethyl Derivatives. Conformationally Rigid Homobenzylic Systems. J. Amer. Chem. Soc. 93, 485 (1971)Google Scholar
  365. 362.
    Smith, L. L. , T. J. Foell, and D. M. Teller: Retropinacol Rearrangement of lαHydroxy Steroids. A New Route to 1β-Methyl 19-Norsteroids. J. Organ. Chem. (Usa) 30, 3781 (1965)Google Scholar
  366. 363.
    Cookson, R. C. , and M. E. Trevett: Aconitum and Delphinium Alkaloids. Part I1. Interrelation of the Functional Groups of Delpheline. J. Chem. Soc. 1956, 3121.Google Scholar
  367. 364.
    Valenta, Z. , and K. Wiesner: Biogenetic Interrelationships of Diterpene Alkaloids. Chem. and Ind. 1956, 354.Google Scholar
  368. 365.
    Wiesner, K. , and Z. Valenta: Recent Progress in the Chemistry of the AconiteGarrya Alkaloids. In: Progress in the Chemistry of Organic Natural Products, Vol. 26, pp. 26–89. Wien: Springer. 1958Google Scholar
  369. 366.
    Pelletier, S. W. , and A. Ichihara: Skeletal Rearrangements of Atisine Derivatives. Chem. and Ind. 1967, 2149 367. Johnston, J. P. , and K. H. Overton: A Laboratory Model for the Atisane—Aconane Conversion. J. Chem. Soc. Perkin I 1972, 1490Google Scholar
  370. 368.
    Ayer, W. A. , and P. D. Deshpande: Rearrangements in the Diterpenoid Scries. I. The Solvolysis of Methyl 15β-tosyloxy-13-isopropyl-17-noratis-13-en-18-oate. Canad. J. Chem. 51, 77 (1973)Google Scholar
  371. 369.
    Wiesner, K. , T. Y. R. Tsai, K. Huber, S. E. Bolton, and R. Vlahov: Total Synthesis of Talatisamine, a Delphinine Type Alkaloid. J. Amer. Chem. Soc. 96, 4990 (1974)Google Scholar
  372. 370.
    Przybylska, M. , T. Y. R. Tsai, and K. Wiesner: Conversion of the Alkaloid Atisine into a Compound with the Lycoctonine Skeleton. Chem. Commun. 1975, 297.Google Scholar
  373. 371.
    Kodama, M. , H. Kurihara, and S. ITô : A Novel Rearrangement in the C-20 Diterpene Alkaloids. Formation of Bridged Bicyclo[4. 3. 1]dec-l-ene System. Tetrahedron Letters 1975. 1301Google Scholar
  374. 372.
    Rilling, H. C. : A New Intermediate in the Biosynthesis of Squalene. J. Biol. Chem. 241, 3233 (1966)Google Scholar
  375. 373.
    Edmond, J. , G. PopjÁK, S. -M. Wong, and V. P. Williams: Presqualene Alcohol. Further Evidence on the Structure of a C30 Precursor of Squalene. J. Biol. Chem. 246, 6254 (1971)Google Scholar
  376. 374.
    Campbell, R. V. M. , T. Crombie, and G. Pattenden: Synthesis of Presqualene Alcohol. Chem. Commun. 1971, 218.Google Scholar
  377. 375.
    Coates, R. M. , and W. H. Robinson: Stereoselcctive Total Synthesis of ( ±)-Presqualene Alcohol. J. Amer. Chem. Soc. 93, 1785 (1971)Google Scholar
  378. 376.
    Altman, L. J. , R. C. Kowerski, and H. C. Rilling: Synthesis and Conversion of Presqualene Alcohol to Squalene. J. Amer. Chem. Soc. 93, 1782 (1971)Google Scholar
  379. 377.
    Van Tamelen, E. E. , and M. A. Schwartz: Mechanism of Presqualene PyrophosphateSqualene Biosynthesis. J. Amer. Chem. Soc. 93, 1780 (1971)Google Scholar
  380. 378.
    Rilling, H. C. , C. D. Poulter, W. W. Epstein, and B. Larsen: Studies on the Mechanism of Squalene Biosynthesis. Presqualene Pyrophosphate, Stereochemistry and a Mechanism for Its Conversion to Squalene. J. Amer. Chem. Soc. 93, 1783 (1971)Google Scholar
  381. 379.
    Gregonis, D. E. , and H. Killing: T ne Stereocnemistry of trans-Pnytoene Syntnesis. Some Observations on Lycopersene as a Carotene Precursor and a Mechanism of the Synthesis for cis- and trans-Phytoene. Biochemistry 13, 1538 (1974)Google Scholar
  382. 380.
    Coates, R. M. , and W. H. Robinson: Solvolysis of trans-2,2-Dimethyl-3-(2’-methylpropenyl)-cyclobutyl Tosylate. Model Reactions Relevant to Squalene Biosynthesis. J. Amer. Chem. Soc. 94, 5920 (1972)Google Scholar
  383. 381.
    Poulter, C. D. , O. J. Muscio, C. J. Spillner, and R. G. Goodfellow: Model Studies of Terpene Biosynthesis. Cationic Rearrangements Leading to Head-to-Head Terpenes. J. Amer. Chem. Soc. 94, 5921 (1972)Google Scholar
  384. 382.
    Poulter, C. D. , O. J. MUsCIo, and R. J. Goodfellow: Biosynthesis of Head-toHead Terpenes. Carbonium Ion Rearrangements Which Lead to Head-to Head Ternenes. Biochemistry 13. 1530 (1974)Google Scholar
  385. 383.
    Muscio, O. J. , JR. , and C. D. Poulter: Model Studies of Terpene Biosynthesis. Synthesis and Absolute Configuration of (+)-trans-2,2-Dimethy´-3-(2’-methylpropenyl)cyclobutanol. J. Organ. Chem. (Usa) 39, 3288 (1974)Google Scholar
  386. 384.
    Ourisson, G. , P. CrabbÉ, and O. R. Rodig: Tetracyclic Triterpenes. San Francisco: Holden-Day. 1964Google Scholar
  387. 385.
    Van Tamelen, E. E. , J. D. Willett, and R. B. Clayton: On the Mechanism of Lanosterol Biosynthesis from Squalene 2,3-Oxide. J. Amer. Chem. Soc. 89, 3371 (1967)Google Scholar
  388. 386.
    Vodtfredsen, W. O. , S. Vangedal, R. Datwyler, G. Visconti, and D. Arigoni: unpublished work cited in reference 33. Also Ph. D. Thesis, G. Visconti DI Modrone, Eth, Zurich, 1968Google Scholar
  389. 387.
    Corey, E. J. , and H. Yamamoto: Correlation of a Protosterol from 20,21-Dehydro2,3-Oxidosqualene and 2,3-Oxidosqualene-Sterol Cyclase with Dihydrolanosterol. Tetrahedron Lettrs 1970 2385Google Scholar
  390. 388.
    Van Tammelen, E. E. , and R. J. Anderson: Biogenetic-Type Total Synthesis. 24,25Dihydrolanosterol, 24,25-Dihydro-A1(17)-protosterol, Isoeuphenol, (—)-Isotirucallol, and Parkeol. J. Amer. Chem. Soc. 94, 8225 (1972)Google Scholar
  391. 389.
    Marker, R. E. , E. L. Wittle, and L. W. Mixon: Sterols. Xvi. Lanosterol and Agnosterol. J. Amer. Chem. Soc. 59, 1368 (1937)Google Scholar
  392. 390.
    Barton, D. H. R. : Triterpenoids. Part Iii. cyclo-Artenone, a Triterpenoid Ketone. J. Chem. Soc. 1951, 1444.Google Scholar
  393. 391.
    Bentley, H. R. , J. A. Henry, D. S. Irvine, and F. S. Spring: Triterpene Resinols and Related Acids. Part Xxviii. The Non-saponifiable Fraction from Strynos nuxvomica Seed Fat: The Structure of cvclo-Artenol. J. Chem. Soc. 1953, 3673.Google Scholar
  394. 392.
    Barton, D. H. R. , J. E. Page, and E. W. Warnhoff: Tritcrpenoids. Part Xviii. The Constitutions of Phyllanthol and cyclo-Artenol. J. Chem. Soc. 1954, 2715.Google Scholar
  395. 393.
    Rees, H. H. , and T. W. Goodwin: Biosynthesis of Triterpenes, Steroids, and Carotenoids. In: Biosynthesis. A Specialist Periodical Report of the Chemical Society, Vol. 1, p. 59, 1972Google Scholar
  396. 394.
    Heintz, R. , and P. Benveniste: Plant Sterol Metabolism. Enzymatic Cleavage of the 9ββ,19ββ-Cyclopropane Ring of Cyclopropyl Sterols in Bramble Tissue Cultures. J. Biol. Chem. 249, 4267 (1974)Google Scholar
  397. 395.
    Van Tamelen, E. E. , and J. W. Murphy: Formation of the Lanosterol System through Biogenetic-Type Cyclization. J. Amer. Chem. Soc. 92, 7204 (1970)Google Scholar
  398. 396.
    Kutney, J. P. , and N. D. Westcott: The Structure of Abieslactone. Tetrahedron Letters 1971, 3463.Google Scholar
  399. 397.
    Irie, H. , S. Uyeo, and K. Kuriyamma: Acid-catalyzed Rearrangement of Abieslactone. Tetrahedron Letters 1971, 3467.Google Scholar
  400. 398.
    Guest, I. G. , and B. A. Marples: Steroids. Part Xiv. Transformations of 8α,9α- and 9α,11α-Epoxylanostanes and Related Compounds. J. Chem. Soc. (C) 1971, 1468.Google Scholar
  401. 399.
    Kazlauskas, R. , J. T. Pinhey, and J. J. H. Simes: Conversion of Lanosterol into a Compound with the Carbon Skeleton of Fusidic Acid. J. Chem. Soc. Perkin I 1972, 1243.Google Scholar
  402. 400.
    Edwards, O. E. , and T. Sano: Deamination of Two Steroidal α-Aminoketones. Canad. J. Chem. 47, 3489 (1969)Google Scholar
  403. 401.
    Vilkas, M. , G. Dupont, et R. Dulou: Contribution a l’étude des résines d’euphorbiacées. V. Sur l’α-euphol(suite). Bull. soc. chim. France 1949, 813.Google Scholar
  404. 402.
    Christen, K. , M. DÜNnenberger, C. B. Roth, H. Heusser, und O. Jeger: Zur Kenntnis der Triterpene. Über weiterc Beitrage zur Konstitution des Euphadienols und seine nahe Verwandtschaft mit dem Lanostadienol. Helv. Chim. Acta 35, 1756 (1952)Google Scholar
  405. 403.
    Dawson, M. C. , T. G. Halsall, and R. E. H. Swayne: The Chemistry of the Triterpenes. Part Xvii Some Aspects of the Chemistry of Tetracyclic Triterpenes. J. Chem. Soc. 1953, 590.Google Scholar
  406. 404.
    Arigoni, D. , R. Viterbo, M. DÜNnenberger, O. Jeger, und L. RuziČKA: Zur Kenntnis der Triterpene. Konstitution und Konfiguration von Euphol und iso Euphenol. Helv. Chim. Acta 37, 2306 (1954)Google Scholar
  407. 405.
    Arigoni, D. , O. Jeger, und L. RUŽIka: Zur Kenntnis der Triterpene. Über die Konstitution und Konfiguration von Tirucallol, Euphorbol und Elemadienolsäure. Helv. Chim. Acta 38, 222 (1955)Google Scholar
  408. 406.
    Barbour, J. B. , W. A. Lourens, F. L. Warren, and K. H. Watling: The Euphorbia Resins. Part IX. Corresponding Isomerizations in Tirucallol and Euphorbol. J. Chem. Soc. 1955, 2194Google Scholar
  409. 407.
    Barton, D. H. R. , J. F. Mcghie, M. K. Pradhan, and S. A. Knight: The Constitution and Stereochemistry of Euphol. J. Chem. Soc. 1955, 876.Google Scholar
  410. 408.
    Lawrie, W. , W. Hamilton, F. S. Spring, and H. S. Watson: Triterpenoids. Part Liii. The Constitution and Stereochemistry of Butyrospermol. J. Chem. Soc. 1956, 3272.Google Scholar
  411. 409.
    Irvine, D. S. , W. Lawrie, A. S. Mcnab, and F. S. Spring: Triterpenoids. Part L. The Constitution of Butyrospermol. J. Chem. Soc. 1956, 2029Google Scholar
  412. 410.
    Dawson, M. C. , T. G. Halsall, E. R. H. Jones, G. D. Meakins, and P. C. Phillips: The Chemistry of the Triterpenes and Related Compounds. Part Xxix. The Chemistry of Butyrospermol. J. Chem. Soc. 1956, 3172.Google Scholar
  413. 411.
    Dawson, M. C. , T. G. Halsall, E. R. H. Jones, and P. A. Robins: The Chemistry of the Triterpenes. Part Xvi. The Action of Hydrogen Chloride on Butyrospermol. J. Chem. Soc. 1953, 586.Google Scholar
  414. 412.
    Nakatani, Y. , G. Ponsinet, G. Wolff, J. L. Zundel, et G. Ourisson: La Transposition Spinale Euphénol-Isoeuphénol Catalysee par D+. Tetrahedron 28, 4249 (1972)Google Scholar
  415. 413.
    Ferguson, G. , P. A. Gunn, W. C. Marsh, R. Mccrindle, R. Restivo, J. D. Connolly, J. W. B. Fulke, and M. S. Henderson: Tetranortriterpenoids and Related Substances. Part Xvii. A New Skeletal Class of Triterpenoids from Guarea glabra (Meliaceae). J. Chem. Soc. Perkin I 1975, 491.Google Scholar
  416. 414.
    Izawa, H. Y. Katada, Y. Sakamoto, and Y. Sato: Rearrangement of Steroid-14-ene. Tetrahedron Letters 1969, 2947Google Scholar
  417. 415.
    Anastasia, M. , M. Bolognesi, A. Fiecchi, G. Rossi, and A. Scala: A Ready Synthesis of 17α Steroids. J. Organ. Chem. (Usa) 40, 2007 (1975)Google Scholar
  418. 416.
    Cotterrell, G. P. , T. G. Halsall, and M. J. Wriglesworth: A Chemical Model for a Possible Oxidative Rearrangement in the Biosynthesis of Triterpenes: The Rearrangement of 7α,8α- and 8,9-Epoxytirucallanes. J. Chem. Soc. (C) 1970, 1503Google Scholar
  419. 417.
    Lavie, D. , and E. Glotter: The Cucurbitanes, a Group of Tetracyclic Triterpenes. In: W. Herz, H. Grisebach, and G. W. Kirby (eds. ), Progress in the Chemistry of Organic Natural Products, Vol. 29, p. 307. Wien: Springer. 1971Google Scholar
  420. 418.
    Govindachari, T. R. , N. Viswanathan, and P. A. Mohamed: LitsOment0l, A New Tetracyclic Triterpene. Chem. Commun. 1971, 665.Google Scholar
  421. 419.
    Zander, J. M. , and D. C. Wigfield: The Biosynthesis of Cucurbitacin B. Chem. Commun. 1970, 1599Google Scholar
  422. 420.
    Herlem-Gaulier, D. , F. Khuong-Huu-LainÉ, et R. Goutarel: Alcaloides Stéroidiques Lxxii. Famille des Buxacées (10e communication). Alcaloides du groupe des cyclobuxidines retires du Buxus balearica Wild: N-3-isobutyryl cyclobuxidine-F (baléabuxidine), N-3-isobutyryl cycloxobuxidine-H, N-3-benzoyl cycloxobuxidine-F et cycloxobuxoxazine-C (baléabuxoxazine). Bull. soc. chim. France 1968, 763.Google Scholar
  423. 421.
    Buchanan, J. G. ST. C. , and T. G. Halsall: The Conversion of Turraeanthin and Turraeanthin A into Simple Meliacins by a Route Involving an Oxidative Rearrangement of Probable Biogenetic Importance. J. Chem. Soc. (C) 1970. 2280.Google Scholar
  424. 422.
    LAvIE, D. , and E. C. Levy: Meliane-Meliacin Relationship. Tetrahedron 27, 3941 (1971)Google Scholar
  425. 423.
    Merrien, A. , and J. Polonsky: The Natural Occurence of Melianodiol and its Diacetate in Samadera madagascariensis (Simaroubaceae): Model Experiments on Melianodiol Directed towards Simarolide. Chem. Commun. 1971, 261.Google Scholar
  426. 424.
    Halsall, T. G. , and R. J. Weston: A Tirucall-7-ene to Apotirucall-. 4-ene Rearrangement Initiated by Bromine. Chem. Commun. 1972, 1212.Google Scholar
  427. 425.
    Adesogan, E. K. , D. A. Okorie, and D. A. H. Taylor: Limonoids from Khaya anthotheca (Welw. ) C. D. C. J. Chem. Soc. (C) 1970, 205.Google Scholar
  428. 426.
    Ekong, D. E. U. , and M. D. Selema: The Meliacins (Liminoids): Boron Trifluoridecatalysed Rearrangements of 14,15-Epoxides in the Meliacins. Chem. Commun. 1970, 783.Google Scholar
  429. 427.
    Fracheboud, M. : Etudes sur le Comportement du Cycle Propanique de Certains Dérivés du Cycloartenol. Ph. D. Thesis, Eth, Zurich, 1966Google Scholar
  430. 428.
    Apsimon, J. W. , and J. M. Rosenfield: Methyl Migration by Epoxide Cleavage. The Effect of Carbonium Ion Stabilisation by a Neighbouring Double Bond on the Direction of Migration on Cleavage of 9β,11β-Epoxy-4,4-dimethylandrost-5-ene-3,17dione. Chem. Commun. 1970, 1271.Google Scholar
  431. 429.
    Apsimon, J. W. , R. R. King, and J. J. Rosenfeld: Approaches to the Synthesis of Triterpenoids. I. Methyl Group Migration to the 9β-Position in Steroids as a Route to the Cucurbitacins. A Possible Structural Feature Directing Epoxide Cleavage Rearrangements. Canad. J. Chem. 47, 1989 (1969)Google Scholar
  432. 430.
    Campbell, A. C. , C. L. Hewett, M. S. Maidment, and G. F. Woods: Formation of Some Novel 9β-Methyl-19-norpregnane Derivatives. J. Chem. Soc. Perkin I 1974, 1799.Google Scholar
  433. 431.
    Levy, E. C. , and D. Lavie: Attempted Skeletal Rearrangements in the Lanostane Series. Israel J. Chem. 8, 677 (1970)Google Scholar
  434. 432.
    Makhubu, L. P. , Z. G. Hajos, and G. R. Duncan: Selective Hydrolysis and Oxidation of the Bismethylenedioxy Protective Group During Angular Methyl Migration in Corticosteroid Analogs. Canad. J. Chem. 52, 1744 (1974)Google Scholar
  435. 433.
    Barton, D. H. R. , L. J. Danks, A. K. Ganguly, R. H. Hesse, G. Tarzia, and M. M. Pechet: Organic Reactions of Fluoroxy-compounds: Addition Reactions of Unactivated and Deactivated Unsaturated Linkages of Steroids. Chem. Commun. 1969, 227.Google Scholar
  436. 434.
    Kupchan, M. S. , J. W. A. Findlay, P. Hackett, and R. M. Kennedy: The Chemistry of 9β,19-Cyclo Steroid Derivatives. J. Organ. Chem. (Usa) 37, 2523 (1972)Google Scholar
  437. 435.
    Barton, D. H. R. , D. Kumari, P. Welzel, L. J. Danks, and J. F. Mcghie: Photochemical Transformations. Part Xxv. The Synthesis of Cycloartenol. J. Chem. Soc. (C) 1969, 332.Google Scholar
  438. 436.
    Halsall, T. G. , and R. T. Aplin: A Pattern of Development in the Chemistry of Pentacyclic Triterpenes. In: L. Zechmeister (ed. ), Progress in the Chemistry of Organic Natural Products, Vol. 22, p. 153. Vienna: Springer. 1964Google Scholar
  439. 437.
    Corey, E. J. , and S. K. Gross: Direct Biosynthesis of the 29,30-Bisnoramyrin System from 29,30-Bisnor-2,3-oxidosqualene in Pea Seedlings. J. Amer. Chem. Soc. 90, 5045 (1968)Google Scholar
  440. 438.
    Seo, S. , Y. Tomita, and K. Tori: Biosynthesis of Oleanene- and Ursene-type Triterpenes from [4-13C]Mevalonic Acid in Tissue Cultures of Isodon japonicus Hara. Chem. Commun. 1975, 270.Google Scholar
  441. 439.
    Suga, T. , T. Shishbori, and S. Kimoto: Biosynthesis of Triterpenoids. The Stereochemistry of the Squalene Formation and its Cyclization to β-Amyrin, Chemistry Letters 1972, 129.Google Scholar
  442. 440.
    Suga, T. , T. Shishbori, and S. Kimoto Triterpenoid Biosynthesis. The Stereospecificity in the Enzymatic Cyclization of Squalene to β-Amyrin. Chemistry Letters 1972, 313.Google Scholar
  443. 441.
    Arigoni, D. , and H. Brunner: unpublished results cited in reference 28.Google Scholar
  444. 442.
    Hirschmann, H. , F. B. Hirschmann, and A. P. Zala: The Uranediol Rearrangement. J. Organ. Chem. (Usa) 31, 375 (1966)Google Scholar
  445. 443.
    Lee, H. , and M. E. Wolff: C-18 Functional Steroids and D-Homo Steroids. J. Organ. Chem. (Usa) 32, 192 (1967)Google Scholar
  446. 444.
    Hirschmann, F. B. , D. M. Kautz, S. S. Deshmane, and H. Hirschmann: Formolysis of 3β-Aeetoxy-5α-pregnan-20α-yl p-toluene-sulfonate. Tetrahedron 27, 2041 (1971)Google Scholar
  447. 445.
    Hirschmann, F. B. , and H. Hirschmann: Inversions of Both Adjacent Centers in the Formolysis of a 2,2,6-Trialkylcyclohexyl Tosylate. Formation of a 13α-D-Homo Steroid. J. Organ. Chem. (Usa) 38, 1270 (1973)Google Scholar
  448. 446.
    Coates, R. M. , and S. K. Chung: Stereochemistry in the Solvolytic Ring Contraction of 2,2,4aα-Trimethyl-1-decalyl Methanesulfonate. A Model Reaction Pertaining to Triterpene Biogenesis. J. Organ. Chem (Usa) 38, 3677 (1973)Google Scholar
  449. 447.
    Botta, L. : Zur Biogenese von Verbindungen der Lupanreihe. Ph. D. Dissertation, Eth, ZÜürich, 1968Google Scholar
  450. 448.
    Tanaka, O. , M. Nagai, T. Ohsawa, N. Tanaka, K. -I. Kawai, and S. Shibata: Chemical Studies on the Oriental Plant Drugs. Xxvii. The Acid Catalyzed Reactions and the Absolute Configuration at C z0 of Dammarane Type Triterpenes. Chem. Pharm. Bull. (Japan) 20, 1204 (1972)Google Scholar
  451. 449.
    Halsall, T. G. , E. R. H. Jones, and G. D. Meakins: The Chemistry of the Triterpenes. Part XI. The Conversion of Lupeol into Germanicol (iso-Lupeol). The Structure of Lupeol Hydrochloride. J. Chem. Soc. 1952, 2862Google Scholar
  452. 450.
    Ames, T. R. , G. S. Davy, T. G. Halsall, and E. R. H. Jones: The Chemistry of the Triterpenes. Part Xii. The Action of Formic Acid on Lupeol. J. Chem. Soc. 1952, 2868Google Scholar
  453. 451.
    Ames, T. R. , J. L. Beton, A. Bowers, T. G. Halsall, and E. R. H. Jones: The Chemistry of the Triterpenes and Related Compounds. Part Xxiii. The Structure of Taraxasterol, ψ-Taraxasterol (Heterolupeol), and Lupenol-I. J. Chem. Soc. 1954, 1905, and references cited therein.Google Scholar
  454. 452.
    Brownlie, G. , M. B. E. Fayez, F. S. Spring, R. Stevenson, and W. S. Strachan: Triterpenoids. Part Xlviii Olean-13(18)-ene: Isomerisation of Olean-12-ene and Related Hydrocarbons with Mineral Acid. J. Chem. Soc. 1956, 1377Google Scholar
  455. 453.
    Davy, G. S. , T. G. Halsall, and E. R. H. Jones: The Chemistry of the Triterpenes. Part IX. Elucidation of the Betulin-Oleanolic Acid Relationship. J. Chem. Soc. 1951, 2696Google Scholar
  456. 454.
    Davy, G. S. , T. G. Halsall, E. R. H. Jones, and G. D. Meakins: The Chemistry of the Triterpenes. Part X. The Structures of Some Isomerisation Products from Betulin and Betulinic Acid. J. Chem. Soc. 1951, 2702Google Scholar
  457. 455.
    Halsall, T. G. , E. R. H. Jones, and R. E. H. SWaYne: The Chemistry of the Triterpenes and Related Compounds. Part Xxii. The Conversion of Lupeol into ψ-Taraxasterol (Heterolupeol). J. Chem. Soc. 1954, 1902.Google Scholar
  458. 456.
    Ames, T. R. , T. G. Halsall, and E. R. H. Jones: The Chemistry of the Triterpenes. Part Vii. An Interrelationship between the Lupeol and the β-Amyrin Series. Elucidation of the Structure of Lupeol. J. Chem. Soc. 1951, 450.Google Scholar
  459. 457.
    Leonard, K. , and J. B. T Homson: Isomerisation ot aβ-Amyrin Derivative to an aAmyrin Derivative. Chem. Commun. 1972, 1281Google Scholar
  460. 458.
    Whitlock, H. W. , JR. , and A. H. Olson: The Concertedness, or Lack Thereof, of a Multiple Carbonium Ion Rearrangement. J. Amer. Chem. Soc. 92, 5383 (1970).Google Scholar
  461. 459.
    Beaton, J. M. , F. S. Spring, R. Stevenson, and J. L. Stewart: Triterpenoids. Part Xxxvii. The Constitution of Taraxerol. J. Chem. Soc. 1955, 2131.Google Scholar
  462. 460.
    Courtney, J. L. , R. M. Gasciogne, and A. Z. Szumer: Triterpenes of the Friedelane Series. Part Iii. The Course of the Friedelene-Oleanene Rearrangement. J. Chem. Soc. 1958, 881.Google Scholar
  463. 461.
    Brooks, C. J. W. : Observations on Taraxerol (Skimmiol). J. Chem. Soc. 1955, 1675.Google Scholar
  464. 462.
    Koller, E. , A. Hiestand, P. Dietrich, und O. Jeger: Zur Kenntnis der Triterpene. Überführung von Taraxerol in A13’18-Oleanen. Helv. Chim. Acta 33, 1050 (1950)Google Scholar
  465. 463.
    Sengupta, P. , and N. H. Khastgir: Terpenoids and Related Compounds - Iii. Bauerenol and Multiflorenol from Gelonium multiflorum A. Juss. The Structure of Multifiorenol Tetrahedron 19, 123 (19630Google Scholar
  466. 464.
    Laird, W. , F. S. Spring, and R. Stevenson: Triterpenoids. Part Lviii The Synthesis of Isoursenol, the Ursane Analogue of Taraxerol. J. Chem. Soc. 1961, 2638.Google Scholar
  467. 465.
    ChivErs, H. , R. E. Corbett, and R. E. M. MitcHell: Extractives from the Leaves of Olearia paniculata. J. Chem. Soc. (C) 1966, 1814.Google Scholar
  468. 466.
    Lahey, F. N. , and M. V. Leeding: A New Triterpene Alcohol, Bauerenol. Proc. Chem. Soc. (London) 1958, 342.Google Scholar
  469. 467.
    Budziarek, R. , J. D. Johnston, W. Manson, and F. S. Spring: Triterpene Resinols and Related Acids. Part Xxii. iso-β-Amyrenonol and iso-β-Amyradienonol. J. Chem. Soc. 1951, 3019.Google Scholar
  470. 468.
    Jfger, O. , und L. RUŽIČKA: Zur Kenntnis der Triterpene. Uberführung des βAmyrins in ein neues Dien-dion-Derivat. Helv. Chim. Acta 28, 209 (1945)Google Scholar
  471. 469.
    Agata, I. , E. J. Corey, A. G. Hortmann, J. Klein, S. Proskow, and J. J. Uursprung: Oxidative Rearrangements of Pentacyclic Triterpenes. A Method for the Synthesis of Certain Naturally Occurring Triterpenes from α- and β-Amyrin. J. Organ. Chem. (Usa) 30, 1698 (1965)Google Scholar
  472. 470.
    Barton, D. H. R. , and P. DE Mayo: Triterpenoids. Part Xiii. Phyllanthol, the First Hexacarbocyclic Triterpenoid. J. Chem. Soc. 1953, 2178.Google Scholar
  473. 471.
    Beaton, J. M. , J. D. Easton, M. M. Macarthur, F. S. Spring, and R. Stevenson: Triterpenoids. Part Xlv. The Conversion of α-Amyrin into Phyllanthol. The Constitution of “iso-α-Amyradienonyl-II Acetate. J. Chem. Soc. 1955, 3992.Google Scholar
  474. 472.
    Corey, E. J. , and J. J. Ursprung: The Structures of the Triterpenes Friedelin and Cerin. J. Amer. Chem. Soc. 78. 5041 (1956)Google Scholar
  475. 473.
    Dutler, H. , O. Jeger, und L. RU2IČKA: Zur Kenntnis der Triterpene. Zur Konstitution und Konfiguration von Friedelin und Cerin; ein Beitrag zur Biogenese pentacyclischer Triterpene. Helv. Chim. Acta 38, 1268 (1955)Google Scholar
  476. 474.
    Brownlie, G. , F. S. Spring, R. Stevenson, and W. S. Strachan: TriterpenoidS. Part Lii. The Constitution and Stereochemistry of Friedelin and Cerin. J. Chem. Soc. 1956, 2419.Google Scholar
  477. 475.
    Beaton, J. M. , F. S. Spring, R. Stevenson, and J. L. Stewart: Triterpenoids. Part Liv. The Constitution of Alnusenone. Tetrahedron 2, 246 (1958)Google Scholar
  478. 476.
    Coates, R. M. : On the Friedelene-Oleanene Rearrangement. Tetrahedron Letters 1967, 4143.Google Scholar
  479. 477.
    Whitlock, H. W. , JR. , and M. C. Smith: The Enzymatic Requirement for “Concerted” Backbone Rearrangement. Tetrahedron Letters 1968, 821.Google Scholar
  480. 478.
    Kikuchi, T. , M. Niwa, M. Takayama, T. Yokoi, and T. Shingu: Application of Homonuclear Indor Technique. Structure of an Acid-Induced Rearrangement Product of 16-Keto-friedel-3-ene. Tetrahedron Letters 1973, 1987Google Scholar
  481. 479.
    Kikuchi, T. , M. Takayama, T. Toyoda, M. Arimoto, and M. Niwa: Studies on the Neutral Constituents of Pachysandra terminalis Sieb. et Zucc. V. Structures of Pachysandiol-B and Pachysonol, New Friedelin Type Triterpenes. Chem. Pharm. Bull. (Japan) 21, 2243 (1973)Google Scholar
  482. 480.
    Van Tamelen, E. E. , and R. M. Coates: Biogenetic-type Synthesis of ( ±)-Farnesiferol A and (±)-Farnesiferol C. Chem. Commun. 1966, 413.Google Scholar
  483. 481.
    Aldridge, D. C. , A. Borrow, R. G. Foster, M. S. Large, H. Spencer, and W. B. Turner: Metabolites of Nectria coccinea. J. Chem. Soc. Perkin I 1972, 2136Google Scholar
  484. 482.
    Tanabe, M. , and K. T. SuzuKI: Detection of C—C Bond Fission during the Biosynthesis of the Fungal Triprenylphenol Ascochlorin using [1,2–13C]-Acetate. Chem. Commun. 1974, 445.Google Scholar
  485. 483.
    Anthonsen, T. , T. Bruun, E. Hemmer, D. Holme, A. Lamvik, E. Sunde, and N. A. Sorensen: Baccharis Oxide, a new Triterpenoid from Baccharis halimifolia L. Acta Chem. Scand. 24, 2479 (1970)Google Scholar
  486. 484.
    MO, F. , T. Anthonsen, and T. Bruun: Revised Structure of the Triterpenoid Baccharis Oxide. Acta Chem. Scand. 26, 1287 (1972)Google Scholar
  487. 485.
    Tachibana, K. , and T. Takahashi: The Conversion of Shionone into Dihydrobaccharis Oxide. Tetrahedron Letters 1975, 1857Google Scholar
  488. 486.
    Yamada, S. , S. Yamada, Y. Moriyama, Y. Tanahashi, and T. Takahashi: A BF 3 -Et 2 O Catalyzed Rearrangement of 3α,4α-Epoxyshionane. Tetrahedron Letters 1972, 5043.Google Scholar
  489. 487.
    Bathurst, E. T. J. , J. M. Coxon, and M. P. Hartshorn: Reactions of 5-Hydroxy Steroids. Xiii. The Acid-Catalysed Reactions of Cholestane-4,5-diol 4-Acetates and Cholestane-4,5-diol Diacetates. Austral. J. Chem. 27, 1505 (1974)Google Scholar
  490. 488.
    Bourguignon, P. , J. -C. Jacquesy, R. Jacquesy, J. Levisalles, et J. Wagnon: Stéréochimie. Xxxviii. Stéroides fluorés—Vii. Réarrangement spinal du cholesterol. Bull. soc. chim. France 1971, 269.Google Scholar
  491. 489.
    Blunt, J. W. , M. P. Hartshorn, and D. N. Kirk: Reactions of Epoxides — Xvii. “Backbone Rearrangements” of Cho“est-5-ene and 5,6α-epoxy-5α-cholestane. Tetrahedron 25, 149 (1969)Google Scholar
  492. 490.
    Kirk, D. N. , and P. M. Shaw: Backbone Rearrangements of Androst-5-ene and D-Homoandrose-5-ene: A Novel Racemisation. Chem. Commun. 1971, 948.Google Scholar
  493. 491.
    Monneret, C. , Q. Khuong-Huu, et R. Goutarel: Transpositions spinales de D-homo androstène-13 dione-3,17. Bull. soc. chim. France 1972, 291.Google Scholar
  494. 492.
    Bascoul, J. , E. Noyer, et A. Crastes DE Paulet: Transpositions spinales in vitro en milieu acide. IV. Influence de la distance <tension-fonction déclenchante› sur le cours des transpositions spinales. Bull. soc. chim. France 1972, 2744Google Scholar
  495. 493.
    Zundel, J. L. , G. Wolff, et G. Ourisson: La transposition spinale de l’A-nor euphénone. Bull. soc. chim. France 1973, 3206.Google Scholar
  496. 494.
    Whitlock, H. W. , JR. , and L. W. Overman: Solvolytic Rearrangements Accompanied by Multiple Alkyl Shifts. J. Amer. Chem. Soc. 93, 2247 (1971)Google Scholar
  497. 495.
    Berti, G. , and F. Bottarl Constituents of Ferns. In: L. Reinhold and Y. Liwschitz (eds. ), Progress in Phytochemistry, Vol. 1, p. 589. London: Interscience Publishers. 1968Google Scholar
  498. 496.
    Barton, D. H. R. , G. Mellows, and D. A. WiddowsON: Biosynthesis of Terpenes and Steroids. Part Iii. Squalene Cyclisation in the Biosynthesis of Triterpenoids; the Biosynthesis of Fern-9-ene in Polypodium vulgare Linn. J. Chem. Soc. (C) 1971, 110.Google Scholar
  499. 497.
    Barton, D. H. R. , P. DE Mayo, and J. C. Orr: Triterpenoids. Part Xxiv. Further Investigations on the Constitution of Zeorin. J. Chem. Soc. 1958, 2239Google Scholar
  500. 498.
    Fazakerley, H. , T. G. Halsall, and E. R. H. Jones: The Chemistry of Triterpenes and Related Compounds. Part Xxxiv. The Structure of Hydroxyhopanone. J. Chem. Soc. 1959, 1877Google Scholar
  501. 499.
    Ageta, H. , K. IwAta, and Y. Otake: A Fern Constituent: Diplopterol, a Triterpenoid Isolated from Diplopterygium glaucum Nakai. Chem. Pharm. Bull. (Japan) 11, 407 (1963)Google Scholar
  502. 500.
    Ageta, H. , K. Iwata, and K. YonezawA: Fern Constituents: Fernene and Diploptene, Triterpenoid Hydrocarbons Isolated from Dryopteris crassirhizoma Nakai. Chem. Pharm. Bull. (Japan) 11, 408 (1963)Google Scholar
  503. 501.
    Nakamura, S. , T. Yamada, H. Wada, Y. Inoue, T. Goto, and Y. Hirata: The Structures of Five New Triterpenoids Obtained from Rhododendron linearifolium. Tetrahedron Letters 1965, 2017Google Scholar
  504. 502.
    Ageta, H. , K. Shiojima, and Y. Arai: Fern Constituents: Neohopene, Hopene-II, Neohopadiene, and Fernadiene isolated from Adiantum Species. Chem. Commun. 1968. 1105Google Scholar
  505. 503.
    Berti, G. , A. Marsili, J. Morelli, and A. Mandelbaum: Boron Trifluoridecatalyzed Rearrangements of Some Tetrasubstituted Neotriterpene Epoxides — II. Hopene-II Oxide and Its Analogue in the A: B-Neoallobetulin Series. Tetrahedron 27, 2217((19710Google Scholar
  506. 504.
    Ageta, H. , K. Iwata, and S. Natori: A Fern Constituent, Fernene. A Triterpenoid Hydrocarbon of a New Type. Tetrahedron Letters 1963, 1447Google Scholar
  507. 505.
    Lin, Y. -Y. , H. Kakisawa, Y. Shiobara, and K. Nakanishi: The Structure of Davallic Acid. Chem. Pharm. Bull. (Japan) 13, 986 (1965)Google Scholar
  508. 506.
    Nishi Moto, K. , M. Ito, S. Natori, and T. Ohmoto: The Structures of Arundoin, Cylindrin, and Fernenol Triterpenoids of Fernane and Arborane Groups of Imperata Cvlindrica var. Koenigii. Tetrahedron 24, 735 (1968).Google Scholar
  509. 507.
    Ageta, H. , K. Iwata, and S. Natori: Fern Constituents: Adianene, Filicene, 7-Fernene, Isofernene and Diploptene. Triterpenoid Hydrocarbons Isolated from Adiantum monochlamvs. Tetrahedron Letters 1964, 3413.Google Scholar
  510. 508.
    Iguchi, K. , and H. Kakisawa: Synthesis of the Triterpenes Fernadiene and Fern-8-ene. Chem. Commun. 1970, 148Google Scholar
  511. 509.
    Kakisawa, H. , and K. Iguchi Synthesis of 18α-Fernane Derivatives. A Backbone Rearrangement of Pentacyclic Triterpenes. Chem. Commun. 1970, 1488Google Scholar
  512. 510.
    Aplin, R. T. , H. R. Arthur, and W. H. Hui: The Structure of the Triterpene Simiarenol (a E: B-friedo-Hop-5-ene) from the Hong Kong species of Rhododendron sim ia r um J Che m Soc (C) 19661 251Google Scholar
  513. 511.
    Berti, G. , F. Bottari, and A. Marsill: Structure and Stereochemistry of a Triterpenoid Epoxide from Adiantum Capillus-Vener i s. Tetrahedron 25, 2939 (1969)Google Scholar

Copyright information

© Springer-Verlag Wien 1976

Authors and Affiliations

  • Robert M. Coates
    • 1
  1. 1.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations