Advertisement

Tolerance to the Combined Effects of Hypothermia, Anoxia, and Ionizing Radiation

  • R. K. Andjus
  • Olivera Matic
  • Nadezda Savkovic
Conference paper

Abstract

Tolerance to the Combined Effects of Hypothermia, Anoxia, and Ionizing Radiation. An experimental study on rats was undertaken in order to evaluate to what extent severe anoxia, made tolerable by virtue of hypothermia, may prove of protective value against lethal effects of ionizing radiation. A protective factor approaching 3 proved to be obtainable by the combination of deep but spontaneously reversible hypothermia and a severe but easily tolerable anoxia, provoked by tracheal occlusion. Terminal respiratory movements were recorded and changes of brain ATP, ADP, AMP, creatine phosphate and lactate levels were followed during the course of anoxia, so that degrees of protection, afforded by different phases of the post-occlusion period, could be correlated with biochemical and physiological parameters.

Keywords

Body Temperature Respiratory Movement Creatine Phosphate Survival Period Brain Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Tolérance aux effets combinés de Phypothermie, de l’anoxie et des rayonnements ionisants. Une étude expérimental a été entreprise sur des rats, afin d’évaluer dans quelle mesure une forte anoxie, rendue tolérable grâce à l’hypothermie, peut s’averer efficace comme moyen de protection contre les effets mortels des rayonnements ionisants. II a été prouve que l’on pouvait obtenir un coefficient de protection proche de 3 en combinant une hypothermic profonde mais spontanément reversible et une anoxie forte, mais facilement tolérable, provoquée par occlusion trachéenne. Les mouvements respiratoires terminaux ont été enregistrés, et les variations des niveaux de lactate, de phosphocreatine, d’AMP, d’ADP, et d’ATP du cerveau ont été suivies au cours de l’anoxie, de telle sorte que les degrés de protection, fournis par diverses phases de la période d’asphyxie, ont pu être corrélés avec des paramètres biochimiques et physiologiques.

Аннотации

Толерантность к комбинированному воздействию гипотермии, аноксии и ионизирующей радиации. Для выяснения, в какой степени сильная аноксия, переносимая благодаря гипотермии, может служить защитой против смертоносного воздействия ионизирующей радиации, авторами проведены опыты на крысах. При этом удалось достигнуть фактора защиты, приближающегося к трем, путем сочетания глубокой, но спонтанно обратимой гипотермии с сильной, но легко переносимой аноксией, вызываемой пережатием трахеи. В течении аноксии регистрировались конечные дыхательные движения и наблюдались изменения уровней аденозинтрифосфата, аденозиндифосфата, аденозинмонофосфата, креатин-фосфата и лактата мозга, так что различные степени защиты, обеспечиваемые отдельными фазами периода асфиксии могли быть увязаны с биохимическими и физиологическими параметрами.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andjus, R. K.: Suspended Animation in Cooled, Super-cooled and Frozen Rats. J. Physiol. 128, 547–556 (1955).Google Scholar
  2. 2.
    Andjus, R. K.: Tolerance to the Combined Effects of Cold and of Abnormal Atmosphere. In: Proceedings of the First International Symposium on Basic Environmental Problems of Man in Space, p. 105–131. Vienna: Springer. 1965.CrossRefGoogle Scholar
  3. 3.
    Andjus, R. K., T. Cirkovic, N. Cuperlovic, J. Davidovic, V. Markovic-Uskokovic, and T. Velimirovic: Brain Metabolism and Resistance of a Hibernator (Citellus citellus) and the Rat to Different Anoxic Conditions, Including Cardiac Arrest in Deep Hypothermia. Ann. Acad. Sci. Fenn., Helsinki, Ser. A: IV, No. 71, 11–23, 1964.Google Scholar
  4. 4.
    Andjus, R. K., N. Hozic, and T. Cirkovic: Brain Metabolism after Respiratory and Cardiac Arrest in Hypothermia. Unpublished; abstract in The Physiologist 8, 316 (1965).Google Scholar
  5. 5.
    Andjus, R. K., O. Matic, V. Petrovic, and V. Rajevski: Influence of Hibernation and of Intermittent Hypothermia on the Formation of Immune Hemagglutinins in the Ground Squirree. Ann. Acad. Sci. Fenn., Helsinki, Ser. A: IV, No. 71, 27–35, 1964.Google Scholar
  6. 6.
    Andjus, R. K., and V. Petrovic: Test du réchauffement spontané en endocrinologie. J. Physiol. Paris. 51, 378 (1959).Google Scholar
  7. 7.
    Andjus, R. K., and A. U. Smith: Reanimation of Adult Rats from Body Temperature between 0 and 1° C. J. Physiol. 128, 446–472 (1955).Google Scholar
  8. 8.
    Baclesse, F., and M. Marois: Sur la radiosensibilite du rat adulte en hypothermic. C. R. Acad. Sci., Paris, 288, 1926–1928 (1954).Google Scholar
  9. 9.
    Cater, D. B., and L. Weiss: Measurements of Oxygen Tension in the Tissues of Mice Cooled to 1° C. Nature, Lond. 183, 1521–1522 (1959).ADSCrossRefGoogle Scholar
  10. 10.
    Costachel, O., St. Grigoresco, and A. Tranco: Recherches experimentales concernant l’infiuence de l’hypothermie sur l’effet radiobiologique. Symposium on Hypothermia; XV International Congress of Military Medicine and Pharmacy (Belgrade, 1957) Publication, p. 348-358, Belgrade. 1959.Google Scholar
  11. 11.
    Hajdukovic, S.: Modification de la radiosensibilite du rat par hypothermic profonde. Acta radiobiol. 44, 249–256 (1955).CrossRefGoogle Scholar
  12. 12.
    Hajdukovic, S., A. Herve, and V. Vidovic: Diminution de radiosensibilite du rat adulte en hypothermie profonde. Experientia 10, 343–344 (1954).CrossRefGoogle Scholar
  13. 13.
    Hajdukovic, S., and J. Karanovic: Effect of Hypothermia on Radiosensitivity of Rats. Bull. Inst, of Nuclear Sci., Belgrade 7, 139–147 (1957).Google Scholar
  14. 14.
    Hornsey, S.: Protection from Whole Body X-Irradiation Afforded to Adult Mice by Reducing the Body Temperature. Nature, Lond. 178, 87 (1956).ADSCrossRefGoogle Scholar
  15. 15.
    Gänshirt, H., G. Severin, and W. Zylka: Der Einfluß von Sauerstoff, Kohlensäure und Glucose auf die Schnappatmung der Ratte. Pflüg. Arch. ges. Physiol. 255, 283–293 (1952).CrossRefGoogle Scholar
  16. 16.
    Opitz, E., and J. Saathoff: Überlebenszeit des primitiven Schnappatmungszentrums bei verschiedenen Warmblüterspecies vor und nach Höhenakklimatisation. Pflüg. Arch. ges. Physiol. 225, 485–491 (1952).Google Scholar
  17. 17.
    Saathoff, J., and E. Opitz: Einfluß von Narcose und Unterkühlung auf die Schnappatmung des Meerschweinchens bei totaler Hirnischaemie. Pflüg. Arch, ges. Physiol. 255, 492 498 (1952).Google Scholar
  18. 18.
    Smith, F., and M. M. Grenan: Effect of Hibernation upon Survival Time Following Total Body Irradiation in the Marmot (Marmota monax). Science 113, 686–688 (1951).ADSCrossRefGoogle Scholar
  19. 19.
    Storer, J. B., and L. Hempelmann: Hypothermia and Increased Survival Rate of Infant Mice Irradiated by X-Rays. Amer. J. Physiol. 171, 341–348 (1952).Google Scholar
  20. 20.
    Weiss, L.: Alteration of Radio-sensitivity of the Testis by Extreme Hypothermia. J. Endocrin. 19, 22–28 (1959).CrossRefGoogle Scholar
  21. 21.
    Weiss, L.: Decrease in Radio-sensitivity of the Intact Mouse Spleen Produced by Hypoxia. Nature, Lond. 184, 1156–1157 (1959).ADSCrossRefGoogle Scholar
  22. 22.
    Weiss, L.: The Alteration in Radiosensitivity of the Intact Mouse Spleen by Extreme Hypothermia. Brit. J. Radiol. 33, 32–35 (1960).CrossRefGoogle Scholar
  23. 23.
    Weiss, L.: The Alterations in Radiosensitivity of the Mouse Haematopoietic System Produced by Extreme Hypothermia. Int. J. Rad. Biol. 2, 409–423 (1690).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1967

Authors and Affiliations

  • R. K. Andjus
    • 1
    • 2
  • Olivera Matic
    • 1
    • 2
  • Nadezda Savkovic
    • 1
    • 2
  1. 1.Institute of PhysiologyUniversity of BelgradeBelgradeYugoslavia
  2. 2.Institute of Nuclear SciencesBelgradeYugoslavia

Personalised recommendations