Advertisement

Abstract

The Toxic Effects of Breathing Oxygen. The toxic effects of oxygen at increased pressure upon living material have been recognized since the investigations carried out by Paul Bert, but it remained for Lorrain Smith to describe the sequence of pulmonary congestion and oedema induced by exposure to a partial pressure of oxygen greater than 0.7 atm.

The cells of the upper respiratory tract are directly exposed to any increase in the partial pressure of oxygen of the gaseous environment. In man, breathing oxygen at a partial pressure of 1 atm gives rise to retrosternal discomfort, the intensity of which increases as the duration of the exposure is extended beyond 12–14 hours. No marked impairment of respiratory function has been demonstrated as yet in men exposed to partial pressure of oxygen of the order of 0.8–1.0 atm although the duration of the exposure has generally not exceeded two days. Breathing 100% oxygen at 1 atm. has been shown to produce a significant reduction of the diffusing capacity of the lungs in man after only three hours. The intensity of this change is such as not to interfere with normal gas exchange in the lung.

An important effect of breathing high concentrations of oxygen is due to the concomitant reduction of the inert gas concentration. Reduction of the inert gas concentration results in a large increase in the rate at which gas is absorbed from any unventilated gas-containing cavity within the body. The most important region in which this may occur is the lung, where failure of ventilation of a group of alveoli may be brought about by collapse or blockage of airways. Exposure to increased accelerative force causes collapse of the dependent parts of the kings when oxygen is breathed. Similarly, the accumulation of secretions in or infection of the respiratory tract may result in atelectasis. The consequent shunting of venous blood through collapsed alveoli into the systemic arterial blood gives rise to hypoxemia. The mechanisms underlying acceleration atelectasis and the influence of inert gas concentration and environmental pressure upon its development may have been studied. The incidence of this condition is minimised by the presence of 40% inert, insoluble gas, such as nitrogen, in the inspired gas.

Exposure to a raised partial pressure of oxygen depresses erythropoiesis. Since the life of the red blood cell is long, this effect is not seen unless oxygen is breathed for several weeks. There is some evidence which suggests that high partial pressures of oxygen also accelerate the rate of destruction of red blood cells. The present evidence suggests that these effects are insignificant if the inspired partial pressure of oxygen does not exceed 0.5 atm.

Provided that the inspired partial pressure of oxygen is less than 1 atm. no serious disturbance of nervous function occurs, although some diminution of peripheral vision has been demonstrated in subjects breathing 100% oxygen at 1 atm.

Thus oxygen produces toxic disturbances when it is breathed for long periods at a partial pressure greater than 0.5 atm Certain of the disturbances induced by breathing 100% oxygen are related to the absence of inert gas. It is considered that the partial pressure of oxygen in the gaseous environment of a space cabin should not exceed 0.5 atm, and that at least 40% of the atmosphere should consist of an inert, insoluble gas such as nitrogen.

Keywords

Partial Pressure Oxygen Tension Vital Capacity Arterial Oxygen Tension Breathing Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les effets toxiques de la respiration de l’oxygène. Les effets toxiques de l’oxygène a une pression accrue sur les organismes vivants, ont été reconnus depuis les recherches faites par Paul Bert, mais il restait Lorrain Smith à decrire la sequence de la congestion pulmonaire? et de l’oedème provoquee par l’exposition à une pression partielle d’oxygène supérieure à 0,7 atm.

Les cellules des voies respiratoires supérieures sont directement exposées à une augmentation quelconque de la pression partielle dans le gaz ambiant. Chez l’homme, la respiration d’oxygène à une pression partielle de 1 atm. provoque une incommodation retrosternale, dont l’intensité augmente lorsque la duree de l’exposition est prolongèe au-delà de 12–14 heures. Aucune dégradation importante de la fonction respiratoire n’a été mise en évidence jusqu’iei chez des hommes exposés à une pression partielle d’oxygene de l’ordre de 0,8 à l atm, la durée de l’exposition n’ayant toutefois généralement pas depasse deux jours. On a pu montrer que la respiration d’oxygène à 100% a l atm. produit une réduction considérable de la capacite de diffusion des poumons chez l’homme, et cela après seulement trois heures. L’intensité de cette modification est telle qu’elle n’interfère pas avec l’échange normal de gaz dans les poumons.

Un effet important de la respiration d’oxygène fortement concentré résulte de la reduction simultanee de la concentration en gaz inertes. La diminution de la concentration des gaz inertes a pour effet d’augmenter fortement la vitesse ä laquelle les gaz sont absorbés à partir de toute cavité non ventilee contenant du gaz, dans le corps. La region la plus importante dans laquelle cela peut se produire est le poumon, ou le manque de ventilation d’un groupe d’alvéoles peut être dû à un collapsus ou à un blocage des voies respiratoires. L’exposition à une accélération accrue provoque le collapsus des parties dépendantes du poumon lorsque l’oxygène est inspiré. De façon analogue, l’accumulation de sécrétions dans les voies respiratoires — ou leur infection — peut provoquer une atelectasie. La dérivation résultante du sang veineux a travers les alveoles dégonflées dans le sang artériel de l’organisme, provoque l’hypoxemie. On a étudié les mécanismes sur lesquels repose l’atélectasie de l’accélération, et l’infiuence de la concentration des gaz inertes et de la pression ambiante sur son développement. L’incidence de cette condition est diminuée par la présence de 40% de gaz inerte insoluble, tel que l’azote dans le gaz inspiré.

L’exposition à une pression partielle accrue d’oxygène abaisse l’erythropoïèse. Du fait que la vie du globule rouge est longue, cet effet n’est pas constaté, à moins que l’oxygène ne soit respiré pendant plusieurs semaines. Certains faits suggérent que des pressions partielles élevées d’oxygène accélèrent également la destruction des globules rouges. L’expérience présente suggère que ces effets sont insignifiants, si la pression partielle de l’oxygène inspiré ne dépasse pas 0,5 atm.

Tant que la pression partielle de l’oxygène inspiré est inférieure à l atm., il ne se produit pas de troubles sérieux des fonctions nerveuses bien qu’une certaine diminution de la vision périphérique ait été observée chez des sujets respirant de l’oxygene à 100% à l atm.

L’oxygène provoque done des troubles toxiques lorsqu’il est respiré pendant de longues périodes à une pression partielle supérieure à l atm. Certains des troubles provoqués par la respiration de l’oxygène à 100% sont liés à l’absence des gaz inertes. On considère que la pression partielle d’oxygène dans l’ambiance gazeuse d’une cabine spatiale ne dévrait pas dépasser 0,5 atm, et qu’au moins 40% des l’atmosphere devrait être constitué par un gaz inerte, insoluble, tel que l’azote.

Аннотации

Токсические эффекты кислородного дыхания. Токсическое воздействие кислорода на живой организм при повышенном давлении признается еще со времени исследований Поля Берта, однако только Лоррен Смит описал процесс гиперемии и отека легких, вызываемых парциальным давлением кислорода, превышающим 0,7 атм.

Клетки верхних дыхательных путей находятся под непосредственным воздействием каждого повышения парциального давления кислорода в газовой среде. У человека, дышащего кислородом при парциальном давлении в 1 атм, возникает неприятное чувство в загрудинной области, усиливающееся, если воздействие длится более 12–14 часов. У человека под влиянием парциального давления кислорода порядка 0,8–1,0 атм, до настоящего времени не наблюдалось заметного расстройства дыхательной функции, хотя воздействие длилось обычно не более чем двое суток. Дыхание 100 проц. кислородом при давлении в 1 атм значительно снижало диффузионную способность легких у человека уже три часа спустя. Это изменение не столь интенсивно, чтобы нарушать нормальный газообмен в легких.

Одним из важных последствий дыхания кислородом повышенной концентрации является сопутствующее ему понижение концентрации инертных газов. В связи с этим снижением ускоряется значительно поглощение газа из любой содержащей газ полости тела, не участвующей в газообмене. Наиболее важным органом, где это может произойти, являются легкие, в которых прекращение вентиляции в группе альвеол может быть вызвано сжатием или закупоркой воздушных путей. Соответствующие части легких могут спасться под влиянием усиленного ускоряющего воздействия при дыхании кислородом. Подобным же образом накопление выделений в дыхательных путях или их инфекция могут привести к ателектазу. В связи с этим венозная кровь проникает через спавшиеся альвеолы в артериальную и вызывает гипоксемию. Изучен механизм, лежащий в основе ускорительного ателектаза, а также влияние концентрации инертного газа и внешнего давления на его развитие. Отрицательный эффект этого явления снижается до минимума при наличии во вдыхаемом газе 40 проц. инертного нерастворимого газа, например азота.

Повышенное парциальное давление кислорода ослабляет образование красных кровяных телец. Поскольку срок жизни красных кровяных телец продолжителен, этот эффект наблюдается только при дыхании кислородом в течение нескольких недель. Есть некоторые основания полагать, что высокое парциальное давлениэ кислорода ускоряет также разрушение красных кровяных телец. Полученные результаты показывают, что эти эффекты незначительны, если парциальное давление кислорода при вдыхании не превышает 0,5 атм.

Не отмечено сколько-нибудь серьезных расстройств функций нервной системы, если это парциальное давление кислорода не превышало 1 атм, хотя и наблюдалось некоторое ухудшение периферического зрения при дыхании 100 проц. кислородом при давлении в 1 атм.

Таким образом, кислород вызывает токсические расстройства при вдыхании его в течение продолжительного времени при парциальном давлении, превышающем 0,5 атм. Некоторые расстройства, вызываемые дыханием 100 проц. кислородом, объясняются отсутствием инертного газа. Считается, что парциальное давление кислорода в газовой среде кабины космического корабля не должно превышать 0,5 атм и что по крайней мере 40 проц. атмосферы должен составлять инертный нерастворимый газ, как например азот.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bert, P.: La pression barométrique. Translated by Hitchock. Paris (1878).Google Scholar
  2. 2.
    Smith, J. L.: The Pathological Effects Due to Increase of Oxygen Tension in tho Air Breathed. J. Physiol. 24, 19–35 (1899).Google Scholar
  3. 3.
    Behnke, A. R., F. S. Johnson, J. R. Poppen, and E. P. Motley: The Effect of Oxygen on Man at Pressures from 1 to 4 Atmospheres. Amer. J. Physiol. 110, 565 (1935).Google Scholar
  4. 4.
    Thompson, W. A. R.: The Physiology of Deep-Sea Diving. Brit, Med. J. 11, 208 (1935).CrossRefGoogle Scholar
  5. 5.
    Becker-Freyseng, H., and H. G. Clamann: Zur Frage der Sauerstoffvergiftung. Klin. Wschr. 18, 1382–1385 (1939).CrossRefGoogle Scholar
  6. 6.
    Behnke, A. R.: High Atmospheric Pressures: Physiological Effects of Increased and Decreased Pressure; Application of these Findings to Clinical Medicine. Ann. Internal Med. 18, 2217–2228 (1940).Google Scholar
  7. 7.
    Comroe, J. H., R. D. Dripps, P. R. Dumke, and M. Deming: Oxygen Toxicity: The Effect of Inhalation of High Concentrations of Oxygen for Twenty-four Hours on Normal Men at Sea Level and at a Simulated Altitude of 18,000 ft, J. Amer. Med. Ass. 128, 710–717 (1945).CrossRefGoogle Scholar
  8. 8.
    ud Bois, A.B.: Respiratory Physiology in Manned Spacecraft. Introductory Remarks. Fed. Proc. 22, 1022–1023 (1963).Google Scholar
  9. 9.
    Cedergren, B., L. Gyllensten, and J. Wersall: Pulmonary Damage Caused by Oxygen Poisoning. Acta Paediat. 48, 477–494 (1959).Google Scholar
  10. 10.
    Paine, J. R., A. Keys, and D. Lynn: Manifestations of Oxygen Poisoning in Dogs Confined in Atmospheres of 80 to 100 per cent Oxygen. Amer. J. Physiol. 133, 406–407 (1941).Google Scholar
  11. 11.
    Pratt, P. C.: Pulmonary Capillary Prolification Induced by Oxygen Inhalation. Amer. J. Path. 84, 1033–1042 (1958).Google Scholar
  12. 12.
    Becker-Freyseng, H., and H. G. Clamann: Die Wirkung langdauernder Sauerstoffatmung in verschiedenen Höhen auf den Menschen. Luftfahrtmedizin 7, 272 (1942).Google Scholar
  13. 13.
    Ohlsson, W. T. L.: A Study on Oxygen Toxicity at Atmospheric Pressure. With Special References to the Pathogenesis of Pulmonary Damage and Clinical Oxygen Therapy. Acta Med. Scand. 128, Suppl. 190 (1947).Google Scholar
  14. 14.
    Michel, E. L., R. W. Langevin, and C. F. Gell: Effect of Continuous Human Exposure to Oxygen Tension of 418 mm Hg for 168 Hours. Aerospace Med. 31. 138–144 (1960).Google Scholar
  15. 15.
    Helvey, W. M., G. A. Albright, F. B. Benjamine, L. S. Gall, J. J. Peters, and H. Rind: Effects of Prolonged Exposure to Pure Oxygen on Human Performance. Republic Aviation Corporation RAC 393-1 (ARD. 807.701) (1962).Google Scholar
  16. 16.
    UdBois, A.B., R.W. Hyde, and E. Hendler: Pulmonary Mechanics and Diffusing Capacity Following Simulated Space Flight of Two Weeks Duration. J. Appl. Physiol. 18, 696 (1963).Google Scholar
  17. 17.
    Hendler, E.: Physiological Effects of a Simulated Space Flight Profile. Fed. Proc. 22, 1060–1063 (1963).Google Scholar
  18. 18.
    Ernsting, J.: Effect of Breathing High Concentrations of Oxygen Upon the Diffusing Capacity of the Lung in Man. Flying Personnel Research Committee Report No. 1163. MOD(AIR) London (1961).Google Scholar
  19. 19.
    Forster, R. E., W. S. Fowler, D. V. Bates, and B. Vanlingen: The Absorption of Carbon Monoxide by the Lungs During Breath Holding. J. Clin. Invest. 33, 1135–1145 (1954).CrossRefGoogle Scholar
  20. 20.
    Roughton, F. J. W., and R. E. Forster: Relative Importance of Diffusion and Chemical Reaction Hates in Determining Rates of Exchange of Gases in the Human Long, with Special Reference to the True Diffusing Capacity of Pulmonary Membrane and Volume of Blood in the Lung Capillaries. J. Appl. Physiol. 11, 290–302 (1957).Google Scholar
  21. 21.
    Helvey, W. M.: A Problem of Man and Milieu: Prolonged Exposure to Pure Oxygen. Fed. Proc. 22, 1057–1059 (1963).Google Scholar
  22. 22.
    Lichtheim, L.: Versuche über Lungenatelektese. Arch. f. exper. Path. u. Pharmakol. 10, 54 (1879).Google Scholar
  23. 23.
    Coryllok, P. N., and G. L. Birnbaum: Studies in Pulmonary Gas Absorption in Bronchial Obstruction II. The Behaviour and Absorption Ties of Oxygen, Carbon Dioxide, Nitrogen, Hydrogen, Helium, Ethylene, Nitrous Oxide, Ethyl Chloride, and Ether in the Lung. With Some Observations on Pleural Absorption of Gases. Amer. J Med. Sci. 183, 326–347 (1932).CrossRefGoogle Scholar
  24. 24.
    Dale, W. A., and H. Kahn: Rate of Gas Absorption During Atelectasis. Amer. J. Physiol. 170, 606 (1952).Google Scholar
  25. 25.
    Ernsting, J.: The Influence of Alveolar Nitrogen Concentration and Environmental Pressure Upon the Rate of Gas Absorption from Nonventilated Lung. IAM Report 318 (1965).Google Scholar
  26. 26.
    Ernsting, J.: Some Notes on Post Flight Chest Pain and Coughing. IAM Report, 126 (1959).Google Scholar
  27. 27.
    Ernsting, J.: Some Effects of Oxygen-breathing on Man. Proc. Roy. Soc. Med. 53, 96–98 (1960).Google Scholar
  28. 28.
    Green, I. D.: Synopsis of Recent Work Done on the Problem of Pulmonary Atelectasis Associated w ith Breathing 100% Oxygen and Increased Positive ‘g’. IAM Report, 230 (1963) (a).Google Scholar
  29. 29.
    Hyde, A. S., J. Pines, and I. Saito: Atelectasis Following Acceleration: A Study of Causality. Aerospace Med. 34, 150–157 (1963).Google Scholar
  30. 30.
    Nolan, A. C., H. W. Marshall, L. Cronin, W. F. Sutterer, and E. H. Wood: Decreases in Arterial Oxygen Saturation and Associated Changes in Pressures and Roentgenographic Appearance of the Thorax During Forward (+G x) Acceleration. Aerospace Med. 34, 797–813 (1963).Google Scholar
  31. 31.
    Glaister, D. H.: Regional Ventilation and Perfusion of the Lung During Gravitational Stress Measured with Radioactive Xenon. IAM Report, 300 (1964).Google Scholar
  32. 32.
    Green, I. D., and B. F. Burgess: An Investigation into the Major Factors Contributing to Post Flight Chest Pain in Fighter Pilots. Flying Personnel Research Committee No. 1182 MOD (AIR) London (1962).Google Scholar
  33. 33.
    Barr, P.O.: Pulmonary Gas Exchange in Man as Affected by Prolonged Gravitational Stress. Acta Physiol. Scand. 58, Suppl. 207 (1963).Google Scholar
  34. 34.
    Green, I. D.: The Degree of Pulmonary Arterial to Venous Shunt Produced by Breathing 100% Oxygen During Increased Positive Acceleration and Whilst Wearing an Anti-‘g’ Suit. J. Physiol. 169, 96 P (1963) (b).Google Scholar
  35. 35.
    Rahn, H., and L. E. Farhi: Gaseous Environment and Atelectasis. Fed. Proc. 22, 1035–1041 (1963).Google Scholar
  36. 36.
    Caro, C. G., J. Butler, and A. B. Dubois: Some Effects of Restrictions of Chest Cage Expansion on Pulmonary Function in Man; an Experimental Study. J. Clin. Invest. 39, 573–583 (1960).CrossRefGoogle Scholar
  37. 37.
    Mcilroy, M. B., J. Butler, and T. M. Finley: Effects of Chest Compression on Reflex Ventilatory Drive and Pulmonary Function. J. Appl. Physiol. 17, 701–705 (1962).Google Scholar
  38. 38.
    Pattle, R. E.: Surface Lining of Lung Alveoli. Physiol. Rev. 45, 48–79 (1965).Google Scholar
  39. 39.
    Clements, J. A.: Surface Phenomena in Relation to Pulmonary Function. Physiologist 5, 11–28 (1962).Google Scholar
  40. 40.
    Hackney, J. D., C. R. Collier, D. Conrad, and J. Coggin: Pulmonary Surface Phenomena in Oxygen Poisoning. Clin. Res. 11, 91 (1963).Google Scholar
  41. 41.
    Bondurant, S., and C. Smith: Effect of Oxygen Intoxication on the Surface Characteristics of Lung Extracts. Physiologist 5, 111 (1962).Google Scholar
  42. 42.
    Fujiwara, T., F. H. Adams, and K. Seto: Lipids and Surface Tension of Extracts of Normal and O2 Treated Guinea Pig Lungs. J. Paediat. 65, 45–52 (1964).CrossRefGoogle Scholar
  43. 43.
    Klocke, F. J., and H. Rahn: Breath Holding After Breathing Oxygen. J. Appl. Physiol. 14, 689–693 (1959).Google Scholar
  44. 44.
    Lee, W. L.: Changes in Lung Volume and Alveolar Gas Concentration during Breath Holding after Breathing O2 at Altitude. 18th Aerospace Med. Pan. Meet. (AGARD) Oslo, Norway, July 1961 (1961).Google Scholar
  45. 45.
    Melvill Jones, G.: Pressure Changes in the Middle Ear After Flight. Flying-Personnel Research Committee Report No. 1059. MOD(AIR) London (1958).Google Scholar
  46. 46.
    Behnke, A. R., H. S. Forbes, and E. P. Motley: Circulatory and Visual Effects of Oxygen at 3 Atmospheres Pressure. Amer. J. Physiol. 144, 436–442 (1935).Google Scholar
  47. 47.
    Donald, K. W.: Oxygen Poisoning In Man. Brit. Med. J. 1, 667–672, 712-717 (1947).CrossRefGoogle Scholar
  48. 48.
    Dickens, F.: The Toxic Effects of Oxygen on (1) Brain Metabolism and (2) Tissue Enzymes. Biochem. J. 40, 145–186 (1946).Google Scholar
  49. 49.
    Harris, J. G., D. E. Beischer, and D. Everson: The Effects of Inhalation of 100% O2 on Performance of a Task Involving Visual Auditory Conflict. Bureau of Medicine and Surgery Project MR. 005, 13-1002, Subtask 11, Report 3, USN School of Aviation Medicine, Pensacola, Florida (1960).Google Scholar
  50. 50.
    Noell, W. K.: Effects of High and Low Oxygen Tension on the Visual System. In: Schafer, K. E., Environmental Effects on Consciousness. New York: Macmillan. 1962.Google Scholar
  51. 51.
    Beehler, C. C., N. L. Newton, J. F. Culver, and T. Tredici: Oecular Hyperoxia. Aerospace Med. 84, 1017–1020 (1963).Google Scholar
  52. 52.
    Gordon, H.H., L. Lubchenco, and L. Hix: Observation on the Aetiology of Retrolental Fiboplasia. Bull. Johns Hopkins Hosp. 94, 34 (1954).Google Scholar
  53. 53.
    Miller, E. F.: Effect of Breathing 100% Oxygen Upon Visual Field and Visual Acuity. J. Aviat. Med. 29, 598–602 (1958).Google Scholar
  54. 54.
    Dollery, C. T., D. W. Hill, and C. M. Mailer: High Oxygen Pressure and the Retinal Blood-Vessels. Lancet 2, 291–292 (1964).CrossRefGoogle Scholar
  55. 55.
    Campbell, J. A.: Prolonged Alterations of Oxygen Pressure in the Inspired Air with Special Reference to Tissue Oxygen Tension, Tissue Carbon Dioxide Tension and Haemoglobin. J. Physiol. 62, 211–231 (1927) (a).Google Scholar
  56. 56.
    Campbell, J. A.: Further Observations on Oxygen Acclimatisation. J. Physiol. 68, 325–342 (1927) (b).Google Scholar
  57. 57.
    Cooperberg, A., and K. Singer: The Reaction of the Bone Marrow to High Oxygen Tension in Normal and Anaemic Guinea Pigs. J. Lab. Clin. Merl. 37, 936–947 (1951).Google Scholar
  58. 58.
    Reinhard, E. H., C. V. Moore, R. Dubach, and L. J. Wade: Depressant Effects of High Concentrations of Inspired Oxygen on Erythrocytogenesis. Observations on Patients with Sickle Cell Anaemia with a Description of the Observed Toxic Manifestations of Oxygen. J. Clin. Invest, 23, 682–698 (1944).CrossRefGoogle Scholar
  59. 59.
    Tinsley, J. C., C. V. Moore, R. Dubach, V. Minnich, and M. Grinstein: The Role of Oxygen in the Regulation of Erythropoiesis. Depression of the Rate of Delivery of New Red Cells to the Blood by High Concentrations of Inspired Oxygen. J. Clin. Invest. 28, 1544 1564 (1949).CrossRefGoogle Scholar
  60. 60.
    Zalusky, R., F. Ulvedal, J. E. Herlocher, and B.E. Welch: Physiologic Response to Increased Oxygen Partial Pressure III. Haematopoiesis. Aerospace Med. 85, 622–626 (1964).Google Scholar
  61. 61.
    Grant, W.C., and W.S. Root: Fundamental Stimulus for Erythropoiesis. Physiol. Rev. 32, 449–498 (1952).Google Scholar
  62. 62.
    Gordon, A.S.: Haemopoietine. Physiol. Rev. 39, 1–40 (1959).Google Scholar
  63. 63.
    Stohlman, F.: Erythropoiesis. New Eng. J. Med. 267, 342–347, 392-399 (1962).CrossRefGoogle Scholar
  64. 64.
    Goldwasser, E., W. Fried, and L.O. Jacobson: Studies on Erythropoiesis. VIT. The Effect of Nephrectomy on Response to Hypoxic Anoxia, J. Lab. Clin. Med. 52, 375–378 (1958).Google Scholar
  65. 65.
    Kann, H. K., C. K. Mencel, W. Smith, and B. Horton: Oxygen Toxicity and Vitamin E. Aerospace Med. 35, 840–844 (1964).Google Scholar
  66. 66.
    Mengel, C. K., M. K. Kann, A.M. Lewis, and B. Horton: Mechanisms of in Vivo Haemolysis Induced by Hyperoxia. Aerospace Med. 35, 857–860 (1964).Google Scholar
  67. 67.
    Morgan, T. K., F. Ulvedal, and B. E. Welch: Observations in the SAM Two-man Space Cabin Simulator. II. Bio-medical Aspects. Aerospace Med. 32, 591 (1961).Google Scholar
  68. 68.
    Morgan, T. E., F. Ulvedal, R. G. Cutler, and B. E. Welch: Effects on Man of Prolonged Exposure to Oxygen at a Total Pressure of 190 mm Hg. Aerospace Med. 84, 589–592 (1963).Google Scholar
  69. 69.
    Welch, B. K., T.E. Morgan, and H. G. Clamann: Time-concentration Effects in Relation to Oxygen Toxicity in Man. Fed. Proc. 22, 1053–1056 (1963).Google Scholar
  70. 70.
    Roth, K.M.: Selection of Space Cabin Atmospheres. Part I. Oxygen Toxicity. NASA Technical Note D-2008 (1963).Google Scholar
  71. 71.
    Adams, A.: The Kffects of Atmospheres Enriched with Oxygen Upon Living Organisms (a) Effects on Microorganisms, (b) Effects on Mammals Experimentally Innoculated with Tuberculosis, (c) Effects Upon the Lungs of Mammals, or Oxygen Pneumonia. Biochem. J. 6, 297–313 (1912).Google Scholar
  72. 72.
    Karsner, H. T.: The Pathological Effects of Atmospheres Rich in Oxygen. J. Exper. Med. 28, 149–170 (1916).CrossRefGoogle Scholar
  73. 73.
    Barach, A. L.: The Effects of Atmospheres Rich in Oxygen on Normal Rabbits and Rabbit with Pulmonary Tuberculosis. Amer. Rev. Tub. 13, 293–316 (1928).Google Scholar
  74. 74.
    Binger, C. A. L., J. M. Faulkner, and R.L. Moore: Oxygen Poisoning In Mammals. J. Exper. Med. 45, 849–864 (1927).CrossRefGoogle Scholar
  75. 75.
    AcHard, C., L. Bimet, et A. LeBlanc: Sur la mort en atmosphere suroxygenee. Compt, Rend. Acad. Sci. 184, 771–773 (1927).Google Scholar
  76. 76.
    Boycott, A.A., and C. L. Oakley: Oxygen Poisoning in Rats. J. Path, and Path. 35, 468–469 (1932).CrossRefGoogle Scholar
  77. 77.
    Armstrong, H. G.: The Toxicity of Oxygen at Decreased Barometric Pressures. Mil. Surgeon 83, 148–151 (1938).Google Scholar
  78. 78.
    Rehbock, D. J., M. R. Oldt, and H.M. Dixon: Effect of Exposure to High Oxygen Tension on the Lungs and Heart of the Rat. Arch. Path. 30, 1172–1177 (1940).Google Scholar
  79. 79.
    Clamann, H. G., H. Becker-Freyseng, und Liebegott: Das allgemeine Verhalten und die morpho logischen Lungenveränderungen verschiedener Tierarten bei langer Einwirkung erhöhten Sauerstoff drucks. Luftfahrtmed. 5, 17 (1940).Google Scholar
  80. 80.
    Pichotka, J. und H. A. Kühn: Experimentelle und morphologische Untersuchungen zur Sauerstoffvergiftung. Arch. Exper. Path. 204, 336–366 (1947).Google Scholar
  81. 81.
    Berfenstam, R., T. Edlund, and L. Zettergren: The Hyaline Membrane Disease. A Review of Earlier Clinical and Experimental Findings and Some Studies on the Pathogenesis of Hyaline Membranes in Oxygen Intoxicated Rats. Acta Paediat. 17, 82–100 (1958).CrossRefGoogle Scholar
  82. 82.
    Dolezal, V.: Some Humoral Changes in Man Produced by Continuous Oxygen Inhalation at Normal Barometric Pressure. Riv. Med. Aeron. 25, 219 (1962).Google Scholar
  83. 83.
    Richards, D. W., Jr., and A. L. Barach: Prolonged Residence in High Oxygen Atmospheres. Effects on Normal Individuals and on Patients with Chronic Cardiac and Pulmonary Insufficiency. Quart. J. Med. 3, 437–466 (1934).Google Scholar
  84. 84.
    Herlocher, J. E., D. G. Quigley, V. S. Behar E. G. Shaw, and B. E. Welch: Physiologic Response to Increased Oxygen Partial Pressure. 1. Clinical Observation. Aerospace Med. 35, 163 (1964).Google Scholar
  85. 85.
    Hall, A. L., and R. J. Martin: Prolonged exposure in the Navy Full Pressure Suit at Space Equivalent Altitude. Aerospace Med. 31, 116–122 (1960).Google Scholar
  86. 86.
    Hall, A. L., and H. B. Kelly: Exposure of Human Subjects to 100% Oxygen at Simulated 34,000 ft Altitude for Five Days. Tech. Memo. No. NMC-TM-62-7 U.S. Naval Missile Centre 1962.Google Scholar

Copyright information

© Springer-Verlag Wien 1967

Authors and Affiliations

  • John Ernsting
    • 1
  1. 1.Royal Air Force Institute of Aviation MedicineFarnborough, HantsGreat Britain

Personalised recommendations