Recent Results on Wave Propagation in Continuum Models

  • T. Ruggeri
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 344)


In this Chapter we present some mathematical definitions and some results of non linear wave problems for a generic quasi-linear hyperbolic system of balance laws type.


Shock Wave Shock Front Hyperbolic System Shock Velocity Shock Wave Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Boillat, La Propagation des Ondes, Gauthier-Villars, Parigi (1965).MATHGoogle Scholar
  2. [2]
    G. Boillat, Chocs caractéristiques. C.R. Acad. Sc. Paris 274A, 1018 (1972).MathSciNetMATHGoogle Scholar
  3. [3]
    S. K. Godunov, An interesting class of quasilinear systems. Sov.Math. 2 (1961).Google Scholar
  4. [4]
    K.O. Friedrichs & P.D. Lax, Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. USA., 68 (1971).Google Scholar
  5. [5]
    G. Boillat, Sur V existence et la recherche d’équations de conservation supplémentaires pour les systémes hyperboliques. C.R.Acad.Sci., Paris, 278 A (1974).Google Scholar
  6. [6]
    T. Ruggeri & A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann.Inst. H.Poincaré, 34 (1981).Google Scholar
  7. [7]
    T. Ruggeri, Struttura dei Sistemi alle derivate parziali compatibili con un Principio di Entropia e Termodinamica Estesa. Suppl. BUMI Fisica Matematica, 4, 261 (1985).MathSciNetGoogle Scholar
  8. [8]
    A. Muracchini, T. Ruggeri and L. Seccia, Dispersion relation in High Frequency limit and non linear Wave Stability for Hyperbolic Dis-sipative System. Wave Motion, 15, (2) (1992).MathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Boillat & T. Ruggeri, On the evolution law of the weak discontinuities for hyperbolic quasi-linear systems. Wave Motion 1, 149 (1979).MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    T. Ruggeri, Stability and Discontinuity Waves for Symmetric Hyperbolic Systems, in Non linear Wave Motion. Ed. by A. Jeffrey, Longman (1989).Google Scholar
  11. [11]
    P. Chen, Growth and decay of waves in solids in Mechanics of Solids III, Handbuch der Physik, 6A/3, 303 Springer-Verlag (1973).Google Scholar
  12. [12]
    Y. Choquet-Bruhat, Ondes Asymptotiques et Approchées pour des Systémes d’équation aux dérivées partielles non linéaires, J. Math. Pures et Appl. 48, 117 (1969).MathSciNetMATHGoogle Scholar
  13. [13]
    G. Boillat, Ondes asymptotiques non linéaires, Ann. Mat. Pura Appl. 111, 31 (1976).MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    K. S. Eckhoff, On Stability for Symmetric Hyperbolic Systems, Journ. Diff. Eq. 40, 94 (1981).MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    A. Donato & F. Oliveri, Instability Conditions for Symmetric Quasi Linear Hyperbolic Systems, Atti Sem. Mat. Fis. Univ. Modena. 35, 191 (1987).MathSciNetMATHGoogle Scholar
  16. [16]
    P.D. Lax, Hyperbolic Systems of Conservation Laws, Comm. Pure Appl. Math. 10, 537 (1957);MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    T. Ruggeri, A. Muracchini and L. Seccia, Continuum Approach to Phonon Gas and Shape of Second Sound via Shock Waves Theory Nuovo Cimento 16, n. 1, 15 (1994). See also Shock Waves and Second Sound in a Rigid Heat Conductor: A Critical Temperature for NaF and Bi Phys. Rev. Lett. 64, 2640, (1990).CrossRefGoogle Scholar
  18. [18]
    G. Boillat & T. Ruggeri, Reflection and transmission of discontinuity waves through a shock wave. General theory including also the case of characteristic shocks. Proc. of the Royal Soc. of Edinburgh., 83 A, 17 (1979).MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    L. Brun, Ondes de choc finies dans les solides èlastiques, in Mechanical waves in solids, J. Mandel and L. Brun Eds. Springer, Wien (1975).Google Scholar
  20. [20]
    A. Jeffrey, Quasilinear hyperbolic systems and waves Pitman, London (1976).MATHGoogle Scholar
  21. [21]
    P.D. Lax, Shock Waves and Entropy, in Contribution to non linear functional analysis Zarantonello ed. Academic Press, New York (1971).Google Scholar
  22. [22]
    G. Boillat, Sur une fonction croissant comme l’entropie et generatrice des chocs dans les systemes hyperboliques. C.R. Acad. Sc. Paris 283-A, 409 (1976).MathSciNetMATHGoogle Scholar
  23. [23]
    C. Dafermos, Generalized characteristics in Hyperbolic Systems of conservation laws. Arch. Rat. Mech. and Anal. 107, 127 (1989).MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    I. Müller & T. Ruggeri, Extended Thermodynamics, Springer Tracts on Natural Philosophy 37 — Springer Verlag — New York (1993).MATHCrossRefGoogle Scholar
  25. [25]
    T. Ruggeri & L. Seccia, Hyperbolicity and Wave propagation in Extended Thermodynamics. Meccanica 24, 127 (1989).MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    A. Muracchini & L. Seccia, Thermo-acceleration waves and shock formation in Extended Thermodynamics of gravitational gases. Continuum Mech. Thermodyn. 1, 227 (1989).MathSciNetCrossRefGoogle Scholar
  27. [27]
    T. Ruggeri, Shock Waves in Hyperbolic Dissipative Systems: Non Equilibrium Gases. Pitmân Research Notes in Mathematics 227. D. Fusco & A. Jeffrey Eds. Longman (1991).Google Scholar
  28. [28]
    L. Landau & E. Lifsits, Mècanique des Fluides, pag. 418 Moscow: MIR (1971).MATHGoogle Scholar
  29. [29]
    D. Gilbarg & D. Paolucci, The Structure of Shock Waves in the Continuum Theory of Fluids. Journ. Rat. Mech, Anal. 2, 617 (1953).MathSciNetMATHGoogle Scholar
  30. [30]
    H. Alsemeyer, Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74, 497 (1976).CrossRefGoogle Scholar
  31. [31]
    H. Grad, The Profile of a Steady Plane Shock Wave. Comm. Pure Appl. Math. 5, 257 (1952).MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    A. M. Anile & A. Majorana, Shock structure for heat conducting and viscid fluids. Meccanica 16 (3),149 (1981).MATHCrossRefGoogle Scholar
  33. [33]
    D. Jou & D. Pavon, Non local and Nonlinear effects in shock waves. Phys. Rev. A 44 (10), 6496 (1991).CrossRefGoogle Scholar
  34. [34]
    T. Ruggeri, Breakdown of Shock Wave Structure Solutions. Phys. Rev. 47-E, (6) (1993).MathSciNetGoogle Scholar
  35. [35]
    W. Weiss, Hierarchie der Erweiterten Thermodynamik. Dissertation TU Berlin (1990).Google Scholar
  36. [36]
    T. Ruggeri, Galilean Invariance and Entropy Principle for Systems of Balance Laws. Cont. Mech. Thermodyn. 1 (1989).Google Scholar
  37. [37]
    G. Boillat & T. Ruggeri, Characteristic shocks: completely and strictly exceptional systems. Boll. Unione Mat. Ital. (U.M.I.) 15 A, 197 (1978).MathSciNetMATHGoogle Scholar
  38. [38]
    N. Kopell & L.N. Howard, Bifurcations and Trajectories joining Critical Points. Advances in Math. 18, 306 (1975).MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    V. Peshkov, in: Report on an International Conference on Fundamental Particles and Low Temperature Physics Vol. II, The Physical Society of London, (1947).Google Scholar
  40. [40]
    R. A. Guyer & J. A. Krumhansl, Solution of the Linearized Phonon Boltzmann Equation. Phys. Rev. 148, 766 (1966).CrossRefGoogle Scholar
  41. [41]
    R. A. Guyer & J. A. Krumhansl, Thermal Conductivity, Second Sound, and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals. Phys. Rev. 148, 778 (1966).CrossRefGoogle Scholar
  42. [42]
    T. Ruggeri, Thermodynamics and Symmetric Hyperbolic Systems. Rend. Sem. Mat. Univ. Torino. Fascicolo speciale Hyperbolic Equations, 167 (1987).Google Scholar
  43. [43]
    A. Morro & T. Ruggeri, Second Sound And Internal Energy In Solids. Int. J. Non-Linear Mech., 22, 27 (1987).MATHCrossRefGoogle Scholar
  44. [44]
    A. Morro & T. Ruggeri, Non-equilibrium properties of solids obtained from second-sound measurements. J. Phys. C.: Solid State Phys., 21, 1743 (1988).CrossRefGoogle Scholar
  45. [45]
    B. D. Coleman, M. Fabrizio & D. R. Owen, On the thermodynamics of second sound in dielectric crystals. Arch. Rat. Mech. Anal. 80, 135 (1982).MathSciNetMATHGoogle Scholar
  46. [46]
    G. Boillat & T. Ruggeri, Limite de la vitesse des chocs dans les champs a densité d’energie convexe. Compt. Rend. Acad. Sci. Paris, 289 A, 257 (1979).MathSciNetMATHGoogle Scholar
  47. [47]
    H. E. Jackson, C. T. Walker & T. F. McNelly, Second Sound In NaF. Phys. Rev. Lett. 25, 26 (1970).CrossRefGoogle Scholar
  48. [48]
    V. Narayanamurti & R. C. Dynes, Observation of Second Sound in Bismuth. Phys. Rev. Lett. 28, 1461 (1972).CrossRefGoogle Scholar
  49. [49]
    B. D. Coleman & D. C. Newman, Implications of a nonlinearity in the theory of second sound in solids. Phys. Rev. B 37, 1492 (1988).CrossRefGoogle Scholar
  50. [50]
    C. C. Ackerman & R. A. Guyer, Temperature Pulses in Dielectric Solids. Ann. of Phys. 50, 128 (1968).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • T. Ruggeri
    • 1
  1. 1.C.I.R.A.M.University of BolognaBolognaItaly

Personalised recommendations