Waves in Elastic Media

  • Ph. Boulanger
  • M. Hayes
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 344)


We consider the propagation of plane waves in the context of linearized elasticity theory. Both homogeneous and inhomogeneous waves are considered. Propagation in internally constrained media is briefly considered as well as propagation in unconstrained anisotropic and isotropic media.


Energy Flux Elastic Medium Wave Train Phase Speed Complex Scalar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boulanger, Ph. and M. Hayes, 1991 Quart. J. Mech. Appl. Math., 44, 235–240; 1993 Bivectors and Waves in Mechanics and Optics, Chapman- Hall, London.MathSciNetCrossRefMATHGoogle Scholar
  2. Browder, F.E. 1954 Ann. Math. Stud., 33, 15–51.MathSciNetMATHGoogle Scholar
  3. Fedorov, F.I. 1968 Theory of Elastic Waves in Crystals, Plenum Press, New York.CrossRefGoogle Scholar
  4. Gibbs, J.W. 1881, 1884 Elements of Vector Analysis (privately printed) = pp 17–90, Vol 2, Scientific Papers, Dover, New York 1961.Google Scholar
  5. Hamilton, W.R. 1853 Lectures on Quaternions, Hodges & Smith, Dublin.Google Scholar
  6. Hayes, M. 1963 Proc. Roy. Soc. London. A 274, 500–506;MathSciNetCrossRefMATHGoogle Scholar
  7. Hayes, M. 1972 Arch. Rat’l Mech. Anal. 46, 105–113;MathSciNetMATHGoogle Scholar
  8. Hayes, M. 1979 Proc. Roy. Irish Acad. 79, 15–28;MathSciNetMATHGoogle Scholar
  9. Hayes, M. 1980 Proc. Roy. Soc. London A 370, 417–429;CrossRefMATHGoogle Scholar
  10. Hayes, M. 1984 Arch. Rat’l Mech. Anal. 85, 41–79;MathSciNetMATHGoogle Scholar
  11. Hayes, M. 1984a in Wave Phenomena: Modern Theory and Applications (ed. C. Rogers and T.B. Moodie), Elsevier 175–191.Google Scholar
  12. Kelvin, Lord 1904 Baltimore Lectures, Cambridge Univesity Press.MATHGoogle Scholar
  13. Klerk, J. de and M.J.P. Musgrave 1955 Proc. Phys. Soc, B, 68, 81–88.CrossRefGoogle Scholar
  14. Love, A.E.H. 1927 A treatise on the Mathematical Theory of Elasticity, 4th ed., University Press, Cambridge.MATHGoogle Scholar
  15. MacCullagh, J. 1847 Proc. Roy. Irish. Acad., 3, 49–51.Google Scholar
  16. Morrey, C.B. 1954 Ann. Math. Stud., 33, 101–159.MathSciNetMATHGoogle Scholar
  17. Musgrave, M.J.P. 1954 Proc. Roy. Soc. London. A, 226, 339–366;MathSciNetCrossRefMATHGoogle Scholar
  18. Musgrave, M.J.P. 1970 Crystal Acoustics, Holden-Day, San Francisco.MATHGoogle Scholar
  19. Stone, J.M. 1963 Radiation and Optics, McGraw-Hill, New York.Google Scholar
  20. Synge, J.L. 1957 J. Maths and Phys. 35, 323–334; 1964 The Petrov classification of gravitational fields. Comm. Dublin Inst, for Advanced Studies, A, 15.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • Ph. Boulanger
    • 1
  • M. Hayes
    • 2
  1. 1.Free University of BrusselsBrusselsBelgium
  2. 2.University College DublinDublinIreland

Personalised recommendations