Behaviour of Parts of Steel Frames

  • M. Iványi
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 358)


According to practical needs, approximate methods in stability analysis of steel structures are widely used, as information given by bifurcation theory is limited.

There are two main theories of plastic buckling, the first is based on Hencky’s deformation theory, and the second, on the Prandtl-Reuss flow theory. First two chapters deal with these theories.

The complex of strain hardening of structural steel, residual stresses caused by technology, interaction of plate and lateral-torsional buckling significantly affects the stability conditions of beam columns. Theoretical results, obtained by the energy method relying on the theory of plastic deformation, are compared with test results in Chapter 3.

In Chapter 4, experimental and theoretical investigations are shown, which permit the analysis of plastic deformation capacity of frames with regard to the interaction of strength and stability phenomena, including the effect of plate (local) buckling on the response of the whole structure.


Residual Stress Plastic Hinge Steel Frame Local Buckling Initial Imperfection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Chapter One

  1. 1.
    MASSONNET, CH.: Design practices in Europe, in: Proceedings of the Int. Coll. on Stability Structures, Washington, 1977, 503–531.Google Scholar
  2. 2.
    HALáSZ, O.: Stability problems in national specifications, in: Final Report to the Reg. Coll. on Stability of Steel Structures, Budapest, 1977, 9–13.Google Scholar
  3. 3.
    BOLOTIN, V. V.; Статистические методы в строителной механике, Izd. Lit. Stroit., Moscow, 1965.Google Scholar
  4. 4.
    HALáSZ, О. and PLATTHY, P.: A számítási modellek megbízhatóságának néhány elvi kérdése acélszerkezetek esetében, Mélyépítéstudományi Szemle, XXIV (1974), 89–95Google Scholar
  5. 5.
    KOITER, W. T.: Over de stabiliteit van het elastisch evenwicht, Thesis, Delft, 1945.Google Scholar
  6. 6.
    THOMPSON, J. M. T. and HUNT, G. W.: A general theory of elastic stability, John Wiley and Sons, 1973.MATHGoogle Scholar
  7. 7.
    SKALOUD, M.: General report on plate and box girders, Final Report of Reg. Coll. of Steel Structures, Budapest, 1978.Google Scholar
  8. 8.
    KármáN, T.: Festigkeitsprobleme im Maschinenbau, Enzykl. der Math. Wiss., 1910., IV. 348–351.MATHGoogle Scholar
  9. 9.
    MARGUERRE, K.: Die mittragende Breite des gedrükten Plattenstreifens. Luftfahrtforschung 14., 1937.Google Scholar
  10. 10.
    MAQUOI, R. and MASSONNET, CH.: Theorie non-linearie de la résistance postcritique des brandes poutres au caissons raidies, IABSE Publ., Zürich, 1971, 3-II.Google Scholar
  11. 11.
    MERISSON et al.: Inquiry into the basis of design and method of erection of steel box girder, Report, London, 1974.Google Scholar
  12. 12.
    AUGUSTI, G.: Stabilita di strutture elastiche elementari in presenza di grandi spostamenti, Arti Acc. Sci. fis. mat., Napoli, 1964, 3, 4, 5.Google Scholar
  13. 13.
    KOITER, W. T. and PIGNATARO, M.: A general theory for the interaction between overall and local buckling of stiffened panels, Rep. 556, Delft, Univ., 1976.Google Scholar
  14. 14.
    Van der NEUT, A.: The interaction of local buckling and column failure of thin-walled compression members, Proc. 12th Int. Congr. Appl. Mech., Stanford Univ., (1968), Springer-Verlag, 1969Google Scholar
  15. 15.
    DOWLING, P. J. and CHATTERJEE, S.: Design of box girder compression flanges. Design of webs of plate and box girders, 2nd Int. Coll. Stability of Steel Str., Introductory Report, Liège, 1977, 153–208.Google Scholar
  16. 16.
    KármáN, Т., SECHLER, е. E. and DONELL, L. H.: The strength of thin plates in compression. Trans. Am. Soc. Mech. Eng., 54 (1932).Google Scholar
  17. 17.
    WAGNER, H.: Ebene Blechwandträger mit sehr dünnem Stegblech, Zeitschr. f. Flugtechnik und Motorluftschiffart, 20 (1922).Google Scholar
  18. 18.
    KLöPPEL, K., SCHMIED, R. and SCHUBERT, J.: Die Traglest mittig und außermittig gedrückter dünnwandigen Stützen, Der Stahlbau, Nr. 1.3 (1969).Google Scholar
  19. 19.
    MAQUOI, R. and MASSONNET, CH.: Interaction between local plate buckling and overall buckling in thinwalled compression members, IUTAM Symp. Cambridge, Springer, 1976.Google Scholar
  20. 20.
    SKALOUD, M.: The limiting state of thin-walled columns with regard to the interaction of the deformation of the column as a whole with the buckling of their plate elements, Acta Technica CSAV, No. 8 (1967).Google Scholar
  21. 21.
    SKALOUD, M. and Zörnerová, M.: Experimentâlni vysetrováni interakce vzperu tenkosténnych prutu a bouleni jejich sten, Final Res. Report Czechoslovak Acad. Sci. Inst. of Theor. Appl. Mech., Prague, 1969.Google Scholar
  22. 22.
    SKALOUD, M. and Zörnerová, M.: Experimental investigation into the interaction of buckling of compressed thin-walled columns with the buckling of their plate elements, Acta Technica CSAV, No. 4 (1970).Google Scholar
  23. 23.
    SKALOUD, M. and NAPRSTEK, J.: Limit state of compressed thin-walled steel columns with regard to the interaction between column and plate buckling, in: 2nd Int. Coll. on Stability of Steel Structures, Liège, 1977, 405–414.Google Scholar
  24. 24.
    REIS, A. J. and ROORDA, J.: The interaction between lateral-torsional and local plate buckling in thin-walled beams, in: 2nd Int. Coll. on Stability of Steel Structures, Liège, 1977, 415–427.Google Scholar
  25. 25.
    BASLER, K.: Strength of plate girders in shear, ASCE St. 7, 1961, 151–180.Google Scholar
  26. 26.
    BERGMANN, S.: Behaviour of buckled rectangular plates, Doctoral Thesis, Stockholm, 1948.Google Scholar
  27. 27.
    SKALOUD, M.: Interaktion der Ausbeulung von Wänden und der gesamten Formänderung gedrückter und gebogener Stäbe, Acta Technica CSAV, No. 1 (1962).Google Scholar
  28. 28.
    SKALOUD, M.: Effet d’une courbure initiale sur le compostement post-critique, Acier 5 (1965), 249–254.Google Scholar
  29. 29.
    SKALOUD, M.: Postbuckled behaviour of stiffened webs, Transactions of CSAV, 80 (1970), 1–154.Google Scholar
  30. 30.
    SKALOUD, M. and NOVAK, P.: Post-buckled behaviour of webs under partial-edge loading, Transactions of CSAV, 85(3) (1975) 1–94.Google Scholar
  31. 31.
    SKALOUD, M. and Zörnerová, M.: Optimum rigidity of longitudinal stiffeners of compression flanges, Acta Technica CSAV, No. 5, (1976), 549–580.Google Scholar
  32. 32.
    MASSONNET et al.: Plate and box girders, in: Introductory Report 2nd Int. Coll. on Stability of Steel Str., Liège, 1977, 145–208.Google Scholar
  33. 33.
    ROCKEY, K. C. and SKALOUD, M.: The ultimate load behaviour of plate girders in shear. The Structural Engineer, 50(1) (1972).Google Scholar
  34. 34a.
    IVáNYI, M.: Yield mechanism curves for local buckling of axially compressed members, Periodica Politechnica (Budapest), Civ. Eng., 23(3–4) (1979), 203–216.Google Scholar
  35. 34b.
    IVáNYI, M.: Moment-rotation characteristics of locally buckling beams, Periodica Politechnica (Budapest), Civ. Eng., 23(3–4) (1979), 217–230.Google Scholar
  36. 35.
    CROLL, J. G. A. and WALKER, A. C.: The Elements of Structural Stability, Macmillan, London, 1972.Google Scholar

Chapter Two

  1. 36.
    BRYAN, G. H.: On the stability of a plane plate under thrust in its own plate with application to the buckling of the side of a ship, Proc. London Math. Society, 22, 1891.Google Scholar
  2. 37.
    TIMOSHENKO, S.: Sur la stabilité des systemes élastiques, Ann. des Ponts et chauss., 15, 1913.Google Scholar
  3. 38.
    REISSNER, H.: Über die knicksichermeit ebener bleche, Zentralblatt der Bauverwaltung, 1909.Google Scholar
  4. 39.
    Sezawa, K.: Stability of a thin plate, Journal of the Society of Naval Architecture, Japan, 38 (1925).Google Scholar
  5. 40.
    WAGNER, H.: Über konstruktions und Berechnung-fragen des Blechbaues, Jb. Wiss., Ges. Luftf., 1928.Google Scholar
  6. 41.
    Taylor, G. L: The buckling load for a rectangular plate with four clamped edges, Z. Angew. Math. Mech., 13 (1933).Google Scholar
  7. 42.
    BLEICH, F.: Theory und Berechnung der eiseren Brücken, Julues Springer, Berlin, 1924.CrossRefGoogle Scholar
  8. 43.
    CHWALLA, E.: Reports 2nd International Congress, Brodge and Structural Engineer, Wien, 1928.Google Scholar
  9. 44.
    ROS, M. and EICHINGER, A.: Reports 3rd International Congress, Bridge and Structural Engineer, Paris, 1932.Google Scholar
  10. 45.
    HENCKY, H.: Zur Theorie plasticher Deformationen und der Heirdrich im Material Hervorgerofenen Nebenspannungen, Proc. 1st International Congress, Appl. Mech., Delft, 1924.Google Scholar
  11. 46.
    PRANDTL, L.: Spannungsverteilung in plastischen Koerpern, Proc. 1st International Congress, Appl. Mech., Delft, 1924.Google Scholar
  12. 47.
    REUSS, E.: Berucksichtigung der elastischen Formaenderungen in der Piastizitats Theorie, 2. Angew. Math. Mech., 10 (1930).Google Scholar
  13. 48.
    BIJLAARD, P. P.: Theory of the plastic buckling of thin plates, IABSE, Zürich, 6 (1940–41).Google Scholar
  14. 49.
    ILYUSHIN, A. A.: Some Problems in the Theory of Plastic Deformations, Prikladnaya matematika i Mechanika, 7 (1943), p. 245. Translation by Appl. Math. Group, Brown Univ., 1946.Google Scholar
  15. 50.
    STOWELL, E. Z.: A unified theory of plastic buckling of columns and plates, NACA Technical Note No. 1556, 1948.Google Scholar
  16. 51.
    STOWELL, E. Z. and PRIDE, R. A.: The effect of compressibility of the material in plastic buckling. J. Aero. Sci., 18 (1951).Google Scholar
  17. 52.
    Shanley, F. R.: Inelastic column theory, J. Aero. Sci., 14 (1947).Google Scholar
  18. 53.
    HANDELMANN, C. H. and PRAGER, W.: Plastic buckling of a rectangular plate under edge thrusts, NACA Technical Note No. 1530, 1948.Google Scholar
  19. 54.
    Pearson, C. E.: Bifurcation criterion and plastic buckling of plates and columns, J. Aero. Sci., 17(1950).Google Scholar
  20. 55.
    Onat, E. T. and Drocker, D. C.: Inelastic instability and invremental theory of plasticity, J. Aero. Sci., 20 (1953).Google Scholar
  21. 56.
    Yamamoto, Y.: A general theory of plastic buckling of plates, J. Soc. Naval Arch. (Japan), 96(1955).Google Scholar
  22. 57.
    THURLIMANN, B. and HAAIJER, G.: On inelastic buckling in steel, Proc. ASCE, April 1958.Google Scholar
  23. 58.
    BOULTON, N. S. and LANCE MARTIN, H. E.: Residual stresses in arc-welded plates, Proc. Inst. Mech. Eng., London, 123, 1936.Google Scholar
  24. 59.
    Rosenthal, D.: Mathematical theory of heat distribution during welding and cutting, Welding Journal Res. Suppl., 20 (1941).Google Scholar
  25. 60.
    FUJITA, Y.: Buit-up column strength, Ph.D. Diss., Lehigh Univ., August 1956, Univ. Microfilms, Michigan.Google Scholar
  26. 61.
    TALL, L.: The strength of welded built-up columns, Ph.D. Diss., Lehigh Univ., May 1961, Univ. Microfilms, Michigan.Google Scholar
  27. 62.
    Griffiths, G. H.: Residual stresses in butt-welded steel plates, Welding Journal Res. Suppl.,20(1941).Google Scholar
  28. 63.
    Patton, E. O., Gorbounov, B. M. and Bershtein, D. O.: Behavior of residual stresses under external laod and their effect of strength of welded structures (translated by CORDOVI, M. A.), Welding Journal Res. Suppl., 23 (1944).Google Scholar
  29. 64.
    OKERBLOM, N. О.: Расчет деформации металлоконструкции при сварке, Mushgiz, Moscow, 1955.Google Scholar
  30. 65.
    OKERBLOM, N. О.: The influence of residual stresses on stability of welded structures and structural members, Commission X, Int. Inst. Welding, Liège, 1960.Google Scholar
  31. 66.
    YOSHIKI, M., FUJITA, Y. and KAWAI, Т.: Influence of residual stresses on the buckling of plates, J. Soc. Naval Arch. (Japan), 107 (1960).Google Scholar
  32. 67.
    SOKOLNHCOFF, I. S.: Mathematical theory of elasticity, 2nd ed., McGraw-Hill, New York, 1956.Google Scholar

Chapter Three

  1. 68.
    KALISZKY, S.: Plasticity: Theory and Engineering Applications, Akadémiai Kiadô, Budapest, 1989.Google Scholar
  2. 69.
    KACHANOV, L. M.: Foundations of the Theory of Plasticity, North-Holland, Amsterdam-London, 1971.Google Scholar
  3. 70.
    PEITER, A.: Eigenspannungen I. Art, Michael Triltsch Verlag, Düsseldorf, 1966.Google Scholar
  4. 71.
    CROLL, I. G. A. and WALKER, A. C.: Elements of Structural Stability, Wiley, London, 1972.Google Scholar
  5. 72.
    THOMPSON, J. M. T. and HUNT, G. W.: A General Theory of Elastic Stability, Wiley, London, 1973.MATHGoogle Scholar
  6. 73.
    SUZUKI, Y. and OKUMURA, T.: Influence of cross-sectional distortion of flexural-torsional buckling, Final Report IABSE, New York, 1968.Google Scholar
  7. 74.
    KOLLBRUNNER, C. F. and HAJDIN, N.: Die Verschiebungsmethode in der Theorie der dunnwandigen Stabe und ein neues Berechnungsmodell des Stabes mit seinen ebenendeformierbaren Querschnitten. Publications IABSE, 28(11) (1968) p. 87.Google Scholar
  8. 75.
    FISCHER, M.: Das Kipp-Problem querbelasteter exzentrisch durch Normalkraft beanspruchter I-Trager bei Verzicht auf die Voraussetzung der Querschnittstreue, Der Stahlbau, 36 (1967) p. 77.Google Scholar
  9. 76.
    SCHMIED, R.: Die Gesamtstabilitat von zweiachsig aussermitting gedruckten dunnwandigen I-Staben unter Berucksichtigung der Querschnittsverformung nach der nichtlineare Plattentheorie, Der Stahlbau, 36 (1967) p. 1.Google Scholar
  10. 77.
    RAJASEKARAN, S. and MURRAY, D. V.: Coupled local buckling in wide-flange beam-columns, J. Struct. Div. ASCE, 99(ST6) (1973) p. 1003.Google Scholar
  11. 78.
    JOHNSON, C. P. and VEX, K. M.: Beam buckling by finite element procedure, J. Struct. Div. ASCE, 100(ST3) (1974) p. 669.Google Scholar
  12. 79.
    HANCOCK, G. J.: Local, distortional and lateral buckling of I-beams. J. Struct. Div. ASCE, 104(STI1) (1978) p. 1787.Google Scholar
  13. 80.
    HANCOCK, G. J., BRADFORD, M. A. and TRAHAIR, N. S.: Web distortional and flexural-torsional buckling, J. Struct. Div. ASCE, 106(ST7) (1980) p. 1557.Google Scholar
  14. 81.
    IVANYI, M.: Interaction of stability and strength phenomena in the load carrying capacity of steel structures. Role of plate buckling, Doctor Tech. Sci. Thesis, Hungarian Academy of Sciences, Budapest, 1983 (in Hungarian).Google Scholar
  15. 82.
    Hegedűs, L. and Iványi, M.: Interaction between plate and lateral-torsional buckling with regard to residual stresses, Periodica Polytechnica (Budapest), Civ. Eng., 29(3–4) (1985).Google Scholar
  16. 83.
    STOWELL, E. Z.: A unified theory of plastic buckling of columns and plates. NACA Technical Note No. 1556, 1948.Google Scholar

Chapter Four

  1. 84.
    MASSONNET, C. and MAQUOI, R.: Recent progress in the field of structural stability of steel structures, IABSE Periodica, 2/1978 (1978) 1.Google Scholar
  2. 85.
    GVOZDEV, A. A.: Ultimate Load Analysis of Structures, Gosstroizdat, Moscow, 1949. (In Russian.)Google Scholar
  3. 86.
    NAVIER, L. H.: Resume des Leçons Données à l’Ecole des Ponts-et-Chaussees, Paris, 1826.Google Scholar
  4. 87.
    KAZINCZY, G.: Experiments in fixed-end beams. Betonszemle, 2(1914) p. 68. (In Hungarian.)Google Scholar
  5. 88.
    BOLOTIN, V. V.: Reliability Theory and Structural Stability, University of Waterloo, Study No. 6,1952, p.385.Google Scholar
  6. 89.
    HALáSZ, O. and IVáNYI, M.: Tests with simple elastic-plastic frames, Periodica Polytechnica (Budapest),Civ. Eng., 23(1979) p. 157.Google Scholar
  7. 90.
    IVáNYI, M., Kálló, M. and TOMKA, P.: Experimental investigation of full-scale industrial building section. Second Regional Colloquium on Stability of Steel Structures, Hungary, Final Report, 1986, pp. 163–170.Google Scholar
  8. 91.
    IVàNYI, M.: Interaction of stability and strength phenomena in the load carrying capacity of steel structures. Role of plate buckling, Doctor Techn. Sci. Thesis, Hungarian Academy of Sciences, Budapest, 1983 (In Hungarian).Google Scholar
  9. 92.
    CLIMENHAGA, J. J. and JOHNSON, P.: Moment-rotation curves for locally buckling beams, J. Struct. Div. ASCE, 98(1972) 516.Google Scholar
  10. 93.
    IVáNYI, M.: Yield mechanism curves for local buckling of axially compressed members, Periodica Polytechnica (Budapest),Civ. Eng., 23(3–4) (1979) 203–216.Google Scholar
  11. 94.
    IVáNYI, M.: Moment-rotation characteristics of locally buckling beams, Periodica Polytechnica (Budapest), Civ. Eng., 23(3–4) (1979) 217–230.Google Scholar
  12. 95.
    GIONCU, V., MATEESCU, G. and ORASTEANU, S.: Theoretical and experimental research regarding the ductility of welded I-sections subjected to bending, in: Stability of Metal Structures, Proceedings of the 4th International Colloquium on Structural Stability, Asian Session, Beijing, 1989, 289–98.Google Scholar
  13. 96.
    HORNE, W. R.: Instability and the plastic theory of structures, Trans. EIC, 4 (1960) p. 31.Google Scholar
  14. 97.
    THURLIMANN, B.: New aspects concerning the inelastic instability of steel structures, J. Struct. Div. ASCE, 86 (1960), ST1, 99–120.Google Scholar
  15. 98.
    HALáSZ, O.: Limit design of steel structures. Second-order problems. D.Sc. Thesis, Budapest, 1976 (In Hungarian).Google Scholar
  16. 99.
    DRUCKER, D. C.: A more fundamental approach to plastic stress-strain relations, in: Proc. 1st US National Congress of Applied Mechanics, ASME, 1951, p. 487.Google Scholar
  17. 100.
    DRUCKER, D. C.: On the postulate of stability of material in the mechanics of continua, J. Mech. (Paris), 3 (1964), p.235.MathSciNetGoogle Scholar
  18. 101.
    MAIER, G.: Sull’equilibrio elastoplastico delle strutture reticolari in presenza di diagrammi forze-elongazioni a trotti desrescenti, Rendiconti, Institute Lombardo di Scienze e Letture, Casse di Scienze A, Milano, 95 (1961) p. 177.MATHGoogle Scholar
  19. 102.
    MAFFIR, G. and DRUCKER, D. C.: Elastic-plastic continua containing unstable elements obeying normality and convexity relations, Schweiz. Bauzeit, 84(23) (1966).Google Scholar
  20. 103.
    IVáNYI, M.: Effect of plate buckling on the plastic load carrying capacity of frames. Paper presented at IABSE 11 Congress, Vienna, 1980.Google Scholar
  21. 104.
    BAKSAI, R.: Plastic analysis by theoretical methods of the state change of steel frameworks. Diploma Work, Techn. Univ. Budapest, 1983 (in Hungarian).Google Scholar
  22. 105.
    SZABÓ, J. and ROLLER, B.: Theory and Analysis of Bar Systems, Muszaki Könyvkiado, Budapest, 1971 (in Hungarian).Google Scholar
  23. 106.
    HORNE, M. R. and MERCHANT, W. The stability of frames. Pergamon Press, 1965.Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • M. Iványi
    • 1
  1. 1.Technical University of BudapestBudapestHungary

Personalised recommendations