Advertisement

The Construction of Minimal Realizations

  • Antonio Ruberti
  • Alberto Isidori
  • Paolo D’Alessandro
Part of the International Centre for Mechanical Sciences book series (CISM, volume 158)

Abstract

In this chapter we consider the problem of constructing minimal realizations. The starting point is the statement of a necessary and sufficient condition for an infinite sequence of Volterra kernels to admit a finite dimensional, constant, bilinear realization. This criterion essentially consists in a sort of “factorizability condition” of the family of kernels. Then we propose two alternative methods for constructing minimal bilinear realizations. Both these methods are based on the assumption that the abovementioned realizability condition is satisfied and operate in two steps: a first one for constructing the “factors” of the given sequence and a second for constructing, from these latter, the minimal realizations.

Keywords

Realizability Condition Bilinear System Volterra Series Minimal Realization Volterra Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Wien 1972

Authors and Affiliations

  • Antonio Ruberti
    • 1
  • Alberto Isidori
    • 1
  • Paolo D’Alessandro
    • 1
  1. 1.University of RomeItaly

Personalised recommendations