Advertisement

Part III

  • M. Życzkowski
Part of the International Centre for Mechanical Sciences book series (CISM, volume 238)

Abstract

In most cases of structural analysis the behaviour of loading has no influence on the strength of structures. In the stability problems, however, the behaviour of loading in the course of buckling may be quite significant and may result not only in quantitative but also in qualitative effects.

Keywords

Cylindrical Shell Critical Pressure Critical Force Circular Cylindrical Shell Elastic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References, Part III, 1

  1. [1]
    BECK, M., “Die Knicklast des einseitig eingespannten tengential gedrückten Stabes”, ZAMP, 3, 3, 1952, pp. 225.CrossRefMATHGoogle Scholar
  2. [2]
    БОЛОТИН, В. В., РЕФ. ЖУРНАЛ, МЕХАНИКА, 4, 1958, No. 4535.Google Scholar
  3. [3]
    БОЛОТИН, В. В., НЕКОНСЕРВАТИВНЫЕ ЗАДАУИ ТЕОРИИ УПРУГОИ УСТОЙУЙВОСТИ, ФИЗМАТГИЗ, МОСКВА 1961.Google Scholar
  4. [4]
    ДЕИНЕКО, К. С., and ЛЕОНОВ, М. Я., ДИНАМИУЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ УСТОЙУИВОСТИ СЖАТОГО ТЕРЖНЯ, ЛРИКЛ. МАТ. МЕХ, 6 ,19, 1955, pp. 738–744.Google Scholar
  5. [5]
    ДЖАНЕЛИДЗЕ, Г. Ю., ОБ УСТОЙУИВОСТИ СТЕРЖНЯ ЛРИ ДЕЙСТВИИ СЛЕДЯЩЕЙ СИЛЫ, ТРУДЫ ЛЕНИНГР. ПОЛИТ. ИНСТИТУТА, No. 192, 1958, pp. 21–27.Google Scholar
  6. [6]
    ФЕОДОСЬЕВ, В. И., Избранные задачи и вопросы по сопротивлению материалов, Гостехиздат, Москва 1950.Google Scholar
  7. [7]
    КАНТОРОВИ, Л. В., ОБ ОДНОМ ПРЯМОМ МЕТОДЕ РЕЩЕНИЯ ЗАДАУИ О МИНИМУМЕ ДВОЙНОГО ИНТЕГРАЛА, ИЗВ. АН СССР, No. 5, 1933.Google Scholar
  8. [8]
    КАНТОРОВИ, Л. В. and КРЫЛОВ, В. И., ПРИБЛИЖЕННЫЕ МЕТОДЫ ВЫСШЕГО АНАЛИЗА, ИЗД, 4, ГОСТЕХИЗДАТ, МОСКВА-ЛЕНИНГРАД 1952.Google Scholar
  9. [9]
    КОПЕЙКИН, Ю. Д. and ЛЕОНОВ, М. Я., ОБ ОДНОМ ОСОБОМ СЛУУАЕ ПОТЕРИ УСТОЙУИВОСТИ РАВНОВЕССИЯ СЖАТОГО СТЕРЖНЯ, ПРИКЛ. МАТ. МЕХ. 6, 19, 1955, pp. 736–737.Google Scholar
  10. [10]
    О НЕПРАВИЛЬНОМ ПРИМЕНЕНИИ ЗНЕРГОСТАТИУЕСКОГО МЕТОДА К РЕШЕНИЮ ОДНОЙ ЗАДАУИ ОБ УСТОЙУИВОСТИ, ДОКЛ. ЛЬВОВСКОВО ПОЛИТ. ННСТИТУТБ, 2, 4, 1960, pp. 21–25.Google Scholar
  11. [11]
    KORDAS, Z. and ZYCZKOWSKI, M., “Analiza dokladnosci metody energetycznej przy kinetycznym kryterium statecznosci,”, Czasop. Tech., 9, 65, 1960, pp. 1–8.Google Scholar
  12. [12]
    OSTROWSKI, A. M., “Solution of equations and systems of equations”, Appendix D, Academic Press, New York 1960.MATHGoogle Scholar
  13. [13]
    PFLÜGER, A., “Zur Stabilität des tangential gedrückten Stabes”, Z. angew, Math. Mech. 5, 35, 1955, pp. 191.CrossRefGoogle Scholar
  14. [14]
    PISZCZEK, K “Obszary rezonansowe drugiego rodzaju przy obciazeniu sledzacym”, [Second kind resonance region for a load whose direction follows the deformation of the body], Rozpr. Inzyn, 2, 9, 1961, pp. 155–170MathSciNetGoogle Scholar
  15. [15]
    ZIEGLER, H., “Ein nichtkonservatives Stabilitätsproblem”, Z. angew. Math. Mech., 8/9, 31, 1951, pp. 265.CrossRefGoogle Scholar

References, Part III, 2

  1. [1]
    DZYGADLO, Z. and SOLARZ, L., “On nonautonomous vibrations of a selfexcited system with tangential force”, Proc. of Vibration Problems, 2, 11, 1970, pp. 157–178.Google Scholar
  2. [2]
    GAJEWSKI, A., “Pewne problemy optymalizacji ksztaltu pret6w przy niekonserwatywnych zagadnieniach statecznosci”, Prace Komisji Mech. Stos. Oddz. Kraków, PAN, Mechanika Nr. 4, 1970, pp. 3–27.Google Scholar
  3. [3]
    GAJEWSKI, A., “Badanie postaci drgán pretów sciskanych obci Oeniem niekonserwatywnym”, Czas. Techn. 10 (141), 1970, pp. 1–8.MathSciNetGoogle Scholar
  4. [4]
    HERRMAN, G. and JONG, I. C., “On the destabilizing effect of damping in nonconservative elastic systems”, J. of Appl. Mech., 3, 32, 1965, pp. 592–597.CrossRefGoogle Scholar
  5. [5]
    HERRMANN, G. and JONG, I. C., “On nonconservative stability problems of elastic systems with slight damping”, J. of Appl. Mech. 1, 33, 1966, pp. 125–133.CrossRefGoogle Scholar
  6. [6]
    ЯГН, Ю. И., ПАРШИХ, Л.К., Эхпериментальное нзучение устойчивостн стержня при сжатни следящей силой, Прочн. Мат. н констр, Труды Л.П.И., No.278, pp.52–54.Google Scholar
  7. [7]
    KÁRMÁN, T. V. and BIOT, M. A., “Metody matematyczne w technice”, PWN, Warszawa 1958.Google Scholar
  8. [8]
    KORDAS, Z., “Statecznosc preta oplywanego rownoleglym strumieniem plynu przy uwzglednieniu oporu czolowego”, Rozpr. Inz., 1, 13, 1965, pp. 19–41.Google Scholar
  9. [9]
    KORDAS, Z. and ZYCKOWSKI, M., “Analiza dokladncsci metody energetycznej przy kinetycznym kryterium statecznogci”, Czas. Techn., 9, 35, 1960, pp. 1–8.Google Scholar
  10. [10]
    NEMAT-NASSER, S., PRASAD, S. N. and HRRRNANN, G., “Destabilizing effect of velocity-dependent forces in nonconservative continuous systems”, A.I.A.A. Journal 7, 4, 1966, pp. 1276–1280.Google Scholar
  11. [11]
    NEMAT-NASSER, S. and HERRMANN, G., “Some general consideration concerning the destabilizing effect in nonconservative systems”, ZAMP, 2, 17, 1966, pp. 305–313.CrossRefGoogle Scholar
  12. [12]
    SHIEH, R. C., “Variational method in the stability analysis of nonconservative problems”, ZAMP, 1, 21, 1970, pp. 88–100.Google Scholar
  13. [13]
    WOOD, W. G., SAW, S. S. and SAUNDERS, P. M., “The kinetic stability of a tangentially loaded strut”, Proc. Roy. Soc. Lond., A 313, 1969, pp. 239–248.CrossRefGoogle Scholar
  14. [14]
    ZIEGLER, h. “On the concept of elastic stability”, Advances in Appl. Mech. V. 4, Acad. Press, Inc., N. York 1956.Google Scholar
  15. [15]
    ЗОРИЙ, Л. М. and ЛЕОНОВ, М. Я., ВЛИЯНИЕ ТРЕНИЯ НА УСТОЙУИВОСТЬ НЕКОНСЕРВАТИВНЫХ СИСТЕМ, ВОПРОСЫ МАШИНОСТРОЕНИЯ И ПРОУНОСТИ В МАШИНОСТЕНИИ, 7, 7, 1961, pp. 127–136.Google Scholar

References, Part III, 3

  1. [1]
    ASHLEY, H. and ZARTARIAN, C., J. Aeronaut. Sci., 23, 1956, pp. 1109–1118.CrossRefMathSciNetGoogle Scholar
  2. [2]
    BECK, M., Z. angew, Math. Physik, 3, 1952, pp. 225.MATHGoogle Scholar
  3. [3]
    BOLOTIN, V. V., Isd. AN SSSR, Moscow, 1959, pp. 194–204.Google Scholar
  4. [4]
    DEJNEKO, K. S. and LEONOV, M. Ya, Prikl. Mat. Mech., 19, 1955, pp. 738–744.MATHGoogle Scholar
  5. [5]
    DZHANIELIDZE, G. Yu., Trudy Leningr. Inst., 192, 1958, pp. 21–27.Google Scholar
  6. [6]
    ILISHIN, A. A., Prikl. Mat. Miech, 20, 1956, Pp. 733–755.Google Scholar
  7. [7]
    KORDAS, Z. and ZYCZKOWSKI, M., Czas. Tech., 65, 1959, pp. 1–8.Google Scholar
  8. [8]
    KORDAS, Z. and ZYCZKOWSKI, M., Arch. Mech. Stos., 15, 1963, pp. 7–11.MATHGoogle Scholar
  9. [9]
    KORDAS, Z., Rozpr. Inz., 1965.Google Scholar
  10. [10]
    MOVCHAN, A. A., Prikl. Math. Miech., 20, 1956, pp. 211–222.Google Scholar

References, Part III, 4

  1. [1]
    CLAUSEN, T., “Über die Form architektonischer Säulen”, Bull. phys.mat. de l’Académie St. Petersburg 9, 1851, pp. 368: Mélanges Math. et Astron, 1, 1849–1853, pp. 279.Google Scholar
  2. [2]
    BLASIUS, H., “Träger kleinster Durchbiegung und Stäbe grösster Knickfestigkeit bei gegebenem Materialverbrauch”, Z. Math. Phys. 62, 1914, pp. 182.Google Scholar
  3. [3]
    NIKOLAI, E. L., “Zadatcha Lagrange’a o nayvigodneyshim otchertanii kolonn, Trudy po mekhanike”, Gos. Izd. Tekh.-Teor. Lit., Moscow 1955 (first publ. 1907 ).Google Scholar
  4. [4]
    TCHENTSOV, N. G., “Stoyki naymenshego vesa”, Trudy TsAGI, Moscow 1936, vol. 265.Google Scholar
  5. [5]
    TADJBAKHSH, I. and KELLER, J. B., “Strongest Columns and Isoperimetric Inequalities for Eigenvalues”, J. Appl. Mech. 29, 1962, pp. 159.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    LAASONEN, P., “Nurjandustuen edullisimmasta poikkipinnanvalinnasta”, Tekn. Aikakauslehti 38/2, 1948, pp. 49.Google Scholar
  7. [7]
    ZYCZKOWSKI, M., “W sprawie doboru optymalnego ksztaltu pretéw osiowo sciskanych”, Rozprawy Inzyn, 4/4, 1956, pp. 441.Google Scholar
  8. [8]
    KRZYS, W., “Optymalne ksztaltowanie z uwagi nastateczno’’s sciskanych slupow cienkosciennych o profilu zamknietym”, Zeszyty Nauk. Pol. Krakowskiej, Mechanika 24, Krakow 1967.Google Scholar
  9. [9]
    KRZYS, W., “Optimale Formen gedrückter dünnwandiger Stützen im elastisch-plastischen Bereich”, W.ss. Z. TU Dresden (Internationale Stahlbautagung) 17/2, 1968, pp. 407.Google Scholar
  10. [10]
    BECK, M., “Die Knicklast des einseitig eingespannten tangential gedrückten Stabes”, Z. angew, M.th. Phys. 3/3, 1952, pp. 225Google Scholar
  11. [11]
    RZHANITSYN, A. R., “Ustoytchivost ravnovesya uprugikh system”, Gos. Izd. Tekh.-Teor. Lit., Moscow 1955.Google Scholar
  12. [12]
    KORDAS, Z., “Stability of the Elasticially Clamped Compressed Bar in the General Case of Behaviour of the Loading”, Bull. Acad. Pol. Sci., Ser. Sci. Tech. 11/12, 1963, pp. 419 (English summary);Google Scholar
  13. KORDAS, Z., “Stability of the Elasticially Clamped Compressed Bar in the General Case of Behaviour of the Loading”, Rozpr. Inzyn. 11/13, 1963, pp. 435 (Polish full text).Google Scholar
  14. [13]
    GAJEWSKI, A. and ZYCZKOWSKI, M., “Optimal Shaping of an Elastic Homogeneous Bar Compressed by a Polar Force”, Bull. Acad. Pol. Sci., Ser. Sci. Techn. 17/10, 1969, pp. 479;Google Scholar
  15. GAJEWSKI, A. and ZYCZKOWSKI, M., “Optimal Shaping of an Elastic Homogeneous Bar Compressed by a Polar Force”, Bull. Acad. Pol. Sci., Ser. Sci. Techn. 18, 1970, pp. 1 (English summaries);Google Scholar
  16. GAJEWSKI, A. and ZYCZKOWSKI, M., “Optimal Shaping of an Elastic Homogeneous Bar Compressed by a Polar Force”, Bull. Acad. Pol. Sci., Ser. Sci. Techn. Rozpr. Inzyn. 17/2, 1969, pp. 299 (Polish full text).Google Scholar
  17. [14]
    GAJEWSKI, A., “Optymalne ksztaltowanie sprezysto-plastycznego slupa przy ogolnym kouserwatywnym zachowaniu sie obciazenia”, Rozpr. Inzyn. (in print).Google Scholar
  18. [15]
    GAJEWSKI, A., “Pewne problemy optymalnego ksztaltowania preta sciskanego sila skierowana do bieguna”, Mech. Teoret. Stos. 8, 1970, PP. 2.Google Scholar
  19. [16]
    ZYCZKOWSKI, M. and GAJEWSKI, A., “Optimal Structural Design in Non-Conservative Problems of Elastic Stability”, Proc. IUTAM Symp. on Instability of Continuous Systems, Herrenalb/Karlsruhe 1969, (Springer-Verlag), pp. 295–301.Google Scholar
  20. [17]
    GAJEWSKI, A. and ZYCZKOWSKI, M., “Optimal Design of a Column Compressed by a Subtangential Force in the Elastic-Plastic Range”, Arch. Mech. Stos. (in print).Google Scholar
  21. [18]
    LAVRENTIEV, M. A. and LUSTERNIK, L. A., “Kurs variacionnogo istchislenya”, Gos. Izd. Teckh.-Teor. Lit., Moscow-Leningrad 1950.Google Scholar

References, Part III, 5

  1. [1]
    KARMAN, TH. and TSIEN, H. S., “The buckling of thin spherical shells by external pressure”, J. Aero Sci. 7, 1939, pp. 43–50.CrossRefGoogle Scholar
  2. [2]
    KARMAN, TH. and TSIEN, H. S., “The buckling of thin cylindrical shells under axial compression”, J. Aero. Sci. 8, 1941, pp. 303.CrossRefGoogle Scholar
  3. [3]
    KOITER, W. T., “On the stability of elastic equilibrium (in Dutch). Thesis, Amsterdam (1945) (English translation: NASA TT F-10, 1967, pp. 833 ).Google Scholar
  4. [4]
    KOITER, W. T., “Elastic stability and postbuckling behavior”, Proc. Symp. Non-linear Problems, Univ. of Wisconsin Press, Madison, 1963, pp. 257–275.Google Scholar
  5. [5]
    NASH, W. A., “Recent advances in the buckling of thin shells”, A.pl. Mech. Rev. 13, 1960, pp. 161–164.MathSciNetGoogle Scholar
  6. [6]
    NOWAK, Z. and ZYCZKOWSKI, M., “Review of recent papers on the stability of thin shells“ (in Polish), Mechanika Teor. Stos. 1, 2, 1963, pp. 31–66.MATHGoogle Scholar
  7. [7]
    BUDIANSKY B. and HUTCHINSON, J. W., “A survey of some buckling problems”, AIAA J. 4, 1966, pp. 1505–1510.CrossRefGoogle Scholar
  8. [8]
    GRIGOLYUK, E. I. and KABANOV, V. V., “Stability of circular cylindrical shells” (in Russian), Itogi Nauki, Seria Mekhanika, Moscow, 1969.Google Scholar
  9. [9]
    HUTCHINSON, J. W. and KOITER, W. T., “Postbuckling theory”, Appl. Mech. Rev. 23, 1970, pp. 1353–1366.Google Scholar
  10. [10]
    KOITER, W. T., “The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression”, Koninkl. Ned. Akad. Wetenschap., Proc. Ser. B66, 1963, pp. 265–279; Lockheed Miss. Space Co. TR 6–90–63–86, August 1963.MATHGoogle Scholar
  11. [11]
    HUTCHINSON, J. W., “Axial buckling of pressurized imperfect cylindrical shells”, AIAA J. 3, 1965, pp. 1461–1466.CrossRefMathSciNetGoogle Scholar
  12. [12]
    BUDIANSKY, B. and AMAZIGO, J. C., “Initial postbuckling behavior of cylindrical shells under external pressure”, J. Math. Phys. 47, 1968, pp. 223–235.MATHGoogle Scholar
  13. [13]
    SOBIESIAK, K., “Analytical treatment of the influence of imperfections on upper critical pressure for moderate-length cylindrical shells”, (in preparation).Google Scholar
  14. [14]
    ZYCZKOWSKI, M. and SOBIESIAK, K., “Analytical treatment of the influence of imperfections on upper critical pressure for long cylindrical shells”, Arch. Mech. Stosowanej 23, 1971, pp. 875–884MATHGoogle Scholar
  15. [15]
    ROORDA, J., “The buckling behavior of Imperfect Structural Systems”, J. Mech. Phys. Solids 13, 1965, pp. 267–280.CrossRefGoogle Scholar
  16. [16]
    ROORDA, J., “On the buckling of symmetric structural systems with first and second order imperfections”, Int. J. Solids Structures 4, 1968, pp. 1137–1148.CrossRefGoogle Scholar
  17. [17]
    ZYCZKOWSKI, M., “Analysis of stability of radially compressed cylindrical shells by means of generalized power series”, Conference Theory of Plates and Shells, SAV, 505–514, Bratislava (1966) (English summary); Rozpr. Inz. 14, 1966, pp. 157–174 (Polish full text).Google Scholar
  18. [18]
    BUCKO, S., “Analysis of stability of axially compressed cylindrical shells by the method of generalized power series”, Bull. Acad. Pol. Sci., Ser. Sci. Techn. 15, 1967, pp. 303–312, (English Summary);Google Scholar
  19. BUCKO, S., “Analysis of stability of axially compressed cylindrical shells by the method of generalized power series”, Archiwum Budowy Maszyn 13, 1966, pp. 307–327 (Polish full text).Google Scholar
  20. [19]
    ZYCZKOWSKI, M. and BUCKO, S., “A method of stability analysis of cylindrical shells under biaxial compression”, AIAA J. 9, 1971, pp. 2259–2263.CrossRefMATHGoogle Scholar
  21. [20]
    SEWELL, M. J., “The static perturbation technique in buckling problems”, J. Mech. Phys. Solids 13, 1965, pp. 247–265.CrossRefGoogle Scholar
  22. [21]
    SEWELL, M. J., “A method of postbuckling analysis”, J. Mech. Phys. Solids 17, 1969, pp. 219–233.CrossRefMATHGoogle Scholar
  23. [22]
    THOMPSON, J. M. T., “A new approach to elastic branching analysis”, J. Mech. Phys. Solids 18, 1970, pp. 29–42.CrossRefMATHGoogle Scholar
  24. [23]
    DYM, C. L. and HOFF, N. J., “Perturbation solutions for the buckling problems of axially compressed thin cylindrical shells of finite or infinite length”, Trans. ASME E35, 1968, pp. 754–762.CrossRefMATHGoogle Scholar
  25. [24]
    KAYUK, YA. F., “On the convergence of the small parameter expansions in the geometrically nonlinear problems”, (in Russian), Prikladnaya Mekhanika 9, 3, 1973, pp. 83–89.MathSciNetGoogle Scholar
  26. [25]
    POGORELOV, A. V., “Geometrical theory of stability of shells” (in Russian), izd. Nauka, Fiz.-Mat. Lit., Moscow 1966.Google Scholar
  27. [26]
    HOFF, N. J., MADSEN, W. A. and MAYERS, J., “Postbuckling equilibrium of axially compressed circular cylindrical shells”, AIAA J. 4, 1966, pp. 126–133.CrossRefGoogle Scholar
  28. [27]
    NASH, B. A., “Effect of large deflections and initial imperfections on the buckling of cylindrical shells subject to hydrostatic pressure”, J. A.ro. Sci. 22, 1955, pp. 264–269.MATHGoogle Scholar
  29. [28]
    ISANBAYEVA, F. S., “Evaluation of lower critical pressure of a cylindrical shell under hydrostatic pressure” (in Russian), Izv. kazan. Fil. Akad. Nauk SSSR 7, 1955, pp. 51–58.Google Scholar
  30. [29]
    VOLMIR, A. S., “On the influence of imperfections on the stability of cylindrical shells subject to hydrostatic pressure” (in Russian), Dokl. Akad. Nauk SSSR 113, 1957, pp. 291–293.Google Scholar
  31. [30]
    KEMPNER, J., PANDALAI, K. A. V., PATEL, S. A. and CROUZET-PASCAL, J., “Postbuckling behavior of circular cylindrical shells under hydrostatic pressure”, J. Aero. Sci. 24, 1959, pp. 253–264.CrossRefMathSciNetGoogle Scholar
  32. [31]
    NOWAK, Z., “Non-linear problem of stability of a closed orthotropic cylindrical shell with clamped edges”, Bull. Acad. Polon. Sci., Ser. Sci. Techn. 12, 1964, pp. 165–175 (English summary);Google Scholar
  33. NOWAK, Z., “Non-linear problem of stability of a closed orthotropic cylindrical shell with clamped edges”, Arch. Budowy Maszyn 11, 1964, pp. 619–636 (Polish full text).Google Scholar
  34. [32]
    SOBIESIAK, K., “Analytical evaluation of lower critical hydrostatic pressure for imperfect long cylindrical shells” (in preparation).Google Scholar
  35. [33]
    MISES, R., “Der kritische Aussendruck für allseits belastete cylindrische Rohre”, Festschr. zum 70. Geburtstag von Prof. Dr. A. Stodola, Zürich, 1929.Google Scholar
  36. [34]
    ZYCZKOWSKI, M., “Operations on generalized power series”, Z. angew Math. Mechanik 45, 1965, pp. 235–244.CrossRefMATHGoogle Scholar

References, Part III, 6

  1. [1]
    AKSELRAD, E. L., “More Exact Estimation of the Upper Critical Load of a Bent Tube with the Geometrical Nonlinearity Taken into Account”, (in Russian), Izv. AN SSSR, Mekhanika, 1965/4, pp. 133–139.Google Scholar
  2. [2]
    ASHLEY, H., and McINTOSH, S. C., Jr., “Application of Aeroelastic Constraints in Structural Optimization”, Proc. 12th Int. Congr. Appl. Mech., Berlin, Heidelberg, New York, Springer 1969, pp. 100–133.Google Scholar
  3. [3]
    BUDIANSKY, B., FRAUENTHAL, J. C., and HUTCHINSON, J. W., “On Optimal Arches”, J. Appl. Mech. 36, 1969, pp. 880–882.CrossRefGoogle Scholar
  4. [4]
    BURNS, A. B., “Structural Optimization of Axially Compressed Cylinders Considering Ring-Stringer Eccentricity Effects”, J. Spacecraft and Rockets 3, 8, 1966, pp. 1263–1268.CrossRefGoogle Scholar
  5. [5]
    BURNS, A. B., and SKOGH, J., “Combined Loads Minimum Weight Analysis of Stiffned Plates and Shells”, J. Spacecraft and Rockets 3, 2, 1966, pp. 235–240.CrossRefGoogle Scholar
  6. [6]
    FEIGEN, M., “Minimum Weight of Tapered Round Thin-Walled Columns”, J. Appl. Mech. 19, 3, 1952, pp. 375–380.Google Scholar
  7. [7]
    GERARD, G., “Optimum Structural Design Concepts for Aerospace Vehicles”, J. Spacecraft and Rockets 3, 1, 1966, pp. 5–18.CrossRefGoogle Scholar
  8. [8]
    GINZBURG, I. M., and KAN, S. N., “On a Certain Method of Parametrical Optimization of a Thin Walled Structure”, (in Russian), Trudy VII Vsesoyuznoy Konf. po Teorii Obol. i Plastinok, Moskva 1970, pp. 181–185.Google Scholar
  9. [9]
    HERBERT, B., “The Optimum Proportions of a Long Unstiffened Circular Cylinder in Pure Bending”, J. Aero. Sci. 15, 10, 1948, pp. 616–624.CrossRefGoogle Scholar
  10. [10]
    HYMAN, B. J., and LUCAS, A. W., Jr., “An Optimum Design for the Instability of Cylindrical Shells Under Lateral Pressure”, AIAA Journal 9, 4, 1971, pp. 738–740.CrossRefGoogle Scholar
  11. [11]
    KOROLEV, V. I., “Sandwich Anisotropic Plates and Shells Made of Reinforced Plastics”, (in Russian), Mashinostroyenye, Moskva, 1965.Google Scholar
  12. [12]
    KRZYS, W., “Optimale Formen gedrücketer dünnwandiger Stiftzen im elastisch-plastischen Bereich”, W.ss. Z. Techn. Univ., Dresden 17, 24, 1968, pp. 407–410.Google Scholar
  13. [13]
    LUKASIEWICZ, S., “The Equations of the Technical Theory of Shells of Variable Rigidity”, Arch. Mech. Stosowancj 13, 1, 1961, pp. 107–116.MATHMathSciNetGoogle Scholar
  14. [14]
    MAZURKIEWICZ, S., and ZYCZKOWSKI, M., “Optimum Design of Cross-Section of a Thin-Walled Bar Under Combined Torsion and Bending”, Bull. Acad. Pol. Sci., Ser. Sci. Techn. 14, 4, 1966, pp. 273–281 (English Summary); Rozprawy Inzynierskie 14, 2, 1966, pp. 199–213, (Polish Full Text).Google Scholar
  15. [15]
    MIODUCHOWSKI, A., and THERMANN, K., “Optimale Formen des dünnwandigen geschlossenen Querschnitts eines auf Biegung beanspruchten Balkens”, Z. angew. Math. Mechanik 53, 3, 1973, pp. 193–198.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    PLAUT, R. H., “On the Stability and Optimal Design of Elastic Structures”, in “Stability”, Study No. 6, Sol. Mech. Div. Univ. of Waterloo, Waterloo, 1972, pp. 547–577.Google Scholar
  17. [17]
    SINGER, J., and BARUCH, M., “Recent Studies on Optimization for Elastic Stability of Cylindrical and Conical Shells”, Roy. Aeron. Soc. Centenary Congress, London 1966, Int. Council Aero. Sci. Paper No. 66–13, pp. 1–32.Google Scholar
  18. [18]
    SPUNT, L., “Optimum Structural Design”, Englewood Cliffs, Prentice-Hall, 1971.Google Scholar
  19. [19]
    TEREBUSHKO, O. I., “On the Stability Analysis and Design of Reinforced Cylindrical Shells”, (in Russian), Coll. “Raschet Prostranstvennykh konstrukciy”, VII, Moskva, 1962, pp. 119–134.Google Scholar
  20. [20]
    TIMOSHENKO, S. P., and GERE, J. M., “Theory of Elastic Stability”, 2nd Ed., New York, McGraw-Hill, 1961.Google Scholar
  21. [21]
    VASILEV, V. V., “Optimal Structural Design of Plates and Shells”, (in Russian), Trudy VII Vsesoyuznoy Konf. po Teorii Obol. i Plastinok, Moskva, 1970, pp. 722–735.Google Scholar
  22. [22]
    VOLMIR, A. S., “Stability of Deformable Systems”, (in Russian), Moskva, Nauka, 1967.Google Scholar
  23. [23]
    WOJDANOWSKA-ZAJAC, R., and ZYCZKOWSKI, M., “Optimal Structural Design of Trusses with the Condition of Elastic-Plastic Stability Taken into Account”, Bull. Acad. Pol. Ser. Sci. Techn. 18, 9, 1970, pp. 365–374, (English Summary); Rozpr. Inz. 17, 3, 1969, pp. 347–368 (Polish Full Text).Google Scholar
  24. [24]
    WU, C. H., “The Strongest Circular Arch: — A Perturbation Solution”, J. Appl. Mech. 35, 1968, pp. 476–480.CrossRefMATHGoogle Scholar
  25. [25]
    ZYCZKOWSKI, M., “Optimum Design of Point-Reinforcement of Cylindrical Shells with Respect to their Stability”, Arch. M.ch. Stosowanej 19, 5, 1967, pp. 699–714.Google Scholar
  26. [26]
    ZYCZKOWSKI, M., “Optimale Formen des dünnwandigen geschlossenen Querschnittes eines Balkens bei Berücksichtigung von Stabilitätsbedingungen”, Z. angew. M.th. Mechanik 48, 7, 1968, pp. 455–462.CrossRefMATHGoogle Scholar
  27. [27]
    ZYCZKOWSKI, M., “Optymalne ksztaltowanie wytrzymalościowe przy uwzglednieniu warunków stateczności”, Coll. “Metody optymalizacji ustrojów odksztalcalnych”, I. Wroclaw — Warszawa — Krakow 1968, PAN, pp. 466–555.Google Scholar
  28. [28]
    ZYCZKOWSKI, M., “Optimal Structural Design in Rheology”, J. Appl. Mech. 38, 1, 1971, pp. 39–46.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • M. Życzkowski
    • 1
  1. 1.Technical University of CracowPoland

Personalised recommendations