Part I

  • H. H. E. Leipholz
Part of the International Centre for Mechanical Sciences book series (CISM, volume 238)


Concepts and quantities used in stability theory are to a large extent not invariant. They are chosen and defined according to the particular intent of the researcher and the purpose of his investigation. In many cases, practical aspects of the problems involved dictate the point of view to be adopted for the approach to stability. Therefore, a stability theory as such does, strictly speaking, not exist. It is necessary, before starting any stability considerations, to define clearly the stability concepts to be used in order to avoid misunderstanding and confusion. According to the chosen concepts and definitions, the specific stability theory for a specific situation is then developed. We shall proceed according to these guidelines in the following.


Green Function Fundamental Problem Stability Problem Variational Equation Uniform Convergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References, Part I

  1. [1]
    LEIPHOLZ, H. H. E., “On Destabilizing Parameters, the Degree of Stability of Mechanical Systems and General Stability Criteria”, Transactions of CSME 3, 1975, pp. 103–110.Google Scholar
  2. [2]
    LEIPHOLZ, H. H. E., “Stabilitat Elastischer Systeme”, Braun-Verlag, Karlsruhe, 1978.Google Scholar
  3. [3]
    LEIPHOLZ, H., “Stability Theory”, Academic Press, New York and London, 1970, pp. 134–139.MATHGoogle Scholar
  4. [4]
    SCHRÄPEL, H. D., “Ein Beitrag zur ersten Liapunowschen Methode”, ZAMM 53, T243, 244, 1973.Google Scholar
  5. [5]
    LEIPHOLZ, H, “Direct Variational Methods and Eigenvalue Problems in Engineering”, Noordhoff International Publ., Leyden, 1977, pp. 178–182.MATHGoogle Scholar
  6. [6]
    LIAPUNOV, A. M., “Problême Générale de la Stabilite du Mouvement”, Am. Fac. Sci., Toulouse, 9, 1907, pp. 203–474.CrossRefGoogle Scholar
  7. [7]
    MALKIN, J. G., “Theory of Stability of Motion”, AEC-tr-3352, Office of Technical Services, Department of Commerce, Washington, D.C., U.S.A.Google Scholar
  8. [8]
    CHETAYEV, N. G., “The Stability of Motion”, Pergamon Press, Oxford, London, New York, Paris, 1961.Google Scholar
  9. [9]
    HAHN, W., “Theory and Application of Liapunov’s Direct Method”, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.Google Scholar
  10. [10]
    ZUBOV, V. I., “The Methods of Liapunov and Their Applications”, Leningrad, 1957.Google Scholar
  11. [11]
    MOVCHAN, A. A., “The Direct Method of Liapunov in Stability Problems of Elastic Systems”, J. Appl. Math. Mech., 23, pp. 670–686Google Scholar
  12. MOVCHAN, A. A., “Stability of Processes with Respect to Two Metrics”, J. Appl. Math. Mech., 24, pp. 1506–1524.Google Scholar
  13. [12]
    KNOPS, R. J. and WILKES, E. W., “On Movchan’s Theorems for Stability of Continuous Systems’, Int. J. Eng. Sci., 4, pp. 303–329.Google Scholar
  14. [13]
    KNOPS, R. J. and WILKES, E. W., “Theory of Elastic Stability” Encyclopedia of Physics, Vol. VI a/3, Mechanics of Solids III, pp. 125–302, S. Pflüger, Chief Editor, C. Truesdell, Editor, Springer-Verlag, Berlin, Heidelberg, New York, 1973.Google Scholar
  15. [14]
    DYM, C. L., “Stability Theory and Its Applications to Structural Mechanics”, Noordhoff International Publ., Leyden, 1974.MATHGoogle Scholar
  16. [15]
    PARKS, P. C., “A Stability Criterion for Panel Flutter Problem via the Second Method of Liapunov”, AIAA Journal, 3, No. 9, 1965, pp. 1764–1766.CrossRefGoogle Scholar
  17. [16]
    LEIPHOLZ, H. H. E., “Application of Liapunov’s Direct Method to the Stability Problem of Rods Subjected to Follower Forces”, “Instability of Continuous Systems”, Springer-Verlag, Berlin, Heidelberg, New York, 1971, pp. 1–10.Google Scholar
  18. LEIPHOLZ, H. H. E., Über die Anwendung von Liapunov’s direkter Methode auf Stabilitätsprobleme kontinuierlicher, nichtkonservativer Systems, Ing. Arch., 39, 1970, pp. 257–268.Google Scholar
  19. LEIPHOLZ, H. H. E., On Conservative Elastic Systems of the First and Second Kind, Ing. Arch., 43, 1974, pp. 255–271.CrossRefMATHGoogle Scholar
  20. LEIPHOLZ, H. H. E., Some Remarks on Liapunov Stability of Elastic Dynamical Systems, Buckling of Structures, IUTAM Symposium, Cambridge, Ma., U.S.A., 1974, B. Budiansky, Editor, Springer-Verlag, Berlin, Heidelberg, New York, 1976.Google Scholar
  21. LEIPHOLZ, H. H. E., Stability of Elastic Rods via Liapunov’s Second Method, Ing. Arch., 44, 1975, pp. 21–26.CrossRefMATHMathSciNetGoogle Scholar
  22. LEIPHOLZ, H. H. E., Stability of Elastic Plates via Liapunov’s Second Method, Ing. Arch., 45, 1976, pp. 337–345.MATHGoogle Scholar
  23. [17]
    BROWN, A. L. and PAGE, A., “Elements of Functional Analysis”, Van Nostrand Reinhold Co., London, New York, Cincinnati, Toronto, Melbourne, 1970, pp. 85–90.MATHGoogle Scholar
  24. [18]
    GOLDSTEIN, H., “Classical Mechanics”, Addison-Wesley Publ. Co., Reading, Massachusetts, Palo Alto, London, Dallas, Atlanta, 7th Printing, 1965, pp. 359–364.Google Scholar
  25. [19]
    FRANK, Ph. and MISES, R. V., “Die Differential -und Integralgleichungen der Mechanik und Physik”, Band II, pp. 129–133, Fr. Vieweg and Son, Braunschweig, 1934.Google Scholar
  26. [20]
    LEIPHOLZ, H., “Stability Theory”, Academic Press, New York, London, 1970, p. 188.MATHGoogle Scholar
  27. [21]
    ROTHE, R. and SZABO, I., “Hohere Mathematik”, Teil VI, pp. 172, 173, B. G. Teubner, Stuttgart, 1953.Google Scholar
  28. [22]
    LEIPHOLZ, H. H. E., “Liapunov’s Second Method and Its Application to Continuous Systems”, SM Arch. 1, 1976, pp. 367–444.MATHGoogle Scholar
  29. [23]
    ZIEGLER, H., Ing. Arch., 20, 1952, p. 49.CrossRefMATHMathSciNetGoogle Scholar
  30. [24]
    LEIPHOLZ, H. H. E., “On the Application of the Energy Method to the Stability Problem of Nonconservative Autonomous and Nonautonomous Systems”, Acta Mechanica, to appear.Google Scholar
  31. [25]
    COLLATZ, L., “Eigenwertaufgaben mit technischen Anwendungen”, Akad. Verlagsges, Geest u. Portig K.-G., Leipzig, 1963, 2. Aufl., pp. 137–149.Google Scholar
  32. [26]
    HORN, I., “Gewöhnliche Differentialgleichungen”, Walter de Gruyter et Co., Berlin W35, 1948, 5-te Aufl. pp. 56, 57Google Scholar
  33. [27]
    KOCH, H. V., “Sur la convergence des déterminants infinis”, Rendiconti del Circolo mat. di Palermo, t. XXVIII, 1909, p. 255.Google Scholar
  34. [28]
    RIESZ, F., “Les systèmes d’équations linéaires à une infinite d’inconnues”, Collection Borel, Paris, 1913.Google Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • H. H. E. Leipholz
    • 1
  1. 1.University of WaterlooCanada

Personalised recommendations