Advertisement

The Symmetry Between Electricity and Magnetism and the Wave Equation of A Spin 1/2 Magnetic Monopole

  • Georges Lochak
Part of the International Centre for Mechanical Sciences book series (CISM, volume 294)

Abstract

Symmetry laws are introduced in physical theories in two different ways which may be called the constructive way and the abstract (or a priori) way.

Keywords

Angular Momentum Dirac Equation Magnetic Charge Axial Vector Magnetic Monopole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Curie, J. Phys. 3e Série, 3, 415, 1894.Google Scholar
  2. [2]
    H. Poincaré, Comptes rendus, 123, 530, 1896.Google Scholar
  3. [3]
    P.A.M. Dirac, Proc. Roy. Soc. A 133, 60, 1931.ADSCrossRefGoogle Scholar
  4. [4]
    P.A.M. Dirac, Phys. Rev. 74, 817, 1948.ADSCrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    P.A.M. Dirac, Directions in Physics, J. Wiley & Sons, N.Y. 1978.Google Scholar
  6. [6]
    A. Sommerfeld, Elektrodynamik, Akad. Verlag, Leipzig, 1949.Google Scholar
  7. [7]
    G. Lochak, Annales Fond. L. de Broglie, 8, 345, 1983 (I),Google Scholar
  8. [7]
    G. Lochak, Annales Fond. L. de Broglie, 9, 1, 1984 (II).MathSciNetGoogle Scholar
  9. [8]
    G. Lochak, Int. J. Theor. Phys. 24, 1019, 1985.CrossRefMathSciNetGoogle Scholar
  10. [9]
    N. Cabibbo, G. Ferrari, Nuovo Cim. 23, 1147, 1962.CrossRefMathSciNetGoogle Scholar
  11. [10]
    A. Salam, Phys. Letters 22, 683, 1966.ADSCrossRefGoogle Scholar
  12. [11]
    T. Takabayasi, Prog. Theor. Phys. Suppl. 4, 1957Google Scholar
  13. [12]
    R. Mignani, E. Recami, Nuovo Cim. 30A, 533, 1975.ADSCrossRefGoogle Scholar
  14. [13]
    E. Recami, R. Mignani, Physics Letters, 62B, 41, 1976.CrossRefGoogle Scholar
  15. [14]
    A. Chodos, A. Hauser, A. Kostelecky, Physics Letters, 150B, 431, 1985.CrossRefMathSciNetGoogle Scholar
  16. [15]
    E. Recami, W. Rodriges, in “Progress in Particle and Nuclear Physics”, vol. 15 A. Faessler ed., Pergamon Press, 1985.Google Scholar
  17. [16]
    J. Steyaert, Université Catholique de Louvain, Belgium (private communication), 1986.Google Scholar
  18. [17]
    V. Mikhailov, J. Phys. A Math. Gen. 18, L 903, 1985.ADSCrossRefGoogle Scholar
  19. [18]
    D. Doubrovine, S. Novikov, A. Fomenko, Géométrie Contemporaine, Mir, Moscow, 1982.Google Scholar
  20. [19]
    V. Rodichev, Soviet Physics JETP, 13, 1029, 1961.MATHMathSciNetGoogle Scholar
  21. [20]
    H. Weyl, Phys. Rev., 77, 699, 1950.ADSCrossRefMathSciNetGoogle Scholar
  22. [21]
    T.T. Wu, C.N. Yang, Phys. Rev. D12, 3845, 1975.ADSCrossRefMathSciNetGoogle Scholar
  23. [22]
    A. Frenkel, P. Hrasho, Ann. of Phys. (U.S.A.), 105, 288, 1977.ADSCrossRefGoogle Scholar
  24. [23]
    G. Lochak, Cahiers de Physique, 13, 41, 1959.MathSciNetGoogle Scholar
  25. [24]
    J.J. Thomson, Elements of the mathematical theory of Electricity and Magnetism, Camb. Univ. Press, Oxford, 1904.Google Scholar
  26. [25]
    A.S. Goldhaber, Phys. Rev. B140, 1407, 1965.ADSCrossRefMathSciNetGoogle Scholar
  27. [26]
    I.M. Gelfand, R.A. Minlos, Z.Y. Shapiro, Representations of the rotation and Lorentz groups and their applications, Pergamon, N.Y., 1963.Google Scholar
  28. [27]
    E. Cartan, Leçons sur la théorie des spineurs, Hermann, Paris, 1938.Google Scholar
  29. [28]
    E. Cartan, The Theory of Spinors, Dover, N.Y.Google Scholar
  30. [29]
    I. Tamm, Zeitschrift für Physik, 71, 141, 1986.ADSCrossRefGoogle Scholar
  31. [30]
    M. Birkeland, Archives des Sciences Physiques et Naturelles de Genève, 1, June 1896.Google Scholar
  32. [31]
    H. Goldstein, Classical Mechanics, 2nd ed., Addison-Wesley, 1980.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • Georges Lochak
    • 1
  1. 1.C.N.R.S. Fondation Louis de BroglieParisFrance

Personalised recommendations