Skip to main content

Information Theory for Quantum Systems

  • Conference paper
Information Complexity and Control in Quantum Physics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 294))

Abstract

Basic concepts and results of physical information theory are presented. The entropy defect and Shannon’s measure of information are introduced and the entropy defect principle is formulated for both quasiclassical and consistently quantum description of a physical system. Results related to ideal physical information channels are discussed. The entropy defect and the amount of information coincide in the quasiclassical case, but the latter quantity is, in general, smaller than the former in quantum case due to the quantum-mechanical irreversibility of measurement. The physical meaning of both quantities is analyzed in connection with Gibbs paradox and the maximum work obtainable from a non-equilibrium system. Indirect (generalized) vs. direct (von Neumann’s) quantum measurements are considered. It is shown that in any separable infinite-dimensional Hilbert space direct and indirect quantum measurements yield equal maximum information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szilard, L.: Über die Entropieverminerung in einem thermodynamisehen System bei Eingriff intelligenter Wesen, Z. Physik, B. 53, No. 5 (1929), 840–856 (in German).

    Article  ADS  MATH  Google Scholar 

  2. Shannon, C.E. and Weaver, W.: The Mathematical Theory of Communication, Urbana Univ. Press., Chicago, Ill. 1949.

    MATH  Google Scholar 

  3. Gabor, D.: Communication theory and physics, Phil. Mag., 41 (1950), 1161–1187.

    MATH  Google Scholar 

  4. Brillouin, L.: Science and Information Theory, Acad. Press, New York 1956.

    MATH  Google Scholar 

  5. Lebedev, D.S. and Levitin, L.B.: Information transmission by electromagnetic field. Inform. Contr. 9, No. 1 (1966), 1–22.

    Article  Google Scholar 

  6. Levitin, L.B.: On the quantum measure of the amount of information, in: Proc. of the IV National Conf. on Information Theory, Tashkent, 1969, 111–115 (in Russian).

    Google Scholar 

  7. Planck, M.: Wärmestrahlung, Berlin 1913 (English translation: Theory of Heat Radiation, Dover, New York 1959).

    MATH  Google Scholar 

  8. Kolmogorov, A.N.: On the Shannon theory of information in the case of continuous signals, IRE Trans. on Inform. Theory, IT-2 (1956), 102–108.

    Article  Google Scholar 

  9. Gordon, J.P.: Quantum effects in communication systems. Proc. IRE 60, No. 9 (1962), 1898–1908.

    Article  Google Scholar 

  10. Lebedev, D.S. and Levitin, L.B.: The maximum amount of information transmissible by electromagnetic field, Soviet Physics-Doklady, 8 (1963), 377–379.

    ADS  MATH  MathSciNet  Google Scholar 

  11. Takahasi, H.: Information theory of quantum-mechanical channels, in: Advances in Communication Systems, v. 1, Acad. Press, New York 1965, 227–310.

    Google Scholar 

  12. Stratonovich, R.L.: Information transmission rate in some quantum communication channels, Probl. Info. Transm., 2 (1966), 45–57.

    Google Scholar 

  13. Mityugov, V.V.: On quantum theory of information transmission, Probl. Info. Transm., 2 (1966), 48–58.

    Google Scholar 

  14. Ingarden, R.S.: Quantum information theory, Institut of Physics, N. Copernicus Univ., Torun, Poland, 1975.

    Google Scholar 

  15. Vainshtein, V.D. and Tvorogov, S.D.: Some problems of measurement of quantum observables and determination of joint entropy in quantum statistics, Comm. Math. Phys., 43 (1975), 273–278.

    Article  ADS  MathSciNet  Google Scholar 

  16. Drikker, A.S.: Homodine reception of a quantum electromagnetic signal, Probl. Info. Transm., 12 (1976), 57–68.

    MATH  MathSciNet  Google Scholar 

  17. Poplavskii, R.P.: Thermodynamic models of information processes, Sov. Phys. Uspekhi, 115 (1975), 222–241.

    Article  ADS  MathSciNet  Google Scholar 

  18. Pierce, J.B., Posner, E.C. and Rodemich, E.C.: The capacity of the photon counting channel, IEEE Trans. on Info. Theory, IT-27 (1981), 61–77.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kosloff, R.: Thermodynamic Aspects of the Quantum-Mechanical Measuring Process, in: Advances in chemical physics, v. 46, eds. I. Prigogine, S.A. Rice, Wiley and Sons, 1981, 153–193.

    Chapter  Google Scholar 

  20. Mitiugov, V.V.: Physical foundations of information theory, Sovietskoe Radio, Moscow, 1976 (in Russian).

    Google Scholar 

  21. Arthurs, E. and Kelly, J.L., Jr.: On the simultaneous measurement of a pair of conjugate observables, Bell System Tech. J., 44 (1965), 725–729.

    Article  Google Scholar 

  22. Gordon, J.P. and Louisen, W.J.: Simultaneous measurement of non-commuting observables, in: Physics of Quantum Electronics (Eds. P. Kelley, M. Lax, B. Tannenwald), McGraw-Hill, New York 1966, 833–840.

    Google Scholar 

  23. Levitin, L.B., Mitiugov, V.V.: Reception of coherent signals by splitting of the beam, 1st Conf. on Problems of Information Transmission by Laser Radiation, Kiev, 1968.

    Google Scholar 

  24. Helstrom, C.W.: Detection theory and quantum mechanics, Inform. Contr. 10 (1967), 254–291.

    Article  Google Scholar 

  25. Davis, E.B. and Lewis, J.T.: An operational approach to quantum probability, Comm. Math. Phys., 17 (1970), 239–260.

    Article  ADS  MathSciNet  Google Scholar 

  26. Benioff, P.A.: Decision procedures in quantum mechanics, J. Math. Phys., 13 (1972), 908–915.

    Article  ADS  MathSciNet  Google Scholar 

  27. Helstrom, C.W. and Kennedy, R.S.: Noncommuting observables in quantum detection and estimation theory, IEEE Trans. Inform. Theory, IT-20 (1974), 16–24.

    Article  MATH  MathSciNet  Google Scholar 

  28. Helstrom, C.W.: Quantum Detection and Estimation Theory, Academic Press, New York 1976.

    Google Scholar 

  29. Levitin, L.B.: Amount of information and the quantum-mechanical irreversibility of measurement, in: Proc. of the II Intern. Symp. on Inform. Theory, Yerevan, 1971, 144–147.

    Google Scholar 

  30. Holevo, A.S.: Informational aspects of quantum measurements, Probl. Info. Transm., 9 (1973), 31–42.

    MATH  MathSciNet  Google Scholar 

  31. Holevo, A.S.: Certain estimates of information transmissible over a quantum communication channel, Probl. Info. Transm., 9 (1973), 3–11.

    MATH  Google Scholar 

  32. Davies, E.B.: Information and quantum measurement, IEEE Trans. on Inform. Theory, IT-24 (1979), 596–599.

    Article  Google Scholar 

  33. Levitin, L.B.: Direct and indirect quantum measurements yield equal maximum information, 1981 IEEE Intern. Symp. on Information Theory, Santa Monica, CA., USA, 1981.

    Google Scholar 

  34. Jaynes, E.T.: Information theory and statistical mechanics, Phys. Rev., Part I, 106(1957), 620–630; Part II, 108 (1959), 171–190.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Katz, A.: Principles of Statistical Mechanics. The Information Theory Approach, W.H. Freeman, 1967.

    Google Scholar 

  36. Ingarden, R.S.: Information Theory and Thermodynamics. Part I, Torun, Poland, 1974. Part II, Torun, Poland, 1976.

    Google Scholar 

  37. Levitin, L.B.: Quantum amount of information and maximum work, in: Proc. of the 13th IUPAP Conf. on Statistical Physics (Eds. D. Cabib, D.G. Kuper and I. Riess), A. Hilger, Bristol, England, 1978.

    Google Scholar 

  38. Poplavskii, R.P.: Maxwell demon and correlations between information and entropy, Sov. Phys. Uspekhi, 128 (1979), 165–176.

    Article  MathSciNet  Google Scholar 

  39. Mityugov, V.V.: Entropy, information and work in quantum statistics, Probl. Control and Inform. Theory, 2 (1973), 243–256.

    MathSciNet  Google Scholar 

  40. Berger, T.: Communication theory via random fields, IEEE Intern. Symp. on Inform. Theory, St. Jovite, Quebec, Canada, 1983.

    Google Scholar 

  41. Levitin, L.B.: Information-theoretical approach to Ising problem, IEEE Intern. Symp. on Inform. Theory, Brighton, England, 1985.

    Google Scholar 

  42. Levitin, L.B.: A thermodynamic characterization of ideal physicsl information channels, Journal of Information and Optimization Sciences, 2 (1981), 259–266.

    Article  MATH  MathSciNet  Google Scholar 

  43. Levitin, L.B.: Information transmission in an ideal photon channel, Probl. Inform. Transm., 1 (1965), 55–62.

    Google Scholar 

  44. Levitin, L.B.: Ideal corpuscular information channels, IEEE Intern. Symp. on Inform. Theory, St. Jovite, Quebec, Canada, 1983.

    Google Scholar 

  45. Klein, O.: Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre, Z. Phys., 72 (1931), 767–775.

    Article  ADS  MATH  Google Scholar 

  46. Neumann, J.: Mathematische Grundlagen der Quantenmechanik, Springer-Verlag, Berlin, 1932 (English translation: Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, NJ, USA, 1955).

    MATH  Google Scholar 

  47. Lyuboshitz, V.L., and Podgoretzkii, M.I.: Entropy of a polarized gas and Gibbs paradox, Soviet Physics-Doklady, 194 (1970), 547–550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Blaquiere S. Diner G. Lochak

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Wien

About this paper

Cite this paper

Levitin, L.B. (1987). Information Theory for Quantum Systems. In: Blaquiere, A., Diner, S., Lochak, G. (eds) Information Complexity and Control in Quantum Physics. International Centre for Mechanical Sciences, vol 294. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2971-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2971-5_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81992-0

  • Online ISBN: 978-3-7091-2971-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics