Information Theory for Quantum Systems

  • Lev B. Levitin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 294)


Basic concepts and results of physical information theory are presented. The entropy defect and Shannon’s measure of information are introduced and the entropy defect principle is formulated for both quasiclassical and consistently quantum description of a physical system. Results related to ideal physical information channels are discussed. The entropy defect and the amount of information coincide in the quasiclassical case, but the latter quantity is, in general, smaller than the former in quantum case due to the quantum-mechanical irreversibility of measurement. The physical meaning of both quantities is analyzed in connection with Gibbs paradox and the maximum work obtainable from a non-equilibrium system. Indirect (generalized) vs. direct (von Neumann’s) quantum measurements are considered. It is shown that in any separable infinite-dimensional Hilbert space direct and indirect quantum measurements yield equal maximum information.


Density Matrix Quantum System Physical System Pure State Density Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szilard, L.: Über die Entropieverminerung in einem thermodynamisehen System bei Eingriff intelligenter Wesen, Z. Physik, B. 53, No. 5 (1929), 840–856 (in German).ADSCrossRefMATHGoogle Scholar
  2. 2.
    Shannon, C.E. and Weaver, W.: The Mathematical Theory of Communication, Urbana Univ. Press., Chicago, Ill. 1949.MATHGoogle Scholar
  3. 3.
    Gabor, D.: Communication theory and physics, Phil. Mag., 41 (1950), 1161–1187.MATHGoogle Scholar
  4. 4.
    Brillouin, L.: Science and Information Theory, Acad. Press, New York 1956.MATHGoogle Scholar
  5. 5.
    Lebedev, D.S. and Levitin, L.B.: Information transmission by electromagnetic field. Inform. Contr. 9, No. 1 (1966), 1–22.CrossRefGoogle Scholar
  6. 6.
    Levitin, L.B.: On the quantum measure of the amount of information, in: Proc. of the IV National Conf. on Information Theory, Tashkent, 1969, 111–115 (in Russian).Google Scholar
  7. 7.
    Planck, M.: Wärmestrahlung, Berlin 1913 (English translation: Theory of Heat Radiation, Dover, New York 1959).MATHGoogle Scholar
  8. 8.
    Kolmogorov, A.N.: On the Shannon theory of information in the case of continuous signals, IRE Trans. on Inform. Theory, IT-2 (1956), 102–108.CrossRefGoogle Scholar
  9. 9.
    Gordon, J.P.: Quantum effects in communication systems. Proc. IRE 60, No. 9 (1962), 1898–1908.CrossRefGoogle Scholar
  10. 10.
    Lebedev, D.S. and Levitin, L.B.: The maximum amount of information transmissible by electromagnetic field, Soviet Physics-Doklady, 8 (1963), 377–379.ADSMATHMathSciNetGoogle Scholar
  11. 11.
    Takahasi, H.: Information theory of quantum-mechanical channels, in: Advances in Communication Systems, v. 1, Acad. Press, New York 1965, 227–310.Google Scholar
  12. 12.
    Stratonovich, R.L.: Information transmission rate in some quantum communication channels, Probl. Info. Transm., 2 (1966), 45–57.Google Scholar
  13. 13.
    Mityugov, V.V.: On quantum theory of information transmission, Probl. Info. Transm., 2 (1966), 48–58.Google Scholar
  14. 14.
    Ingarden, R.S.: Quantum information theory, Institut of Physics, N. Copernicus Univ., Torun, Poland, 1975.Google Scholar
  15. 15.
    Vainshtein, V.D. and Tvorogov, S.D.: Some problems of measurement of quantum observables and determination of joint entropy in quantum statistics, Comm. Math. Phys., 43 (1975), 273–278.ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Drikker, A.S.: Homodine reception of a quantum electromagnetic signal, Probl. Info. Transm., 12 (1976), 57–68.MATHMathSciNetGoogle Scholar
  17. 17.
    Poplavskii, R.P.: Thermodynamic models of information processes, Sov. Phys. Uspekhi, 115 (1975), 222–241.ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pierce, J.B., Posner, E.C. and Rodemich, E.C.: The capacity of the photon counting channel, IEEE Trans. on Info. Theory, IT-27 (1981), 61–77.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Kosloff, R.: Thermodynamic Aspects of the Quantum-Mechanical Measuring Process, in: Advances in chemical physics, v. 46, eds. I. Prigogine, S.A. Rice, Wiley and Sons, 1981, 153–193.CrossRefGoogle Scholar
  20. 20.
    Mitiugov, V.V.: Physical foundations of information theory, Sovietskoe Radio, Moscow, 1976 (in Russian).Google Scholar
  21. 21.
    Arthurs, E. and Kelly, J.L., Jr.: On the simultaneous measurement of a pair of conjugate observables, Bell System Tech. J., 44 (1965), 725–729.CrossRefGoogle Scholar
  22. 22.
    Gordon, J.P. and Louisen, W.J.: Simultaneous measurement of non-commuting observables, in: Physics of Quantum Electronics (Eds. P. Kelley, M. Lax, B. Tannenwald), McGraw-Hill, New York 1966, 833–840.Google Scholar
  23. 23.
    Levitin, L.B., Mitiugov, V.V.: Reception of coherent signals by splitting of the beam, 1st Conf. on Problems of Information Transmission by Laser Radiation, Kiev, 1968.Google Scholar
  24. 24.
    Helstrom, C.W.: Detection theory and quantum mechanics, Inform. Contr. 10 (1967), 254–291.CrossRefGoogle Scholar
  25. 25.
    Davis, E.B. and Lewis, J.T.: An operational approach to quantum probability, Comm. Math. Phys., 17 (1970), 239–260.ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Benioff, P.A.: Decision procedures in quantum mechanics, J. Math. Phys., 13 (1972), 908–915.ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    Helstrom, C.W. and Kennedy, R.S.: Noncommuting observables in quantum detection and estimation theory, IEEE Trans. Inform. Theory, IT-20 (1974), 16–24.CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Helstrom, C.W.: Quantum Detection and Estimation Theory, Academic Press, New York 1976.Google Scholar
  29. 29.
    Levitin, L.B.: Amount of information and the quantum-mechanical irreversibility of measurement, in: Proc. of the II Intern. Symp. on Inform. Theory, Yerevan, 1971, 144–147.Google Scholar
  30. 30.
    Holevo, A.S.: Informational aspects of quantum measurements, Probl. Info. Transm., 9 (1973), 31–42.MATHMathSciNetGoogle Scholar
  31. 31.
    Holevo, A.S.: Certain estimates of information transmissible over a quantum communication channel, Probl. Info. Transm., 9 (1973), 3–11.MATHGoogle Scholar
  32. 32.
    Davies, E.B.: Information and quantum measurement, IEEE Trans. on Inform. Theory, IT-24 (1979), 596–599.CrossRefGoogle Scholar
  33. 33.
    Levitin, L.B.: Direct and indirect quantum measurements yield equal maximum information, 1981 IEEE Intern. Symp. on Information Theory, Santa Monica, CA., USA, 1981.Google Scholar
  34. 34.
    Jaynes, E.T.: Information theory and statistical mechanics, Phys. Rev., Part I, 106(1957), 620–630; Part II, 108 (1959), 171–190.ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Katz, A.: Principles of Statistical Mechanics. The Information Theory Approach, W.H. Freeman, 1967.Google Scholar
  36. 36.
    Ingarden, R.S.: Information Theory and Thermodynamics. Part I, Torun, Poland, 1974. Part II, Torun, Poland, 1976.Google Scholar
  37. 37.
    Levitin, L.B.: Quantum amount of information and maximum work, in: Proc. of the 13th IUPAP Conf. on Statistical Physics (Eds. D. Cabib, D.G. Kuper and I. Riess), A. Hilger, Bristol, England, 1978.Google Scholar
  38. 38.
    Poplavskii, R.P.: Maxwell demon and correlations between information and entropy, Sov. Phys. Uspekhi, 128 (1979), 165–176.CrossRefMathSciNetGoogle Scholar
  39. 39.
    Mityugov, V.V.: Entropy, information and work in quantum statistics, Probl. Control and Inform. Theory, 2 (1973), 243–256.MathSciNetGoogle Scholar
  40. 40.
    Berger, T.: Communication theory via random fields, IEEE Intern. Symp. on Inform. Theory, St. Jovite, Quebec, Canada, 1983.Google Scholar
  41. 41.
    Levitin, L.B.: Information-theoretical approach to Ising problem, IEEE Intern. Symp. on Inform. Theory, Brighton, England, 1985.Google Scholar
  42. 42.
    Levitin, L.B.: A thermodynamic characterization of ideal physicsl information channels, Journal of Information and Optimization Sciences, 2 (1981), 259–266.CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Levitin, L.B.: Information transmission in an ideal photon channel, Probl. Inform. Transm., 1 (1965), 55–62.Google Scholar
  44. 44.
    Levitin, L.B.: Ideal corpuscular information channels, IEEE Intern. Symp. on Inform. Theory, St. Jovite, Quebec, Canada, 1983.Google Scholar
  45. 45.
    Klein, O.: Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre, Z. Phys., 72 (1931), 767–775.ADSCrossRefMATHGoogle Scholar
  46. 46.
    Neumann, J.: Mathematische Grundlagen der Quantenmechanik, Springer-Verlag, Berlin, 1932 (English translation: Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, NJ, USA, 1955).MATHGoogle Scholar
  47. 47.
    Lyuboshitz, V.L., and Podgoretzkii, M.I.: Entropy of a polarized gas and Gibbs paradox, Soviet Physics-Doklady, 194 (1970), 547–550.Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • Lev B. Levitin
    • 1
  1. 1.Boston UniversityBostonUSA

Personalised recommendations