Quantum Statistics for Systems Interacting with a Coherent Electromagnetic Field

  • A. Alaoui
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 294)


The adiabatical principle (in the meaning of Ehrenfest) plays a fundamental role in quantum and classical statistics. Starting from the hypothesis that adiabatic invariant states are the most probable states at the equilibrium of a set of quantum systems, we show that it is possible to elaborate a statistical scheme for non-conservative systems.

In the case of quantum systems interacting with a coherent field, the Floquet’s theorem allows us to determine the adiabatic states and then to give the statistical scheme explicitly. The application of this theory to NMR shows a good agreement with experimental facts.


Spin System Statistical Scheme Permanent State Bloch Equation Coherent Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Redfield, A.G. Phys. Review, V 98, N6, (1955)Google Scholar
  2. 2.
    Goldmann, M.: Spin temperature and nuclear magnetic resonance in solids Clarendon Press, Oxford 1970.Google Scholar
  3. 3.
    Abragam, A. Les principes du magnetisme nucléaire — PUF. Paris 1961Google Scholar
  4. 4.
    Alaoui, A. Lochak, G.: C.R.A.S. 280 (1975), p.589MathSciNetGoogle Scholar
  5. 5.
    Lochak, G.: Ann, Fond. Louis de Broglie, 1, n°2, p 56, 1976Google Scholar
  6. 7.
    Grichkowsky, D. Phys. Review 7, N6 (1973) p 2096.ADSCrossRefGoogle Scholar
  7. 8.
    Shirley, J.H.: Phys. Review. 138 B, (1965), p 979.ADSCrossRefGoogle Scholar
  8. 9.
    Sambe, H.: Phys. Review A, 7, (1973) p 2203.ADSCrossRefGoogle Scholar
  9. 10.
    Lochak, G, C.R.A.S. Série B, 272, (1971), p 1281.MathSciNetGoogle Scholar
  10. 11.
    Coddington, E. Levinson, N.: Theory of ordinary differential equations, Mc Graw Hill, N.Y. 1955.MATHGoogle Scholar
  11. 12.
    Alaoui, A, Lochak, G.: Ann. Fond. Louis de Broglie, V2, n 2, (1977) p 87Google Scholar
  12. 13.
    Riesz, F. Nagy, Sz.: Leçons d’analyse fonctionnelle, Paris, Gauthier-Villars, 1972.Google Scholar
  13. 14.
    Brillouin, L.: L’atome de Bohr. Ed du journal de Physique. (1936) Paris.Google Scholar
  14. 15.
    Alaoui, A: Thèse d’Etat (1982) RABAT.Google Scholar
  15. 16.
    Castaing, R.: Thermodynamique statistique, MASSON, 1970.Google Scholar
  16. 17.
    Bloch, F.: Phys. Review, V 70, N 7, 8, (1946)Google Scholar
  17. 18.
    Garstens, M.A. Kaplan, J.I.: Phys. Review, V 99, N 2, (1955).Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • A. Alaoui
    • 1
  1. 1.Mohammed V UniversityRabatMarocco

Personalised recommendations