Skip to main content

Quantization of the Kicked Rotator With Dissipation

  • Conference paper
Information Complexity and Control in Quantum Physics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 294))

  • 240 Accesses

Abstract

The effect of dissipation on a quantum system exhibiting chaos in its classical limit is studied by coupling the kicked quantum rotator to a reservoir with angular momentum exchange. A master equation is derived which maps the density matrix from one kick to the subsequent one. The limits of h→0 and of vanishing dissipation reproduce the classical kicked damped rotator and the kicked quantum rotator, respectively. In the semi-classical limit the quantum map reduces to a classical map with quantum mechanically determined classical noise terms. For sufficiently small dissipation quantum mechanical interference effects render the Wigner distribution negative in some parts of phase space and prevent its interpretation in classical terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Shaw, Z. Naturforsch. 36a, 80 (1981)

    ADS  MATH  MathSciNet  Google Scholar 

  2. M.V. Berry, N.L. Balazs, M. Tabor, A. Voros, Ann. Phys. (N.Y.) 122, 26 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Casati, B.V. Chirikov, F.M. Izraelev, J. Ford, Lecture Notes in Physics, Vol. 93, 334, Springer, Berlin 1979

    Google Scholar 

  4. F.M. Izraelev, D.L. Shepelyanski, Teor. Mat. Fiz. 49,117 (1980) (Teor. Math. Phys. 43, 553 (1980)

    Google Scholar 

  5. H. Hannay, M.V. Berry, Physica 1D, 267 (1980)

    MATH  MathSciNet  Google Scholar 

  6. J.S. Hutchinson, R.E. Wyatt, Chem. Phys. Lett. 72,378 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. H.J. Korsch, M.V. Berry, Physica 3D,627 (1981)

    MATH  MathSciNet  Google Scholar 

  8. G.M. Zaslavsky, Phys. Rep. 80, 157 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Hogg, B.V. Huberman, Phys. Rev. Lett. 48, 711 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Hogg, B.V. Huberman, Phys. Rev. A28,22 (1983)

    Article  ADS  Google Scholar 

  11. S. Fishman, D.R. Grempel, R.E. Prange, Phys. Rev. Lett. 49,509 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. D.L. Shepelyansky, Physica 8D,208 (1983)

    Google Scholar 

  13. D.R. Grempel, R.E. Prange, S. Fishman, Phys. Rev. A29,1639 (1984)

    Article  ADS  Google Scholar 

  14. D.R. Grempel, S. Fishman, R.E. Prange, Phys. Rev. Lett. 53,1212 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Casati, I. Guarneri, Comm. Math. Phys. 95,121 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. E. Ott, T.M. Antonsen, J.D. Hanson, Phys. Rev. Lett. 53,2187 (1984)

    Article  ADS  Google Scholar 

  17. R. Graham, Z. Phys. B59,75 (1985)

    Article  MathSciNet  Google Scholar 

  18. R. Graham, T. Tel, Z. Phys. B60,127 (1985)

    Article  MathSciNet  Google Scholar 

  19. B.V. Chirikov, Phys. Rep. 52,263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  20. G.M. Zaslavski, Phys. Lett. 69A,145 (1978)

    Article  MathSciNet  Google Scholar 

  21. G.M. Zaslavski, Kh.-R.Ya. Rachko, Zh. Eksp. Teor. Fiz. 76,2052 (1979) (Sov. Phys. JETP 49,1039 (1979))

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Blaquiere S. Diner G. Lochak

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Wien

About this paper

Cite this paper

Dittrich, T., Graham, R. (1987). Quantization of the Kicked Rotator With Dissipation. In: Blaquiere, A., Diner, S., Lochak, G. (eds) Information Complexity and Control in Quantum Physics. International Centre for Mechanical Sciences, vol 294. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2971-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2971-5_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81992-0

  • Online ISBN: 978-3-7091-2971-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics