Continuous Monitoring of Quantum Systems

  • Asher Peres
Part of the International Centre for Mechanical Sciences book series (CISM, volume 294)


The “quantum Zeno paradox” is explained and is illustrated by some examples. It may occur in measurements of finite duration. However, not eyery continuous monitoring of a quantum system is a “measurement” (as defined by von Neumann). A continuous interaction with a measuring apparatus does not necessarily stop the evolution of a quantum system.


Quantum Theory Quantum System Continuous Monitoring Proton Decay Continuous Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fleming, G.N.: Nuovo Cimento A16 (1973), 232.ADSCrossRefGoogle Scholar
  2. 2.
    Finkelstein, D.: The Physics of Logic, in: Paradigms and Paradoxes (Ed. R.C. Colodry), Univ. Pittsburgh Press, 1971, Vol. V; reprinted in: Logico-Algebïuic Approach to Quantum Mechanics (Ed. C.A. Hooker) Reidel, Dordrecht, 1975, Vol. II, pp. 141–160.Google Scholar
  3. 3.
    Peres, A.: Am. J. Phys. 52 (1984), 644.ADSCrossRefGoogle Scholar
  4. 4.
    Misra, B. and E.C.G. Sudarshan: J. Math. Phys. 18 (1977), 756.ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chiu, C.B., E.C.G. Sudarshan and B. Misra: Phys. Rev. D16 (1977), 520.ADSMathSciNetGoogle Scholar
  6. 6.
    Peres, A.: Am. J. Phys. 48 (1980), 931.ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Singh, I. and M.A.B. Whitaker: Am. J. Phys. 50 (1982), 882.ADSCrossRefGoogle Scholar
  8. 8.
    Cajori, F.: Am. Math. Mon. 22 (1915), 1, 292.CrossRefGoogle Scholar
  9. 9.
    Finding appropriate references, in this book and elsewhere, is left as an exercise for the reader.Google Scholar
  10. 10.
    Horwitz, L.P. and E. Katznelson: Phys. Rev. Lett. 49 (1982), 1804.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Curie, I. and F. Joliot: Compt. Rend. Acad. Sci. 198 (1934), 254.Google Scholar
  12. 12.
    Peres, A.: Found. Phys. 14 (1984), 1131.ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, 1955 (translated from: Mathematische Grundlagen der Quantenmechanik, Springer, Berlin 1932).MATHGoogle Scholar
  14. 14.
    Wheeler, J.A. and W.H. Zurek: Quantum Theory and Measurement, Princeton Univ. Press, 1983.Google Scholar
  15. 15.
    Gerlach, W. and O. Stern: Z. Phys. 8 (1922), 110; 9 (1922), 349.ADSCrossRefGoogle Scholar
  16. 16.
    Caves, C.M. et al.: Rev. Mod. Phys. 52 (1980), 341.ADSCrossRefGoogle Scholar
  17. 17.
    Peres, A. and W.K. Wootters: Phys. Rev. D32 (1985), 1968.ADSGoogle Scholar
  18. 18.
    Peres, A.: Am. J. Phys. 48 (1980), 552.ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    Peres, A.: When is a Quantum Measurement?, Am. J. Phys. 54 (1986), in press.Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • Asher Peres
    • 1
  1. 1.Israel Institute of TechnologyHaifaIsrael

Personalised recommendations