Advertisement

Conditional Expectation and Stochastic Processes in Quantum Probability

  • Werner Stulpe
Part of the International Centre for Mechanical Sciences book series (CISM, volume 294)

Abstract

Proceeding in close analogy to classical probability theory/ quantum concepts of conditional expectations/ conditional distributions, stochastic processes, and a Markov property of these are introduced by means of instruments. Examples concerning successive measurements and the random walk of a particle are discussed.

Keywords

Conditional Expectation Quantum Probability Markov Semigroup Markov Kernel Classical Probability Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ludwig, G.: Foundations of Quantum Mechanics I, Springer-Verlag, New York 1983.CrossRefMATHGoogle Scholar
  2. 2.
    Ludwig, G.: An Axiomatic Basis for Quantum Mechanics, Vol. 1: Derivation of Hilbert Space Structure, Springer-Verlag, Berlin 1985.CrossRefMATHGoogle Scholar
  3. 3.
    Davies, E. B. and J. T. Lewis: An Operational Approach to Quantum Probability, Commun. Math. Phys., 17 (1970), 239–260.ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Davies, E. B.: Quantum Theory of Open Systems, Academic Press, London 1976.MATHGoogle Scholar
  5. 5.
    Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, de Gruyter, Berlin 1977.Google Scholar
  6. 6.
    Breiman, L.: Probability, Addison-Wesley, Reading, Massachusetts 1968.MATHGoogle Scholar
  7. 7.
    Cycon, H. and K.-E. Hellwig: Conditional expectations in generalized probability theory, J. Math. Phys., 18 (1977), 1154–1161.ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hellwig, K.-E.: Conditional Expectations and Duals of Instruments, in: Grundlagen der Exakten Naturwissenschaften, Bd. 5 (Ed. H. Neumann), Bibliographisches Institut, Mannheim 1981, 113–124.Google Scholar
  9. 9.
    Hellwig, K.-E. and W. Stulpe: A Formulation of Quantum Stochastic Processes and Some of its Properties, Found. Phys., 13 (1983), 673–699.ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ozawa, M.: Concepts of conditional expectations in quantum theory, J. Math. Phys., 26 (1985), 1948–1955.ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Stulpe, W.: Bedingte Erwartungen und stochastische Prozesse in der generalisierten Wahrscheinlichkeitstheorie, unpublished, Berlin 1985,Google Scholar
  12. 12.
    Srinivas, M. D.: Foundations of a quantum probability theory, J. Math. Phys., 16 (1975), 1672–1685.ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gudder, S.: Stochastic Methods in Quantum Mechanics, North Holland, New York 1979.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • Werner Stulpe
    • 1
  1. 1.Technische Universität BerlinFederal Republic of Germany

Personalised recommendations