An Introduction to Non Standard Analysis and Applications to Quantum Theory

  • Sergio Albeverio
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 294)


We briefly sketch the basic theory of non-standard analysis. We also discuss some applications to quantum theory and related areas (stochastic processes, partial differential equations).


Standard Analysis Dirichlet Form Stochastic Analysis Standard Part Internal Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Robinson, Non-Standard Analysis, North-Holland, Amsterdam (1966)MATHGoogle Scholar
  2. [2]
    D. Laugwitz, Infinitesimalkalkül, Bibliographisches Institut, Mannheim (1978)Google Scholar
  3. [3]a)
    D. Laugwitz, The Theory of Infinitesimals, Accademia Nazionale Lincei Roma (1980)Google Scholar
  4. 3b).
    D. Laugwitz, Grundbegriffe der Infinitesimalmathematik bei Leonhard Euler, pp. 459–483 in Folkerts und Lindgren, Edts., Mathemata, Franz Steiner Verlag, Stuttgart (1985);Google Scholar
  5. [4]
    S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, T. Lindstrøm, Non Standard methods in stochastic analysis and mathematical physics, Acad. Press New York (1986)Google Scholar
  6. [5]
    W.A.J. Luxemburg, Non-standard Analysis, Lectures on A. Robinson’s Theory of Infinitesimals and Infinitely Large Numbers, Caltech Bookstore, Pasadena, rev. 1964Google Scholar
  7. [6]
    M. Davis, Applied Nonstandard Analysis, J. Wiley, New York (1977)MATHGoogle Scholar
  8. [7]
    A. Hurd, P.A. Loeb, An introduction to nonstandard real analysis, Academic Press, New York (1985)MATHGoogle Scholar
  9. [8]
    J.M. Henle, E.M. Kleinberg, Infinitesimal Calculus, MIT-Press, Cambridge (1979)MATHGoogle Scholar
  10. [9]
    H.J. Keisler, Foundations of infinitesimal calculus, Prindle, Weber and Schmidt, Boston (1976)MATHGoogle Scholar
  11. [10]
    H.J. Keisler, An infinitesimal approach to stochastic analysis, Mem. Am. Math. Soc. 297 (1984)Google Scholar
  12. [11]
    K.D. Stroyan, J.M. Bayod, Foundations of infinitesimal stochastic analysis, North-Holland, Amsterdam (1986)MATHGoogle Scholar
  13. [12]
    A.E. Hurd, Ed., Nonstandard Analysis — Recent Developments, Lect. Notes in Maths. 983, Springer, Berlin (1983)MATHGoogle Scholar
  14. [13]
    K.D. Stroyan, W.A.J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press (1976)MATHGoogle Scholar
  15. [14]
    E. Zakon, Remarks on the nonstandard real axis, pp. 195–227 in Ref. [71]Google Scholar
  16. [15]
    W.A.J. Luxemburg, What is nonstandard analysis? Amer. Math. Monthly 80, 38–67 (1973)CrossRefMATHMathSciNetGoogle Scholar
  17. [16]
    J. Keisler, Elementary Calculus, Prindle, Weber & Schmidt, Boston (1976)MATHGoogle Scholar
  18. [17]
    E. Nelson, Internal set theory, Bull. Am. Math. Soc. 83, 1165–1198 (1977)CrossRefMATHGoogle Scholar
  19. [18]
    M. Richter, Ideale Punkte, Monaden und Nichtstandard-Methoden, Vieweg (1982)CrossRefMATHGoogle Scholar
  20. [19]
    F. Diener, Cours d’Analyse Non-standard, Université d’Oran, Office Publ. Univ. (1983)Google Scholar
  21. [20]
    R. Lutz, M. Goze, Non standard analysis, Lect. Notes Math. 881, Springer (1981)Google Scholar
  22. [21]
    S. Nagamachi, T. Mishimura, Linear canonical transformations on Fermion Fock space with indefinite metric, Tokushima Osaka Preprint (1984)Google Scholar
  23. [22]
    N.J. Cutland, Nonstandard measure theory and its applications, Bull. London Math. Soc. 15, 529–589 (1983)CrossRefMATHMathSciNetGoogle Scholar
  24. [23]
    R. Fittler, Some nonstandard quantum electrodynamics, Helv. Phys. Acta 57, 579–609 (1984)MATHMathSciNetGoogle Scholar
  25. [24]
    R. Fittler, More nonstandard quantum electrodynamics, FU Berlin, Preprint (1985)Google Scholar
  26. [25]
    Li Bang-He, Nonstandard analysis and multiplication of distributions, Scientia Sinica 21, 561- (1978)MathSciNetGoogle Scholar
  27. [26]
    Ph. Blanchard, J. Tarski, Renormalizable interactions in two-dimensions and sharp-time fields, Acta Phys. Austr. 49, 129–152 (1978)MathSciNetGoogle Scholar
  28. [27]
    A. Voros, Introduction to nonstandard analysis, J. Math. Phys. 14, 292–296 (1973)ADSCrossRefMATHMathSciNetGoogle Scholar
  29. [28]
    M.O. Farrukh, Applications of nonstandard analysis to quantum mechanics, J. Math. Phys. 16, 177- (1975)ADSCrossRefMATHMathSciNetGoogle Scholar
  30. [29]
    N.J. Cutland, Infinitesimal methods in control theory, deterministic and stochastic, Hull Preprint (1985), Acta Appl. Math. (1986)Google Scholar
  31. [30]
    J. Oikkonen, Harmonic analysis and nonstandard Brownian motion in the plane, Math. Scand. (1986)Google Scholar
  32. [31]
    A. Sloan, The strong convergence of Schrödinger progagators, Trans. Am. Math. Soc. 264, 557–570 (1981)MATHMathSciNetGoogle Scholar
  33. [32]
    A.L. MacDonald, Sturm-Liouville theory via nonstandard analysis, Ind. Uni. Math. J. 25, (1976)Google Scholar
  34. [33]
    J. Harthong, L’analyse non-standard, La Recherche 148, 1194–1201 (1983)Google Scholar
  35. [34]
    B. Birkeland, A singular Sturm-Liouville problem treated by nonstandard analysis, Math. Scand. 47 (1980)Google Scholar
  36. [35]
    J.E. Fenstad, Non-standard methods in stochastic analysis and mathematical physics, Jber. d. Dt. Math. Vereins 82, 167, 180 (1980)MathSciNetGoogle Scholar
  37. [36]
    S. Albeverio, Non-standard analysis: Polymer models, quantum fields, Acta Phys. Austr. Supp. 26, 233–254 (1984)Google Scholar
  38. [37]
    R.F. Hoskins, Standard and Nonstandard Mathematical Analysis, Ellis Horwood, Chichester (1986)Google Scholar
  39. [38]
    J.E. Fenstad, The discrete and the continuum in the mathematics and natural sciences, Oslo Preprint, Nov. 1985Google Scholar
  40. [39]
    S. Moore, Non-standard applications of non-standard analysis, Bogota PreprintGoogle Scholar
  41. [40]
    L.M. Pecora, A nonstandard infinite dimensional vector space approach to Gaussian functional measures, J. Math. Phys. 23, 969–982 (1982)ADSCrossRefMATHMathSciNetGoogle Scholar
  42. [41]
    A. Stoll, Self-repellent random walks and polymer measures in two dimensions, Diss., Bochum (1985); and appear in Proc. BiBoS Symp. II, Lect. Notes Math., Springer (Eds. S. Albeverio, Ph. Blanchard, L. Streit)Google Scholar
  43. [42]
    A.K. Zvonkin, M.A. Shubin, Nonstandard analysis and singular perturbations of ordinary differential equations, Russ. Math. Surv. 39, 69–131 (1984)CrossRefMATHMathSciNetGoogle Scholar
  44. [43]
    III Rencontre de géometrie du Schnepfenried, Vol. 2, Astérisque, 109–110 (1983)Google Scholar
  45. [44]
    S. Albeverio, R. Høegh-Krohn, Schrödinger operator with point interactions and short range expansions, Physica 124A, 11–28 (1984)CrossRefMATHMathSciNetGoogle Scholar
  46. [45]
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Some exactly solvable models in quantum mechanics and the low energy expansions, pp. 12–28 in “Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics”, Ed. H. Baumgärtel et al., Teubner, Leipzig (1984)Google Scholar
  47. [46]
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, book in preparationGoogle Scholar
  48. [47]
    L. Arkeryd, Loeb solutions of the Boltzmann equation, Arch. Rat. Mech. Anal. 86, 85–98 (1984f)CrossRefMATHMathSciNetGoogle Scholar
  49. [48]
    C. Keßler, Nonstandard methods in random fields, Diss., Bochum (1984)Google Scholar
  50. [49]
    T. Lindstrøm, Non-standard energy forms and diffusions on manifolds and fractals, to appear in Proc. Ascona Conf. “Stochastic Processes in Classical and Quantum Systems”, Eds. S. Albeverio, G. Casati, D. Merlini, Lect. Notes Phys. Springer (1986)Google Scholar
  51. [50]
    S. Albeverio, R. Høegh-Krohn, Diffusion fields, quantum fields and fields with values in Lie groups, pp. 1–98 in M. Pinsky (Ed.) Stochastic Analysis and Applications, M. Dekker, New York (1985)Google Scholar
  52. [51]
    M. Fukushima, Energy forms and diffusion processes, pp. 65–97 in “Mathematics + Physics, Lectures on Recent Results”, Vol. I, Ed. L. Streit, World Scientific Publ. (1985)CrossRefGoogle Scholar
  53. [52]
    S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, W. Karwowski, T. Lindstrøm, Perturbations of the Laplacian supported by null sets, with applications to polymer measures and quantum fields, Phys. Letts. 104 (1984)Google Scholar
  54. [53]
    S. Albeverio, Some points of interaction between stochastic analysis and quantum theory, BiBoS-Preprint, to appear in Proc. Conf. “Stochastic Systems and Applications”, Ed. K. Helmes (1986)Google Scholar
  55. [54]
    M. Diener, C. Lobry, Eds., Analyse non standard et representation du réel, Actes de L’Ecole d’Eté, OPU (Alger — CNRS (Paris)(1984)Google Scholar
  56. [55]
    J.E. Fenstad, Lectures on stochastic analysis with applications to mathematical physics, Proc. Simposio Chileno Log. Mat., Santiago (1986)Google Scholar
  57. [56] a)
    C. Keßler, The global Markov property for lattice spin systems in the case of uniqueness (in preparation) b) C. Keßler, The global Markov property of a convex combination of GMP-states (in preparation)Google Scholar
  58. [57]
    T. Lindstrøm, Nonstandard analysis and perturbation of the Laplacian along Brownian paths, pp. 180–200 in “Stochastic Processes — Mathematics and Physics”, Proc. BiBoS I, Eds. S. Albeverio, Ph. Blanchard, L. Streit, Lect. Notes Maths. 1158, Springer (1985)CrossRefGoogle Scholar
  59. [58]
    S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, Singular perturbations and non-standard analysis, Trans. Am. Math. Soc. 252, 275–295 (1979)CrossRefMATHGoogle Scholar
  60. [59]
    S. Albeverio, Ph. Blanchard, R. Køegh-Krohn, Newtonian diffusions and planets, with a remark on non-standard Dirichlet forms and polymery pp. 1–24 in “Stochastic Analysis and Applications”, Eds. A. Truman, D. Williams, Lect. Notes Maths. 1095, Springer (1984)CrossRefGoogle Scholar
  61. [60]
    C. Keßler, Hyperfinite representation of generalized random fields, Bochum, Preprint (1984)Google Scholar
  62. [61]
    G.F. Lawler, A self-avoiding random walk, Duke Math. J. 47, 655–692 (1980)CrossRefMATHMathSciNetGoogle Scholar
  63. [62]
    A. Robert, Analyse non standard, Presses Polyt. Romandes XVII, Lausanne (1985)Google Scholar
  64. [63]
    B. Birkeland, D. Normann, A non-standard treatment of the equation y′ = f(y,t), Mat. Sem. Oslo (1980)Google Scholar
  65. [64]
    E. Perkins, Stochastic processes and nonstandard analysis, in Ref. [12].Google Scholar
  66. [65]
    W.A.J. Luxemburg, A. Robinson, Contributions to Non-Standard Analysis, North-Holland, Amsterdam (1972)Google Scholar
  67. [66]
    C.E. Francis, Applications of non-standard analysis to relativistic quantum mechanics, J. Phys. A 14, 2539–2551 (1981)ADSCrossRefMATHMathSciNetGoogle Scholar
  68. [67]
    J. Tarski, Short introduction to nonstandard analysis and its physical applications, pp. 225–229 in “Many Degrees of Freedom in Field Theory”, Ed. L. Streit, Plenum, New York (1978)CrossRefGoogle Scholar
  69. [68]
    J. Harthong, Etudes sur la mécanique quantique, Astérisque 111 (1984)Google Scholar
  70. [69]
    P. Cartier, Perturbations singularières deséquations différentielles ordinaires et analyse non-standard, Astérisque 92–93 (1982)Google Scholar
  71. [70]
    S. Albeverio, Non-standard analysis: applications to probability theory and mathematical physics, to appear in Mathematics and Physics, Ed. L. Streit, World Scient. Publ., Singapore (1986)Google Scholar
  72. [71]
    W.A.J. Luxemburg, Ed., Applications of Model Theory to Algebra, Analysis and Probability, Holt, New York (1969)MATHGoogle Scholar
  73. [72]
    D. Laugwitz, Cauchy and infinitesimals, Darmstadt Preprint (1985)Google Scholar
  74. [73]
    L. Nottale, J. Schneider, Fractals and non-standard analysis, J. Math. Phys. 25, 1296–1300 (1984)ADSCrossRefMathSciNetGoogle Scholar
  75. [74]
    J. Brasche, Perturbation of Schrödinger Hamiltonians by measures self-adjointness end lower semiboundedness, J. Math. Phys. 26, 621–626 (1985); and paper in preparation.ADSCrossRefMATHMathSciNetGoogle Scholar
  76. [75]
    J. Persson, Fundamental theorems for linear measure differential equations, Lund Preprint (1985) (to appear in Math. Scand.)Google Scholar
  77. [76]
    A.N. Kochubei, Elliptic operators with boundary conditions on a subset of measure zero, Funct. Anal. Appl. 16, 137–139 (1982)CrossRefMathSciNetGoogle Scholar
  78. [77]
    V. Komkov, C. Waid, Asymptotic behavior of non-linear inhomogeneous equations via non-standard analysis, Ann. Pol. Math. 28, 67–87 (1973)MATHMathSciNetGoogle Scholar
  79. [78]
    S. Albeverio, D. Merlini, R. Høegh-Krohn, Euler flows, associated generalized random fields and Coulomb systems, pp. 197–215 in “Infinite dimensional analysis and stochastic processes”, Ed. S. Albeverio, Pitman (1985)Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • Sergio Albeverio
    • 1
  1. 1.Ruhr Universität BochumBochum

Personalised recommendations