Schrödinger’s Stochastic Variational Dynamics

  • Jean Claude Zambrini
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 294)


We summarize the results of a program, initiated by E. Schrödinger in 1931, and whose aim is to construct some unconventional diffusion processes associated to the classical Heat equation, in such a way that their properties are as close as possible to the ones of the probabilistic concepts involved in Quantum Mechanics. It is shown, in particular, that Nelson’s stochastic Mechanics can be reinterpreted in this frame.


Newton Equation Probabilistic Generalization Free Evolution Lagrangian Mechanics Bernstein Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Schrödinger, Sitzungsbericht der Preußischen Akademie, Phys. Math. Classe, 144 (1931); Ann. de l’Institut Henri-Poincaré 11, 300 (1932).Google Scholar
  2. 2.
    S. Bernstein, “Sur les liaisons entre les grandeurs aléatoires” in Verh. des intern. Mathematikerkongt. Zürich, Band 1 (1932).Google Scholar
  3. 3.
    R. Feynman and A. Hibbs, “Quantum Mechanics and Path Integrals”, McGraw-Hill, New York (1965).MATHGoogle Scholar
  4. 4.
    B. Jamison, Z. Wahrscheinlichkeitstheorie ver. Gebiete 30, 65 (1974);CrossRefMATHMathSciNetGoogle Scholar
  5. 4a.
    A. Beurling, Annals of Mathematics 72, 1, 189 (1960);CrossRefMathSciNetGoogle Scholar
  6. 4b.
    R. Fortet, J. Math. Pures et Appl. IX, 83 (1940).MathSciNetGoogle Scholar
  7. 5.
    J.C. Zambrini, “Variational processes and stochastic versions of mechanics”, to appear in J. of Math. Physics; “Stochastic Mechanics according to E. Schrödinger, to appear in Phys. Rev. A.Google Scholar
  8. 6.
    K. Yasue, J. Math. Phys. 22, 5, 1010 (1981);MathSciNetGoogle Scholar
  9. 6a.
    K. Yasue, J. Funct. Anal. 41, 327 (1981).CrossRefMATHMathSciNetGoogle Scholar
  10. 7.
    A. Blaquiere, paper presented in this conference.Google Scholar
  11. 8.
    S. Albeverio, K. Yasue, J.C. Zambrini, in preparation.Google Scholar
  12. 9.
    E. Nelson, Phys. Rev. 150, 1079 (1966); “Quantum Fluctuations”, Princeton U. Press (1985).ADSCrossRefGoogle Scholar
  13. 10.
    J.A. Wheeler and W.H. Zurek, Eds., “Quantum Theory and Measurements”, Princeton U. Press, Princeton, N.J. (1983).Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • Jean Claude Zambrini
    • 1
  1. 1.University of BielefeldFederal Republic of Germany

Personalised recommendations