Introduction from Quantum Physics to Quantum Technology

  • Simon Diner
Part of the International Centre for Mechanical Sciences book series (CISM, volume 294)


In the overview of the report on physics published under the direction of W.F. Brinkman: Physics through the 1990’s (1), one can read about quantum mechanics that it illustrates the unpredictable path by which new knowledge in physics can shape society.


Quantum Mechanic Quantum Theory Modern Theory Geometric Quantization Chaotic Phenomenon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Physics Through the 1990s. National Research Council, 1986. A review of this survey is given in Physics ToDay. April 1986.Google Scholar
  2. (2).
    Whigtman, A.S.: Hubert’s sixth problem. Mathematical treatment of the axioms of physics, in, Amer. Math. Soc. Symposia on pure mathematics vol. 28, 147–240, 1976.Google Scholar
  3. (2a).
    Gudder, S.P.: A survey of axiomatic quantum mechanics in Hooker, CA., ed. The logico-algebraic approach to quantum mechanics. Vol. II. Contemporary consolidation. Reidel. 1979.Google Scholar
  4. (2b).
    Ludwig, G.: Connections between different approaches to the foundations of quantum mechanics, in, Neumann, H., ed, Interpretations and foundations of quantum theory, B.I. Manheim. 1981.Google Scholar
  5. (3).
    Dirac, P.A.M.: The principles of quantum mechanics, Clarendon, Oxford, 1930.Google Scholar
  6. (3b).
    Von Neumann, J.: Mathematical foundations of quantum mechanics, Princeton U.P. Princeton, 1955.MATHGoogle Scholar
  7. (3c).
    Prugovecki, E.: Quantum mechanics in Hubert space, Academic Press N.Y. 1971.Google Scholar
  8. (4).
    Segal, I.E.: Ann. Math. 48, 930, 1947.CrossRefMATHGoogle Scholar
  9. (4a).
    Thirring, W.: Quantum mechanics of atoms and molecules (A course in mathematical physics, T.3), Springer 1981.Google Scholar
  10. (4b).
    Emch, G.G.: Mathematical and conceptual foundations of 20th century physics, North-Holland, Amsterdam 1984.MATHGoogle Scholar
  11. (5).
    Piron, C.: Foundations of quantum physics, Benjamin 1976.MATHGoogle Scholar
  12. (5a).
    Piron, C.: Cours de mécanique quantique, Université de Genève, 1985.Google Scholar
  13. (5b).
    Beltrametti, E.G. and Cassinelli, G.: The logic of quantum mechanics, Addison Wesley-Reading 1981.MATHGoogle Scholar
  14. (6).
    Davies, E.B. and Lewis, J.T.: Comm. Math. Phys. 17, 239, 1970.ADSCrossRefMATHMathSciNetGoogle Scholar
  15. (6a).
    Ludwig, G.: Foundations of quantum mechanics, I. Springer 1983.MATHGoogle Scholar
  16. (6b).
    Ludwig, G.: An axiomatic basis for quantum mechanics, I. Derivation of Hilbert space structure, Springer 1985.CrossRefGoogle Scholar
  17. (7).
    Randall, C.H. and Foulis, D.G.: The operational approach to quantum mechanics, in, Hooker, CA., ed, Physical theory as logico-operational structure, Reidel, 1979.Google Scholar
  18. (8).
    Feynman, R.P. and Hibbs, A.: Quantum mechanics and path integrals, MacGraw Hill, N.Y. 1965.MATHGoogle Scholar
  19. (8a).
    Schulman, L.S.: Techniques and applications of path integration, Wiley, 1981.MATHGoogle Scholar
  20. (8b).
    Glimm, J. and Jaffe, A.: Quantum physics. A functional integral point of view. Springer 1981.MATHGoogle Scholar
  21. (9).
    Grossman, A., Loupias, G. and Stein, E.M.: Ann. Inst. Fourier Grenoble, 18, 343, 1968.CrossRefMathSciNetGoogle Scholar
  22. (9a).
    Berezin, F. and Shubin, M.: The Schrödinger equation, Reidel, 1986.Google Scholar
  23. (10).
    Woodhouse, N.M.: Geometric quantization, Oxford U.P., 1980.MATHGoogle Scholar
  24. Sniatycki, J.: Geometric quantization and quantum mechanics, Springer, 1980CrossRefMATHGoogle Scholar
  25. (10a).
    Kirillov, A.A.: Geometric quantization, in, Arno “Id, B.I., and Novikov, S.P., eds, Contemporary problems of mathematics, Fundamental directions, Vol. 4, Vinniti an SSSR, Moscow 1985. (in russian, announced to be published in english by Springer in 1987 in a series under the title “Encyclopedia of Mathematical Sciences”).Google Scholar
  26. (11).
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D.: Ann. of Phys. 111, p. 61–110 and 111–151, 1978.ADSCrossRefMATHMathSciNetGoogle Scholar
  27. (11a).
    Lichnerowicz, A.: Deformations and quantization, in, Avez, A., Bèlaquire, A., and Marzollo, A.: Dynamical systems and microphysics, Geometry and mechanics, Academic Press, 1982.Google Scholar
  28. (12).
    Nelson, E.: Dynamical theories of brownian motion, Princeton U.P., 1967.MATHGoogle Scholar
  29. (12a).
    Nelson, E.: Quantum fluctuations, Princeton U.P., 1985.MATHGoogle Scholar
  30. (12b).
    Guerra, F.: Structural aspects of stochastic mechanics and stochastic field theory, in, De Witt-Morette, C., and Elworthy, K.D., eds. New stochastic methods in physics, Physics Reports 77, 3, 1981. Zambrini, J.C.: this volume.Google Scholar
  31. (13).
    Dekker, H.: Physics Reports 80, 1–112, 1981.ADSCrossRefMathSciNetGoogle Scholar
  32. (13a).
    Gisin, N.: Un modèle de dynamique quantique dissipative. Thèse, Genève, 1982.Google Scholar
  33. (13b).
    Gisin, N.: Found. of Physics, 13, 643, 1983. Courbage, M.: this volume.ADSCrossRefMathSciNetGoogle Scholar
  34. (14).
    Davies, E.B.: Quantum theory of open systems, Academic Press, 1976.MATHGoogle Scholar
  35. (14a).
    Exner, P.: Open quantum systems and Feynmann integrals, Reidel, 1984.Google Scholar
  36. (15).
    Zaslavsky, G.M.: Chaos in dynamical systems, Harwood, N.Y., 1985.Google Scholar
  37. (15a).
    Ackerhalt, J.R., Milonni, P.W. and Shih, M.L.: Chaos in quantum optics, Physics Reports, 128, 205–300, 1985.ADSCrossRefMathSciNetGoogle Scholar
  38. (16).
    Heistrom, C.W.: Quantum detection and estimation theory, Academic Press 1976.Google Scholar
  39. (16a).
    Holevo, A.S.: Probabilistic and statistical aspects of quantum theory, North Holland 1982.MATHGoogle Scholar
  40. (17).
    Lochak, G.: Comptes Rendus Acad. Sci. Paris, 250, 1985 and 2146, 1960.Google Scholar
  41. (18).
    Birkhoff, G.D.: Collected mathematical works, AMS Providence 1950.Google Scholar
  42. (19).
    Andronov, A.A.: Mathematical problems of the theory of self-oscillations (in russian) in 1st national conference on vibrations. Gostechteorizdat 1933, reprinted in Selected works of A.A. Andronov, Editions of the Academy of Science of SSR 1956, p. 85–124.Google Scholar
  43. (20).
    Benettin, G., Galgani, L. and Giorgilli, A.: On the persistance of ordered motions in hamiltonian systems and the problem of energy partition, in Diner, S., Fargue, D. and Lochak, G., eds., Dynamical Systems. A Renewal of Mechanism, World Scientific Publisher, Singapore, 1986.Google Scholar
  44. (21).
    Diner, S. in Diner, S., Fargue, D., Lochak, G. and Selleri, f. eos.: The wave-particle dualism, Reidel 1984.CrossRefGoogle Scholar
  45. (22).
    Gaponov-Grekhov, A.V. and Rabinovitch, M.I.: Nonlinear physics, Stochasticity and Structures, in Twentieth Century Physics, Development and perspectives, Naouka, Moscow, 1984 (in russian).Google Scholar
  46. (23).
    Hasegawa, A.: Advances in Physics 34, 1–42, 1985.ADSCrossRefMathSciNetGoogle Scholar
  47. (24).
    Lesieur, M. in Tatsumi, T. ed.:.Turbulence and chaotic phenomena in fluids, North-Holland, 1984 and some other papers in that book.Google Scholar
  48. (25).
    For a review of Stochastic Electrodynamics and an analysis of it’s failure see (21) and de la Pena, L. in Gomez, B., Moore, S.M., Rodriguez-Vargas, Rueda, A.: Stochastic processes applied to physics and other related fields, World Scientific Publ. Singapore 1983.Google Scholar
  49. (26).
    Boyer, T.H.: The classical vacuum, Scientific American, August 1984.Google Scholar
  50. (26a).
    Maddox, J.: How empty is the vacuum ? Nature 305, 273, 1983.ADSCrossRefGoogle Scholar
  51. (26b).
    Podolnyi, R.: Something called nothing, Znanie-Moscow 1983 (in russian).Google Scholar
  52. (27).
    Hulet, R.G., Hilfer, E.S. and Kleppner, D.: Phys. Rev. Lett. 55, 2137, 1985.ADSCrossRefGoogle Scholar
  53. (28).
    Rauch, H.: Contemporary Physics 27, 345, 1986.ADSCrossRefGoogle Scholar
  54. (29).
    Nagourney, W., Sandberg, J. and Dehmelt, H.: Phys. Rev. Lett. 56, 2797, 1986.ADSCrossRefGoogle Scholar
  55. (29a).
    Maddox, J.: Nature 323, 577, 1986.ADSCrossRefGoogle Scholar
  56. (30).
    Chu, S., Bjorkholm, J., Ashkin, A., Cable, A.: Phys. Rev. Lett. 57, 314, 1986.ADSCrossRefGoogle Scholar
  57. (30a).
    Maddox, J.: Nature, 322, 403, 1986.ADSCrossRefGoogle Scholar
  58. (31).
    Since 1986 a new journal is published by Wiley: Journal of molecular electronics. See also: Carter, F.L., ed.: Molecular electronic devices, Dekker N.Y. 1982.Google Scholar
  59. (31a).
    Haddon, R.C. and Lamola, A.A.: Proc. Nat. Acad. Sci. U.S.A. 82, 1874, 1985.ADSCrossRefGoogle Scholar
  60. (32).
    The March 1986 issue of Physics ToDay is entirely devoted to surper-conducting technology.Google Scholar
  61. (33).
    Binnig, G. and Rohrer, H.: Scientific American, August 1985 p. 50.Google Scholar
  62. (33a).
    Wolf, E.L.: Principles of electron tunneling spectroscopy, Oxford U.P. 1985.Google Scholar
  63. (34).
    Cutler, P.H., ed.: Quantum metrology and fundamental physical constants, Plenum, 1983.Google Scholar
  64. (35).
    Feynman, R.P.: Quantum mechanical computers, Optics News, February 1985. Peres, A.: Phys. Rev. A. 1985.Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • Simon Diner
    • 1
  1. 1.Institut de Biologie Physico-ChimiqueParisFrance

Personalised recommendations