Advertisement

Abstract

Part TV is devoted to optimal design of thin-walled bars under stability constraints. The aim of this part is to review all the single and compound buckling modes which must be taken into account in the optimal design of thin-walled bars. The optimal design of hollow and open thin-walled profiles is studied by means of efficiency charts. At last, some examples of optimization using mathematical programming are shown.

Keywords

Ultimate Load Local Buckling Hollow Section Torsional Buckling Lateral Buckling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rondal, J.: Thin-Walled Structures. Proceedings of the Second Re-qional Colloquium on Stability of Steel Structures, Final Report, Hungary September 25 – 26, 1986, 269 – 285.Google Scholar
  2. 2.
    Wei-Wen Yu: Cold-Formed Steel Design. John Wiley and sons, New-York, 1985.Google Scholar
  3. 3.
    Skaloud, M.: Le critère de l’état limite des plaques et systèmes de plaques. Proceedings du Colloque International sur le Comportement Postcritique des Plaques utilisées en Construction Métallique, Liège Novembre 12 – 13, 1962, 41 – 63.Google Scholar
  4. 4.
    Koiter, W.T.: Introduction to the Post-Buckling Behaviour of Flat Plates. Proceedings du Colloque International sur le Comportement Postcritique des Plaques Utilisées en Construction Métallique, Liège Novembre 12 – 13, 1962, 17 – 35.Google Scholar
  5. 5.
    Costa Ferreira, C.M. and Rondal, J.: Effet des imperfections sur les phénomènes d’instabilité des structures en acier. Annales de l’Institut Technique du Bâtiment et des Travaux Publics, 451 (1987), 78 – 99.Google Scholar
  6. 6.
    Itoh, Y.: Ultimate Strength Variations of Structural Steel Members. University of Nagoya, Department of Civil Engineering, Doctoral Dissertation, 1984.Google Scholar
  7. 7.
    Koiter, W.T.: Over de stabiliteit van het elastisch evenwicht. Technological University of Delft, Department of Civil Engineering, Doctoral Dissertation, 1945.Google Scholar
  8. 8.
    Thompson, J.M.T. and Hunt, G.W.: A General Theory of Elastic Stability. John Wiley and sons, London, 1973.MATHGoogle Scholar
  9. 9.
    Koiter, W.T.: Post-Buckling of a Simple Two-Bar Frame, in: Recent Progress in Applied Mechanics. Almqvist and Wiksell, Stockholm, 1967, 337 – 354.Google Scholar
  10. 10.
    Roorda, J.: Buckling of Elastic Structures. University of Waterloo, Department of Civil Engineering, 1980.MATHGoogle Scholar
  11. 11.
    Gioncu, V. and Ivan, M.: Bazele calculului structurilor la stabili-tate. Editura Facia, Timisoara, 1983.Google Scholar
  12. 12.
    Roorda, J.: The Bucklino Behaviour of Imperfect Structural Systems. Journal of the Mechanics’ and Physics of Solids, 13 (1965), 267 – 280.CrossRefGoogle Scholar
  13. 13.
    Ayrton, W.E. and Perry, J.: On Struts. The Engineer, December 10, (1886), 464 – 465 and December 24 (1886), 513 – 515’.Google Scholar
  14. 14.
    European Convention for Constructional Steelwork: European Recommendations for Steel Construction. ECCS, EG 77 – 1E, 1977.Google Scholar
  15. 15.
    Rondal, J.: Residual Stresses in Cold-Rolled Profiles. Construction and Building Materials, 1 (1987), 150 – 164.CrossRefGoogle Scholar
  16. 16.
    Costa Ferreira, C.M. and Rondal, J.: Influence of Flexural Residual Stresses on the Stability of Compressed Angles. Proceedings of the International Conference on Steel Structures, Budva September 28 – October 1, 1986, 147 – 155.Google Scholar
  17. 17.
    Karren, K.W. and Winter, G.: Effects of Cold-Forming on Light-Gage Steel Members. Journal of the Structural Division, 93 (1967), 433 – 469.Google Scholar
  18. 18.
    Chajes, A., Britvec, S.J. and Winter, G.: Effects of Cold-Straining on Structural Sheet Steels. Journal of the Structural Division, 89, (1963), 1 – 32.Google Scholar
  19. 19.
    Karren, K.W.: Corner Properties of Cold-Formed Steel Shapes. Journal of the Structural Division, 93 (1967), 401 – 432.Google Scholar
  20. 20.
    Lind, N.C. and Schroff, D.K.: Utilization of Cold Work in Cold-Formed Steel. Journal of the Structural Division, 101 (1975), 67 – 78.Google Scholar
  21. 21.
    Rondal, J. and Maquoi, R.: Formulations d’Ayrton-Perry pour le flambement des barres métalliques. Construction Métallique, 4 (1979) 41 – 53.Google Scholar
  22. 22.
    Wagner, H.: Verdrehung und Knickung von offenen Profilen. Festschrift 25. Jahre Technische Hochschule Danzig, 1929.Google Scholar
  23. 23.
    Costa Ferreira, C.M. and Rondal, J.: Flambement des cornières à parois minces. Annales des Travaux Publics de Belgique, 2 (1986), 101 – 121.Google Scholar
  24. 24.
    Fukumoto, Y. and Kubo, M.: A Survey of Tests on Lateral Buckling Strength of Beams. Proceedings of the Second International Colloquium on Stability of Steel Structures, Preliminary Report, Liège, April 13 – 15, 1977, 233 – 240.Google Scholar
  25. 25.
    Prandtl, L.: Kipperscheinungen. Dissertation, München, 1899.Google Scholar
  26. 26.
    Winter, G.: Cold-Formed Light-Gage Steel Construction. Journal of the Structural Division, 85 (1959), 151 – 173.Google Scholar
  27. 27.
    Batista, E.: Etude de la stabilité des profils à parois minces et section ouverte de types U et C. University of Liège, Department of Civil Engineering, Doctoral Dissertation, 1988.Google Scholar
  28. 28.
    Grimault, J.P., Maquoi, R., Mouty, J., Plumier, A. and Rondal, J.: Stabilité des poutres-poteaux en profils creux à parois minces. Construction Métallique, 4 (1984), 33 – 41.Google Scholar
  29. 29.
    Gioncu, V.: New Conceptions, Trends and Perspectives in the Theory of Postentical Behaviour of Structures. Proceedings of the Third International Colloquium on Stability, Timisoara October 16, 1982, 3 – 26.Google Scholar
  30. 30.
    Reis, A.J.: Interactive Buckling in Thin-Walled Structures, in: Developments in Thin-Walled Structures, Vol. 3 (Ed. J. Rhodes and A.C. Walker), Elsevier, London, 1987, 237 – 279.Google Scholar
  31. 31.
    Djubek, J., Kodnar, R. and Skaloud, M.: Limit State of the Plate Elements of Steel Structures, Veda, Bratislava, 1983.Google Scholar
  32. 32.
    von Karman, T., Sechler, E.E. and Donnel, L.H.: Strength of Thin-Plates in Compression. Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics, 54 (1932), 53 – 57.MATHGoogle Scholar
  33. 33.
    American Iron and Steel Institute: Specification for the Design of Cold-Formed Steel Structural Members. AISI, August 19, 1986 Edition.Google Scholar
  34. 34.
    European Convention for Constructional Steelwork: European Recommendations for the Design of Light Gauge Steel Members. ECCS, 49, 1987.Google Scholar
  35. 35.
    Usami, T. and Fukumoto, Y.: Local and Overall Buckling of Welded Box Columns. Journal of the Structural Division, 108 (1982), 525 – 542.Google Scholar
  36. 36.
    Hasegawa, A., Abo, H., Mauroof, M. and Nishino, F.: A Simplified Analysis and Optimality on the Steel Column Behavior with Local Buckling. Proceedings of the Japan Society of Civil Engineers, Structural Engineering and Earthquake Engineering, 3 (1986),195 – 204.Google Scholar
  37. 37.
    Braham, M., Grimault, J.P., Massonnet, C., Mouty, J. and Rondal, J.: Buckling of Thin-Walled Hollow Sections — Cases of Axially Loaded Rectangular Sections. Acier-Stahl-Steel, 5 (1980), 30 – 36.Google Scholar
  38. 38.
    Bleich, F.: Buckling Strength of Metal Structures, McGraw-Hill, New-York, 1952.Google Scholar
  39. 39.
    Shanley, F.R.: Optimum Design of Eccentrically Loaded Columns. Journal of the Structural Division, 93 (1967), 201 – 226.Google Scholar
  40. 40.
    Tuckerman, L.B., Petrenko, S.N. and Johnson, C.D.: Strength of Tubing under Combined Axial and Transverse Loading. National Advisory Committee for Aeronautics, Technical Note 307, 1929.Google Scholar
  41. 41.
    Thompson, J.M.T. and Hunt, G.W.: Dangers of Structural Optimization. Engineering Optimization, 1 (1974), 99 – 110.CrossRefGoogle Scholar
  42. 42.
    Thompson, J.M.T. and Lewis, G.M.: On the Optimum Design of Thin-Walled Compression Members. Journal of the Mechanics and Physics of Solids, 20 (1972), 101 – 109.CrossRefGoogle Scholar
  43. 43.
    Van der Neut, A.: The Interaction of Local Buckling and Column Failure of Thin-Walled Compression Members. Technological University of Delft, Department of Aeronautical Engineering, Report VTH 149, 1968.Google Scholar
  44. 44.
    Rondal, J. and Maquoi, R.: On the Optimum Design of Square Hollow Compression Members. Proceedings of the IUTAM Symposium on Collapse-The Bucklinq of Structures in Theory and Practice, London August 31 Rondal, J. and Maquoi, R.: September 3, 1982, 333 – 344.Google Scholar
  45. 45.
    Maquoi, R. and Massonnet, C.: Interaction between Local Plate Buckling and Overall Buckling in Thin-Walled Compression Members-Theories and Experiments. Proceedings of the IUTAM Symposium on Buckling of Structures, Cambridge June 17 – 21, 1974, 365 – 382.Google Scholar
  46. 46.
    Templeman, A.B.: Synthesis and Conclusions on the Theme: Progress in Structural Optimization. Proceedings of the Tenth IABSE Congress, Final Report, Tokyo September 6 – 11, 1976, 155 – 156.Google Scholar
  47. 47.
    Hartmann, D.: Uber die Grundlagen und Methoden der Optimierung. Proceedings of the Tenth IABSE Congress, Final Report, Tokyo September 6 – 11, 1976, 111 – 114.Google Scholar
  48. 48.
    Maquoi, R. and Rondal, J.: Preponderance of Idealization in Structural Optimization. Proceedings of the Tenth IABSE Congress, Final Report, Tokyo September 6 – 11, 1976, 95 – 98.Google Scholar
  49. 49.
    Halmos, G.T.: Design for Manufacturabi1ity. Proceedings of the Fifth International Specialty Conference on Cold-Formed Steel Structures, St. Louis November 18 – 19, 1980, 727 – 754.Google Scholar
  50. 50.
    Seaburg, P.A. and Salmon, C.G.: Minimum Weight Design of Light Gage Steel Members. Journal of the Structural Division, 97 (1971), 203 – 222.Google Scholar
  51. 51.
    Rondal, J. and Maquoi, R.: Etude d’une gamme optimale de profils creux carrés et rectangulaires. Annales de l’Institut Technique du Bâtiment et des Travaux Publics, 409 (1982), 61 – 72.Google Scholar
  52. 52.
    Farkas, J.: Optimum Design of Metal Structures. Ellis Horwood, Chichester, 1984.Google Scholar
  53. 53.
    Maquoi, R., Massonnet, C. and Rondal, J.: Promoting the Use of Thin-Walled Hollow Rectangular Sections by Increasing Steel Grade, in: Behaviour of Thin-Walled Structures. (Ed. J. Rhodes and J. Spence), Elsevier, London, 1984.Google Scholar
  54. 54.
    Rondal, J. and Maquoi, R.: Optimal Ranges of Beam-Columns with Square or Rectangular Hollow Sections. Proceedings of the Second Recional Colloquium on Stability of Steel Structures. Volume II, Hungary September 25 – 26, 1986, 285 – 291.Google Scholar
  55. 55.
    Gajeswski, A. and Zyczkowski, M.: Optimal Structural Design under Stability Constraints, Martinus Nijhoff, Dordrecht, 1987.Google Scholar
  56. 56.
    Turner, H.K. and Plant, R.H.: Optimal Design for Stability under Multiple Loads. Journal of the Structural Division, 106 (1980), 1365 – 1382.Google Scholar
  57. 57.
    European Convention for Constructional Steelwork: Behaviour and Desiqn of Steel Plated Structures. (Ed. P. Dubas and E. Gehri). ECCS., 44, 1986.Google Scholar
  58. 58.
    Structural Stability Research Council: Guide to Stability Design Criteria for Metal Structures (Ed. B.G. Johnston), Third Edition, Wiley, New-York, 1976.Google Scholar
  59. 59.
    American Institute of Steel Construction: Stability of Metal Structures — A World View, (Ed. D. Sfintesco, L.S. Beedle, G.W. Schulz and R. Zandonini). AISC, 1982.Google Scholar
  60. 60.
    Ramamurthy, S. and Gallagher, R.H.: Generalized Geometric Programming in Cold-Formed Steel Design. Proceedings of the Fourth International Specialty Conference on Cold-Formed Steel Structures, St. Louis June 1 – 2, 1978, 41 – 72.Google Scholar
  61. 61.
    Avriel, M., Dembo, R. and Passy, U.: Solution of Generalized Geometric Proqrams. International Journal for Numerical Methods in Engineering, 9 (1975), 149 – 168.CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    Maquoi, R. and Rondal, J.: Optimum Cross-Sectional Properties for Unstiffened Plate Girders. Proceedings of the Second International Colloquium on Stability of Steel Structures, Final Report, Liège April 13 – 15, 1977, 155 – 156.Google Scholar
  63. 63.
    Rondal, J. and Maquoi, R.: Optimization of Unstiffened Hybrid I Beams with Stability Constraints. Proceedings of the Regional Colloquium on Stability of Steel Structures, Hungary October 19 – 21, 1977, 373 – 382.Google Scholar
  64. 64.
    Himmelblau, D.M.: Applied Nonlinear Programming, McGraw-Hill, New-York, 1972.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1989

Authors and Affiliations

  • J. Rondal
    • 1
  1. 1.University of LiègeLiègeBelgium

Personalised recommendations