Advertisement

Abstract

Part III deals with problems of elastic optimal design of conservative mechanical systems with respect to fundamental and higher order eigenvalues. The structural eigenvalues are used as objective functions or applied as behavioural constraints. They identify, e.g., natural frequencies of axial or torsional vibrations of rods and bars, transverse vibrations of beams, critical whirling speeds of rotating shafts, or structural buckling loads. A unified variational formulation for optimal design of one-dimensional continuum systems with respect to simple fundamental eigenvalue is presented first, and this serves as a framework for a thorough discussion of extended problems involving optimization with respect to bi- or multimodal fundamental eigenvalues, and higher order eigenvalues.

Keywords

Optimal Design Critical Speed Transverse Vibration Rayleigh Quotient Fundamental Natural Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wasiutynski, Z. & Brandt, A.: Appl. Mech. Rev. 16, 344–350 (1963).Google Scholar
  2. 2.
    Sheu, C.Y. & Prager, W.: Appl. Mech. Rev. 21, 985–992 (1968).Google Scholar
  3. 3.
    Prager, W.: AGARD-Rept. No. 589 (1971).Google Scholar
  4. 4.
    Niordson, F.I. & Pedersen, P.: Proc. 13th Int. Cong. Th. Appl. Mech. Moscow, 264–278, Springer-Verlag (1973).Google Scholar
  5. 5.
    Rozvany, G.I.N. & Mröz, Z.: Appl. Mech. Rev. 10, 1461–1470 (1977).Google Scholar
  6. 6.
    Venkayya, V.B.: Int. J. Num. Meth. in Engrg. 13, 203–228 (1978).Google Scholar
  7. 7.
    Schmit, L.A.: AIAA J. 19, 1249–1263 (1981).Google Scholar
  8. 8.
    Lev, O.E.: American Society of Civil Engineers, New York (1981).Google Scholar
  9. 9.
    Haug, E.J.: In Ref. [23], 3–74 (1981).Google Scholar
  10. 10.
    Vanderplaats, G.N.: AIAA J. 20, 992–1000 (1982).MATHMathSciNetGoogle Scholar
  11. 11.
    Ashley, H.: J. Aircraft 19, 5–28 (1982).Google Scholar
  12. 12.
    Olhoff, N. & Taylor, J.E.: J. Appl. Mech. 50, 1139–1151 (1983)MATHMathSciNetGoogle Scholar
  13. 13.
    Levy, R. & Lev, O.E.: Proc. ASCE, J. Struct. Engrg. 113 1939–62 (1987).Google Scholar
  14. 14.
    Hemp, W.S.: Optimum Structures, Clarendon, Oxford (1973).Google Scholar
  15. 15.
    Gallagher, R.H. & Zienkiewicz, O.C.: Optimum Structural Design, John Wiley, New York (1973).MATHGoogle Scholar
  16. 16.
    Prager, W.: Introduction to Structural Optimization, Springer-Verlag (1974).MATHGoogle Scholar
  17. 17.
    Distefano, N.: Non-Linear Processes in Engineering, Academic Press, New York (1974).Google Scholar
  18. 18.
    Sawczuk, A. & Mroz, Z. (Eds.): Optimization in Structural Design, Springer-Verlag, Berlin (1975).Google Scholar
  19. 19.
    Rozvany, G.I.N.: Optimal Design of Flexural Systems, Pergamon, Oxford (1976). Russian version: Strojizdat, Moscow (1980).Google Scholar
  20. 20.
    Reitman, M.I. & Shapiro, G.B.: Methods of Optimal Design of Deformable Bodies (in Russian), Nauka, Moscow (1976).Google Scholar
  21. 21.
    Haug, E.J. & Arora, J.S.: Applied Optimal Design, John Wiley, New York (1979).Google Scholar
  22. 22.
    Grinev, W.B. & Filippov, A.P.: Optimization of Beams Governed by Eigenvalue Problems (in Russian), Naukova Dumka, Kiev (1979).Google Scholar
  23. 23.
    Haug, E.J. & Cea, J. (Eds.): Optimization of Distributed Parameter Structures, Sijthoff & Nordhoff, Netherlands (1981).MATHGoogle Scholar
  24. 24.
    Kirsch, U.: Optimum Structural Design, McGraw-Hill, New York (1981).Google Scholar
  25. 25.
    Carmichael, D.G.: Structural Modelling and Optimization, Ellis Horwood Ltd., Chichester (1981).MATHGoogle Scholar
  26. 26.
    Troitskij, W.A. & Petuchov, L.W.: Optimal Design of Elastic Bodies (in Russian), Nauka, Moscow (1982).Google Scholar
  27. 27.
    Lepik, Ü.: Optimal Design of Inelastic Structures Under Dynamic Loading (in Russian; Extended summary in English), Walgus, Tallinn (1982).Google Scholar
  28. 28.
    Morris, A.J. (Ed.): Foundations of Structural Optimization: A Unified Approach, Wiley, New York (1982).Google Scholar
  29. 29.
    Eschenauer, H. & Olhoff, N. (Eds.): Optimization Methods in Structural Design, Bibliographisches Institut, Mannheim, FRG (1983).MATHGoogle Scholar
  30. 30.
    Haug, E.J., Choi, K.K. & Komkov, V.: Design Sensitivity Analysis of Structural Systems, Academic Press, New York (1983).Google Scholar
  31. 31.
    Banichuk, N.V.: Problems and Methods of Optimal Structural Design, Plenum Press, New York (1983).Google Scholar
  32. 32.
    Brandt, A.M.: Criteria and Methods of Structural Optimization, Nijhoff Publishers, The Hague (1984).Google Scholar
  33. 33.
    Atrek, E., Gallagher, R.H., Ragsdele, K.M. & Zienkiewicz, O.C. (Eds.): New Directions in Optimum Structural Design, Wiley, New York (1984).MATHGoogle Scholar
  34. 34.
    Vanderplaats, G.A.: Numerical Optimization Techniques for Engineering Design, McGraw-Hill, New York (1984).MATHGoogle Scholar
  35. 35.
    Haftka, R.T. & Kamat, M.P.: Elements of Structural Optimization, Nijhoff Publishers, The Hague (1985).MATHGoogle Scholar
  36. 36.
    Soares, C.A.M. (Ed.): Computer Aided Optimal Design: Structural and Mechanical Systems, Springer-Verlag, Berlin (1987).MATHGoogle Scholar
  37. 37.
    Gajewski, A. & Zyczkowski, M.: Optimal Structural Design under Stability Constraints, Kluwer Academic Publishers, Dordrecht, Netherlands (1988).MATHGoogle Scholar
  38. 38.
    Rozvany, G.I.N.: Structural Design via Optimality Criteria, Kluwer Academic Publishers, Dordrecht, Netherlands (1989).MATHGoogle Scholar
  39. 39.
    Lurie, K.A.: Applied Optimal Control of Distributed Systems, Plenum Press, New York (to appear).Google Scholar
  40. 40.
    Lagrange, J.L.: Miscellanea Taurinensia V, 123 (1770–1773).Google Scholar
  41. 41.
    Clausen, T.: Mélanges Mathématiques et Astronomiques I, 279–294 (1849–1853).Google Scholar
  42. 42.
    Keller, J.B.: Arch. Rat. Mech. Anal. 5 275–285 (1960).Google Scholar
  43. 43.
    Niordson, F.I.: Quart. Appl. Math. 23, 47–53 (1965).MathSciNetGoogle Scholar
  44. 44.
    Ashley, H. & Mcintosh, S.C. Jr.: Proc. 12th Int. Cong. Th. Appl. Mech. (Ed. M. Hetényi & W.G. Vincenti), 100–113, Stanford, Springer-Verlag (1969).Google Scholar
  45. 45.
    Pierson, B.L.: Int. J. Num. Meth. Engrg. 4 491–499 (1972).Google Scholar
  46. 46.
    Reitman, M.I. & Shapiro, G.S.: All-Union Symp. “On the Problems of Optimization in Mech. of Solid Deformable Bodies”, Vilnius, USSR, June (1974).Google Scholar
  47. 47.
    Rao, S.S.: Shock Vib. Dig. 7, 61–70 (1975).Google Scholar
  48. 48.
    Olhoff, N.: Shock Vib. Dig. 8, No. 8, 3–10 (Part I: Theory), 8, No. 9 3–10 (Part II: Applications (1976).Google Scholar
  49. 49.
    Olhoff, N.: Proc. 15th Int. Cong. Th. Appl. Mech., Toronto, Canada, 133–149, North-Holland (1980).Google Scholar
  50. 50.
    Keller, J.B. & Niordson, F.I.: J.Math. Mech. 16, 433–446 (1966).MATHMathSciNetGoogle Scholar
  51. 51.
    Taylor, J.E.: AIAA J. 6, 1379–1381 (1968).Google Scholar
  52. 52.
    Masur, E.F.: J. Engrg. Mech. Div., ASCE, 96, 621–640 (1970).Google Scholar
  53. 53.
    Prager, W & Taylor, J.E.: J. Appl. Mech. 35, 102–106 (1968).MATHGoogle Scholar
  54. 54.
    Brach, R.M.: J. Opt. Th. & Appl. 11, 662–667 (1973).MATHMathSciNetGoogle Scholar
  55. 55.
    Taylor, J.E.: AIAA J. 5, 1911–1913 (1967).Google Scholar
  56. 56.
    Vavrick, D.J. & Warner, W.H.: J. Struct. Mech. 6, 233–246 (1978).Google Scholar
  57. 57.
    Seyranian, A.P.: Int. J. Solids Struct. 15, 749–759 (1979).MATHGoogle Scholar
  58. 58.
    Olhoff, N. & Niordson, F.I.: ZAMM 59, T16–T26 (1979).MathSciNetGoogle Scholar
  59. 59.
    Karihaloo, B.L. & Niordson, F.I.: J. Opt. Th. & Appl. 11, 638–654 (1973).MATHMathSciNetGoogle Scholar
  60. 60.
    Olhoff, N.: J. Struct. Mech. 4, 87–122 (1976).Google Scholar
  61. 61.
    Turner, M.J.: AIAA J. 5, 406–412 (1967).MATHGoogle Scholar
  62. 62.
    Olhoff, N. & Taylor, J.E.: J. Opt. Th. & Appl. 27, 571–582 (1979).MATHMathSciNetGoogle Scholar
  63. 63.
    Taylor, J.E. & Liu, C.Y.: AIAA J. 6, 1497–1502 (1968).MATHGoogle Scholar
  64. 64.
    Tadjbakhsh, I. & Keller, J.B.: J. Appl. Mech. 29, 159–164 (1962).MATHMathSciNetGoogle Scholar
  65. 65.
    Masur, E.F.: J. Opt. Th. & Appl. 15, 69–84 (1975).MathSciNetGoogle Scholar
  66. 66.
    Popelar, C.H.: J. Struct. Mech. 5, 45–66 (1977).Google Scholar
  67. 67.
    Olhoff, N. & Rasmussen, S.H.: Int. J. Solids Struct. 13, 605–614 (1977).MATHGoogle Scholar
  68. 68.
    Brach, R.M.: Int. J. Solids Struct. 4, 667–674 (1968).MATHGoogle Scholar
  69. 69.
    Karihaloo, B.L. & Niordson, F.I.: Arch, of Mech. 24, 1029–1037 (1972).Google Scholar
  70. 70.
    Huang, N.C. & Sheu, C.Y.: Appl. Mech 35, 285–288 (1968).Google Scholar
  71. 71.
    Frauenthal, J.C.: J. Struct. Mech. 1, 79–89 (1972).Google Scholar
  72. 72.
    Adali, S.: Int. J. Solids Struct. 15, 935–949 (1979).MATHMathSciNetGoogle Scholar
  73. 73.
    Simitses, G.J., Kamat, M.P. & Smith, C.V. Jr.: AIAA J. 11, 1231–1232 (1973).Google Scholar
  74. 74.
    Rasmussen, S.H.: J. Struct. Mech. 4, 307–320 (1976).Google Scholar
  75. 75.
    Olhoff, N. & Taylor, J.E.: J. Struct. Mech. 6, 367–382 (1978).Google Scholar
  76. 76.
    Taylor, J.E.: J. Appl. Mech. 34, 486–487 (1967).Google Scholar
  77. 77.
    Banichuk, N.V. & Karihaloo, B.L.: Int. J. Solids Struct. 13, 725–733 (1977).MATHGoogle Scholar
  78. 78.
    Banichuk, N.V.: MTT (Mechanics of Solids), 9, 150–154 (1974).Google Scholar
  79. 79.
    Mröz, Z. & Rozvany, G.I.N.: J. Struct. Mech. 5, 279–290 (1977).Google Scholar
  80. 80.
    Szelag, D. & Mröz, Z.: ZAMM 58, 501–510 (1978).MATHGoogle Scholar
  81. 81.
    Masur, E.F.: In Ref. [18], 441–453 (1975)Google Scholar
  82. 82.
    Bendsøe, M.P., Olhoff, N. & Taylor, J.E.: J. Struct. Mech. 11 523–544 (1983–84).Google Scholar
  83. 83.
    Taylor, J.E. & Bendsoe, M.P.: Int. J. Solids Struct. 20, 301–314 (1984).MATHMathSciNetGoogle Scholar
  84. 84.
    Masur, E.F. & Mröz, Z.: Proc. IUTAM Symp. on Variational Methods in the Mech. of Solids (Ed. S. Nemat-Nasser), Northwestern Univ., USA, Pergamon Press (1980).Google Scholar
  85. 85.
    Masur, E.F.: Int. J. Solids Struct. 20, 211–231 (1984).MATHMathSciNetGoogle Scholar
  86. 86.
    Bratus, A.S. & Seyranian, A.P.: Prikl. Mat. Mekh. 47, 451–457 (1983).MathSciNetGoogle Scholar
  87. 87.
    Bratus, A.S. & Seyranian, A.P.: Prikl. Mat. Mekh. 48, 466–474 (1984).MathSciNetGoogle Scholar
  88. 88.
    Seyranian, A.P.: Doklady Acad. Nauk USSR 271, 337–40 (1983). English translation: Sov. Phys. Dokl. 28, 550–51 (1983).Google Scholar
  89. 89.
    Seyranian, A.P.: MTT (Mechanics of Solids) 19, 101–111 (1984).Google Scholar
  90. 90.
    Prager, S. & Prager, W.: Int. J. Mech. Sci. 21, 249–251 (1979).Google Scholar
  91. 91.
    Gajewski, A.: Int. J. Mech. Sci. 23, 11–16 (1981).MATHGoogle Scholar
  92. 92.
    Blachut, J. & Gajewski, A.: Int. J. Solids Struct. 17, 653–667 (1981).MATHGoogle Scholar
  93. 93.
    Blachut, J. & Gajewski, A.: Optimal Control Appl. Methods 2, 383–402 (1981).MATHGoogle Scholar
  94. 94.
    Olhoff, N. & Plaut, R.H.: Int. J. Solids Struct. 19, 553–570 (1983).MATHGoogle Scholar
  95. 95.
    Rezaie-Keyvan, N. & Masur, E.F.: J. Struct. Mech 13, 181–200 (1985).Google Scholar
  96. 96.
    Blachut, J.: Int. J. Mech. Sci. 26, 305–310 (1984).MATHGoogle Scholar
  97. 97.
    Bochenek, B. & Gajewski, A.: J. Struct. Mech. 14, 257–274 (1986).Google Scholar
  98. 98.
    Gajewski, A.: Int. J. Mech. Sci. 27, 45–53 (1985).MATHGoogle Scholar
  99. 99.
    Bochenek, B.: Int. J. Solids Struct. 23, 599–605 (1987).MATHGoogle Scholar
  100. 100.
    Plaut, R.H., Johnson, L.W. & Olhoff, N.: J. Appl. Mech. 53, 130–134 (1986).MATHGoogle Scholar
  101. 101.
    Seyranian, A.P. & Sharanyuk, A.V.: MTT (Mechanics of Solids) 21, 34–38 (1987).Google Scholar
  102. 102.
    Olhoff, N.: J. Struct. Mech. 5, 107–134 (1977).Google Scholar
  103. 103.
    Kamat, M.P. & Simitses, G.J.: Int. J. Solids Struct. 9, 415–429 (1973).MATHGoogle Scholar
  104. 104.
    Vepa, K.: Quart. Appl. Mech. 31, 329–341 (1973/74).MATHMathSciNetGoogle Scholar
  105. 105.
    Seyranian, A.P.: MTT (Mechanics of Solids), 11, 147–152 (1976).Google Scholar
  106. 106.
    Masur, E.F.: In Ref. [18], 99–102 (1975)Google Scholar
  107. 107.
    Olhoff, N. & Parbery, R.: Int. J. Solids Struct. 20, 63–75 (1984).MATHGoogle Scholar
  108. 108.
    Bendsoe, M.P. & Olhoff, N.: Optimal Control Appl. & Meth. 6, 191–200 (1985).MathSciNetGoogle Scholar
  109. 109.
    Troitskii, V.A.: MTT (Mechanics of Solids), 11, 145–152 (1976).MathSciNetGoogle Scholar
  110. 110.
    Mroz, Z. & Rozvany, G.I.N.: J. Opt. Th. & Appl. 15, 85–101 (1975).MATHMathSciNetGoogle Scholar
  111. 111.
    Rozvany, G.I.N.: J. Struct. Mech. 3, 359–402 (1974/75).Google Scholar
  112. 112.
    Pierson, B.L.: J. Struct. Mech. 5, 147–178 (1977).Google Scholar
  113. 113.
    Pedersen, P.: J. Struct. Mech. 10, 243–271 (1981/83).Google Scholar
  114. 114.
    Kibsgaard, S.: Structural Optimization 1 (1989) (to appear).Google Scholar

Copyright information

© Springer-Verlag Wien 1989

Authors and Affiliations

  • N. Olhoff
    • 1
  1. 1.University of AalborgAalborgDenmark

Personalised recommendations