Skip to main content

Part II

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 308))

Abstract

After a very short description of Pontryagin’s maximum principle and sensitivity analysis as applied to eigenvalue problems, a unified approach to column optimization has been presented. Particular attention has been paid to multimodal solutions obtained for compressed columns in an elastic medium and elastically clamped columns for buckling in two planes. Next, a general statement of the optimization of arches has been formulated. The necessity of multimodal optimization was pointed out, especially if in-plane and out-of-plane buckling was taken into account. The sensitivity analysis has been applied to a new optimization problem of annular plates compressed by uniformly distributed non-conservative forces. Both the precritical membrane state and the small transverse vibration has been taken into account. Finally, the parametrical optimization of a visco-elastic column compressed by a follower force with respect to its dynamic stability, as well as the optimization of a plane bar system in conditions of internal resonance has been considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gajewski, A., Zyczkowski, M.: Optimal structural design under stability constraints, Kluwer Academic Publishers, Dordrecht-Boston-London 1988.

    Book  MATH  Google Scholar 

  2. Pontryagin, L.S., Boltyanskii, V. G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes (in Russian), Fizmatgiz, Moskva 1961. English translation: Wiley, New York 1962.

    Google Scholar 

  3. Pedersen, P.: A unified approach to optimal design, in: Optimization methods in structural design, Euromech-Colloquium 164, Siegen 1982 (Eds. H. Eschenauer, N. Olhoff), Bibliogr. Inst., Mannheim-Wien-Zurich 1983, 182–187.

    Google Scholar 

  4. Adelman, H. M., Haftka, R. T.: Sensitivity analysis of discrete structural systems, AIAA Journal, 24 (1986), 5, 823–832.

    Article  Google Scholar 

  5. Haug, E.J., Arora, J.S.: Applied optimal design, Viley, New York 1979.

    Google Scholar 

  6. Haug, E. J., Choi, K. K., Komkov, V.: Design sensitivity analysis of structural systems, Academic Press, New York 1986.

    MATH  Google Scholar 

  7. Wittrick, W. H.: Rates of change of eigenvalues with reference to buckling and vibration problems, J. Roy. Aero. Soc., 66 (1962), 590–591.

    Google Scholar 

  8. Plaut, R.H., Huseyin, K.: Derivatives of eigenvalues and eigenvectors in non-selfadjoint systems, AIAA Journal, 11 (1973), 2, 250–251.

    Article  MathSciNet  Google Scholar 

  9. Farshad, M.: Variation of eigenvalues and eigen-functions in continuum mechanics, AIAA Journal, 12 (1974), 4, 560–561.

    Article  MATH  Google Scholar 

  10. Haug, E.J., Rousse1et, B.: Design sensitivity analysis of eigenvalue variations, in: Optimization of distributed parameter structures (Eds. E.J. Haug and J. Cea), Vol. I–II, Sijthoff and Noordhoff, Alphen aan den Rijn 1981.

    Google Scholar 

  11. Seyranian, A.P., Sharanyuk, A.V.: Sensitivity and optimization of critical parameters in dynamic stability problems (in Russian), Mekh.Tv.Tela, 18 (1983), 5,174–183.

    Google Scholar 

  12. Claudon, J.-L., Sunakawa, M.: Sensitivity analysis for continuous mechanical systems governed by double eigenvalue problems, in: Optimization of distributed parameter structures (Eds. E.J. Haug and J. Cea), Vol.I–II, Sijthoff and Noordhoff, Alphen aan den Rijn 1981.

    Google Scholar 

  13. Pedersen, P., Seyranian, A.P.: Sensitivity analysis for problems of dynamic stability, Int.J.Solids Structures 19 (1983), 4, 315–335.

    Article  MATH  Google Scholar 

  14. Szefer, G.: Analiza wrazliwoéci i optymalizacja ukladów dynamicznych z roziozonymi parametrami, Zesz.Nauk. AGH, Krakow, Mechanika, 1 (1982), 4, 5–36.

    Google Scholar 

  15. Demyanov, V.F., Malozemov, V.N.: Introduction to minimax (in Russian), Nauka, Moskva 1972. English translation: Wiley 1974.

    Google Scholar 

  16. Blachut, J., Gajewski, A.: A unified approach to optimal design of columns, Solids Mech.Archives, 5 (1980), 4, 363–413.

    MATH  Google Scholar 

  17. Haug, E.J.: Optimization of distributed parameter structures with repeated eigenvalues, in: New Approaches to Nonlinear Problems in Dynamics, (ed. P.J. Holmes), SIAM Publications, 1980.

    Google Scholar 

  18. Plaut, N.: Optimal design with respect to structural eigenvalues, Proc.15th Int.Congr.Theor. and Appl.Mech. (Toronto 1980), Prepr. Amsterdam 1980, 133–149.

    Google Scholar 

  19. Weishaar, T.A., Plaut, R.H.: Structural optimization under nonconservative loading, in: Optimization of distributed parameter structures (Eds. E.J. Haug and J. Cea), Vol.I–II, Sijthoff and Noordhoff, Alphen aan den Rijn 1981.

    Google Scholar 

  20. Olhoff, N., Rasmussen, S.H.: On single and bimodal optimum buckling loads of clamped columns, Int.J.Solids Structures, 13 (1977), 7, 605–614.

    Article  MATH  Google Scholar 

  21. Tadjbakhsh, I., Keller, J.B.: Strongest columns and isope-rimetric inequalities for eigenvalues, J.Appl.Mech, 29 (1962), 1, 159–164.

    Article  MATH  MathSciNet  Google Scholar 

  22. Gajewski, A., Życzkowski, M.: Optimal design of elastic columns subject to the general conservative behaviour of loading, ZAMP, 21 (1970), 5, 806–818.

    Article  MATH  Google Scholar 

  23. Farshad, M., Tadjbakhsh, I.: Optimum shape of columns with general conservative end loading, JOTA, 11 (1973), 4, 413–420.

    Article  MATH  MathSciNet  Google Scholar 

  24. Gajewski, A.: A note on unimodal and bimodal optimal design of vibrating compressed columns, Int.J.Mech.Sei. 23 (1981), 1, 11–16.

    Article  MATH  MathSciNet  Google Scholar 

  25. Bochenek, B., Gajewski, A.: Jednomodalna i dwumodalna optymalizacja éciskanych prętów drgających, Mech.Teor.Stos., 22 (1984), 1/2, 185–195.

    Google Scholar 

  26. Gajewski, A.: Bimodal optimization of a column in an elastic medium with respect to buckling or vibration, Int.J.Mech.Sci., 21 (1985), 1/2, 45–53.

    Article  Google Scholar 

  27. Kiusalaas, J.: Optimal design of structures with buckling constraints, Int.J.Solids Structures, 9 (1973), 7, 863–878.

    Article  MathSciNet  Google Scholar 

  28. Repin, S.I.: Shape optimization of a bar on elastic foundation for multiple solutions (in Russian), Prikl. Mat., Tula 1979, 44–30.

    Google Scholar 

  29. Larichev, A.D.: Problem of optimization of a clamped beam on elastic foundation (in Russian), Issled. po Stroit.Konstr., Moskva, 1982.

    Google Scholar 

  30. Plaut, R.H., Johnson, L.W., Olhoff, N.: Bimodal optimization of compressed columns on elastic foundations, J.Appl. Mech., 53 (1986), 3, 130–134.

    Article  MATH  Google Scholar 

  31. Shin, Y.S., Plaut, R.H., Haftka, R.T.: Simultaneous analysis and design for eigenvalue maximization, Proc. of the AIAA/ASME/ASGE/AHS Structures, Structural Dynamics and Materials Conference, Monterey, California, Vol.1, April 1987, 334–342.

    Google Scholar 

  32. Shin, Y.S., Haftka, R.T., Vatson, L.T., Plaut, R.H.: Tracing structural optima as a function of available resources by a homotopy method, Int. J.Comp.Meth.Appl.Mech. and Ing., (in print).

    Google Scholar 

  33. Bochenek, B.: Multimodal optimal design of a compressed column with respect to buckling in two planes, Int.J. Solids Structures, 23 (1987), 3, 599–603.

    Article  MATH  Google Scholar 

  34. Bochenek, B., Nowak, M.: Optymalne kształtowanie slupów z uwagi na wyboczenie w dwóch piaszczyznach (submitted to print).

    Google Scholar 

  35. Prager, S., Prager, W.: A note on optimal design of columns, Int.J.Mech.Sci., 21 (1979), 4, 249–231.

    Article  Google Scholar 

  36. O1hoff, N.: Optimization of columns against buckling, in: Optimization of distributed parameter structures (Eds. E.J. Haug and J. Cea), Vol.I–II, Sijthoff and Noordhoff, Alphen aan den Rijn 1981.

    Google Scholar 

  37. Lam, H.L., Haug, E. J., Choi, K. K.: Optimal design of structures with constraints on eigenvalues, Materials Division, The University of Iowa, Techn. Report No 79, Jan. 1981, 1–71.

    Google Scholar 

  38. Choi, K.K., Haug, E.J.: Repeated eigenvalues in mechanical optimization problems, (Meeting on Probl.Elastic Stab. and Vibr., Pittsburgh 1981), Providence 1981, 61–86.

    Google Scholar 

  39. Haug, E. J., Choi, K. K.: Systematic occurence of repeated eigenvalues in structural optimization, JOTA, 38 (1982), 2, 251–274.

    Article  MATH  MathSciNet  Google Scholar 

  40. Teschner, W.: Minimum weight design for structural eigenvalue problems by optimal control theory, in: Optimization methods in structural design, Euromech-Golloquium 164, Siegen 1982 (Eds. H. Eschenauer, N. Olhoff), Bibliogr. Inst., Mannheim-Wien-Zurich 1983, 424–429.

    Google Scholar 

  41. Banichuk, N.V., Barsuk, A.A.: On a certain method of optimization of elastic stability in the case of multiple critical loadings (in Russian), Prikl.Probl.Prochn.Plast., 24 (1983), 85–89.

    Google Scholar 

  42. Seyranian, A.P.: On a certain solution of a problem of Lagrange (in Russian), Dokl.AN SSSR, 271 (1983), 3, 337–340.

    Google Scholar 

  43. Masur, E.F.: Optimal structural design under multiple eigenvalue constraints, Int.J.Solids Structures, 20 (1984), 3, 211–231.

    Article  MATH  MathSciNet  Google Scholar 

  44. Biachut, J., Gajewski, A.: On unimodal and bimodal optimal design of funicular arches, Int.J.Solids Structures, 17 (1981), 7, 653–667.

    Article  Google Scholar 

  45. Błachut, J., Gajewski, A.: Unimodal and bimodal optimal design of extensible arches with respect to buckling and; vibration, Optimal Control Appl. Meth., 2 (1981), 4, 383–402.

    Article  MATH  Google Scholar 

  46. Błachut, J.: Unimodalna optymalizacja drgających i nararażonych na utratę statecznoéci iuków o osi wydluéalnej, Rozpr.Inz., 30 (1982), 1, 37–55.

    MATH  Google Scholar 

  47. Bochenek, B., Gajewski, A.: Optimal design of funicular arches with respect to in-plane and out-of-plane buckling, J. Struct. Mech., 14 (1986), 3, 257–274.

    Article  Google Scholar 

  48. Bochenek, B.,Gajewski, A.: Multimodal optimization of arches under stability constraints with two independent design functions, Int.J.Solids Structures, (in print).

    Google Scholar 

  49. Bochenek, B.: On multimodal parametrical optimization of arches against plane and spatial buckling, Eng. Optim., 14 (1988), 27–37.

    Article  Google Scholar 

  50. Plaut, R.H., Olhoff, N.: Optimal forms of shallow arches with respect to vibration and stability, J.Struct.Mech., 11 (1983), 1, 81–100.

    Article  Google Scholar 

  51. Olhoff, N., Plaut, R.H.: Bimodal optimization of vibrating shallow arches, Int.J.Solids Structures, 19 (1983), 6, 553–570.

    Article  MATH  Google Scholar 

  52. Rakowski, G., Solecki, R.: Pręty zakrzywione: obliczenia statyczne, Arkady, Warszawa 1963.

    Google Scholar 

  53. Schmidt, R.: Postbuckling behaviour of uniformly compressed circular arches with clamped ends, ZAMP, 30 (1979), 353–356.

    Article  Google Scholar 

  54. Irie, T., Yamada, G., Takahashi, I.: In plane vibration of Timoshenko arcs with variable cross-section, Ing.-Archiv, 48 (1979), 5, 337–346.

    Article  MATH  Google Scholar 

  55. Blachut, J.: Analiza stateczności pryzmatycznych łuków o osi odkształcalnej, Mech.Teor.Stos., 20 (1982), 1/2, 141–157.

    MATH  Google Scholar 

  56. Suzuki, K., Kosawada, T., Takahashi, S.: Out-of-plane vibrations of curved bars with varying cross-section, Bull. JSME, 26 (1983), 212, 268–275.

    Article  Google Scholar 

  57. Nikolai, E.L.: On the stability of a circular ring and of a circular arch under uniformly distributed normal loading (in Russian), Izv.Petrogradskogo Polit.Inst., 27 (1918).

    Google Scholar 

  58. Ponomarev, S. D., Biderman, V.L., Likharev, K.K., Makushin, V.M., Malinin, N.N., Feodosyev, V.I.: Fundamentals of contemporary methods of strength calculations in mashine design (in Russian), Mashgiz, Moskva 1952/1954, C1957/1959).

    Google Scholar 

  59. Ojalvo, M., Demuts, E., Tokarz, F.: Out-of-plane buckling of curved members, Proc.ASCE, J.Struct.Div., 96 (1969), ST10, 2305–2316.

    Google Scholar 

  60. Tadjbakhsh, I., Farshad, M.: On conservatively loaded funicular arches and their optimal design, in: Optimization in structural design (Eds. A. Sawczuk and Z. Mróz), IUTAM Symposium, Warsaw 1973, Springer, Berlin-New York 1973.

    Google Scholar 

  61. Olhoff, N.: Bimodality in optimizing the shape of a vibrating shallow arch, in: Optimization methods in structural design, Euromech-Colloquium 164, Siegen 1982 (Eds. H. Eschenauer and N. Olhoff), Bibliogr. Inst., Mannheim-Wien-Zurich 1983, 182–187.

    Google Scholar 

  62. Biachut, J.: Parametrical optimal design of funicular arches against buckling and vibration, Int.J.Mech.Sci., 26 (1984), 5, 305–310.

    Article  Google Scholar 

  63. Pierson, B.L.: Panel flutter optimization by gradient projection, Int. J. Num. Meth. Engng., 9 (1975), 271–296.

    Article  MATH  Google Scholar 

  64. Seyranian, A.P.; Optimization of structures subjected to aeroelastic instability phenomena, Arch.Mech.Stos., 34 (1982), 2, 133–146.

    MATH  Google Scholar 

  65. Frauenthal, J.C.: Constrained optimal design of circular plates against buckling, J.Struct.Mech., 1 (1972), 2, 115–127.

    Article  Google Scholar 

  66. Grinev, V.B., Filippov, A.P.: Optimal design of circular plates against buckling (in Russian), Stroit.Mekh.Rasch. Sooruzh., (1972), 2, 16–20.

    Google Scholar 

  67. Rzegocihska-Peiech, K., Waszczyszyn, Z.: Numerical optimum design of elastic annular plates with respect to buckling, Computers and Structures, 18 (1984), 2, 369–378.

    Article  Google Scholar 

  68. Irie, T., Yamada, G., Kaneko, Y.: Vibration and stability of a non-uniform annular plate subjected to a follower force, J.Sound and Vibration, 73 (1980), 2, 261–269.

    Article  MATH  Google Scholar 

  69. Gajewski, A., Cupiał P.: Optimal structural design of an annular plate compressed by non-conservative forces (submitted to print).

    Google Scholar 

  70. Bolotin, B.B.: Dynamic stability of elastic systems (in Russian), Gostekhizdat, Moskva 1956. English translation: Holden-Day, San Francisco 1964.

    Google Scholar 

  71. Volmir, A.S.: Stability of deformable systems (in Russian), Nauka, Moskva 1967.

    Google Scholar 

  72. Zyczkowski, M., Gajewski, A.: Optimal structural design in non-conservative problems of elastic stability, in: Instability of continuous systems (Ed. H.H.E. Leipholz), IUTAM Symposium, Herrenalb 1969, Springer, Berlin-Heidelberg-New York 1971.

    Google Scholar 

  73. Claudon, J.-L.: Characteristic curves and optimum design of two structures subjected to circulatory loads, Journal de Mécanique 14 (1975), 3, 531–543.

    MATH  Google Scholar 

  74. Hanaoka, M., Washizu, K.: Optimum design of Beck’s column, Comp, and Struct., 11 (1980), 6, 473–480.

    Article  MATH  MathSciNet  Google Scholar 

  75. Foryś, A., Gajewski, A.: Parametryczna optymalizacja pręta lepkosprężystego ze względu na stateczność dynamiczną, Rozpr.Inż., 35 (1987), 2, 297–308.

    MATH  Google Scholar 

  76. Foryś, Anna: Vibrations and dynamical stability of some system of rods in nonlinear approach, Nonlin.Vibr.Problems, 22 (1984), 213–231.

    Google Scholar 

  77. Foryś, Anna: Periodic and non-periodic combination resonance in a non-linear system of rods, J.Sound and Vibration, 105 (1986), 3, 461–472.

    Article  Google Scholar 

  78. Foryś, Anna, Nizioł, J.: Internal resonance in a plane system of rods, J.Sound and Vibration, 95 (1984), 3, 361–374.

    Article  MATH  Google Scholar 

  79. Foryś, Anna, Gajewski, A.: Analiza i optymalizacja układu prętowego o zmiennych przekrojach w warunkach rezonansu wewnętrznego, Rozpr.Inż., 32 (1984), 4, 575–598.

    MATH  Google Scholar 

  80. Foryś, Anna, Foryś, A.: Optymalizacja parametryczna układu prętów z uwzględnieniem nieliniowości. Rozpr. Inż., 34 (1986), 4, 399–518.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Wien

About this chapter

Cite this chapter

Gajewski, A. (1989). Part II. In: Zyczkowski, M. (eds) Structural Optimization under Stability and Vibration Constraints. International Centre for Mechanical Sciences, vol 308. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2969-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2969-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82173-2

  • Online ISBN: 978-3-7091-2969-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics